Properties

Label 338.10.a.k
Level $338$
Weight $10$
Character orbit 338.a
Self dual yes
Analytic conductor $174.082$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,10,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-96,81,1536,-1693] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.082112623\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 10375x^{4} - 44865x^{3} + 25702990x^{2} + 68900300x - 16723086000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4}\cdot 13 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 16 q^{2} + ( - \beta_1 + 14) q^{3} + 256 q^{4} + (\beta_{2} - 2 \beta_1 - 281) q^{5} + (16 \beta_1 - 224) q^{6} + ( - \beta_{3} + 12 \beta_1 - 85) q^{7} - 4096 q^{8} + (\beta_{4} - \beta_{3} + \beta_1 + 11635) q^{9}+ \cdots + (6309 \beta_{5} + 4046 \beta_{4} + \cdots + 142287083) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 96 q^{2} + 81 q^{3} + 1536 q^{4} - 1693 q^{5} - 1296 q^{6} - 473 q^{7} - 24576 q^{8} + 69813 q^{9} + 27088 q^{10} - 14011 q^{11} + 20736 q^{12} + 7568 q^{14} + 294780 q^{15} + 393216 q^{16} - 173558 q^{17}+ \cdots + 881769510 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} - 10375x^{4} - 44865x^{3} + 25702990x^{2} + 68900300x - 16723086000 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 3\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 17\nu^{5} + 11954\nu^{4} - 689565\nu^{3} - 86988930\nu^{2} + 2266527380\nu + 91027300800 ) / 38058000 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 281\nu^{5} - 26278\nu^{4} - 2331345\nu^{3} + 190223010\nu^{2} + 4420505840\nu - 225775497600 ) / 9514500 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 281\nu^{5} - 26278\nu^{4} - 2331345\nu^{3} + 275853510\nu^{2} + 3535657340\nu - 521600331600 ) / 9514500 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 4949\nu^{5} + 47338\nu^{4} - 42691905\nu^{3} - 835555210\nu^{2} + 53042051860\nu + 939959779600 ) / 12686000 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} - \beta_{3} + 31\beta _1 + 31123 ) / 9 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 6\beta_{5} + 25\beta_{4} - 94\beta_{3} - 678\beta_{2} + 16558\beta _1 + 333592 ) / 9 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 243\beta_{5} + 8285\beta_{4} - 11462\beta_{3} - 2169\beta_{2} + 453239\beta _1 + 169844366 ) / 9 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 72504\beta_{5} + 305245\beta_{4} - 870076\beta_{3} - 5827932\beta_{2} + 111580762\beta _1 + 4766176198 ) / 9 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
90.2541
44.2264
31.0068
−33.5507
−53.1145
−75.8221
−16.0000 −255.762 256.000 −1476.40 4092.20 8627.38 −4096.00 45731.4 23622.4
1.2 −16.0000 −117.679 256.000 −279.538 1882.87 −7662.99 −4096.00 −5834.58 4472.61
1.3 −16.0000 −78.0204 256.000 1338.85 1248.33 132.180 −4096.00 −13595.8 −21421.6
1.4 −16.0000 115.652 256.000 −1193.59 −1850.43 11008.8 −4096.00 −6307.60 19097.5
1.5 −16.0000 174.344 256.000 −2153.96 −2789.50 −12255.2 −4096.00 10712.7 34463.3
1.6 −16.0000 242.466 256.000 2071.64 −3879.46 −323.249 −4096.00 39107.0 −33146.3
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.10.a.k 6
13.b even 2 1 338.10.a.l 6
13.e even 6 2 26.10.c.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.10.c.b 12 13.e even 6 2
338.10.a.k 6 1.a even 1 1 trivial
338.10.a.l 6 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(338))\):

\( T_{3}^{6} - 81T_{3}^{5} - 90675T_{3}^{4} + 6766605T_{3}^{3} + 1901830590T_{3}^{2} - 77125089600T_{3} - 11480361984000 \) Copy content Toggle raw display
\( T_{5}^{6} + 1693 T_{5}^{5} - 5770035 T_{5}^{4} - 10171826233 T_{5}^{3} + 5531891086994 T_{5}^{2} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 16)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots - 11480361984000 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 29\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots - 38\!\cdots\!40 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 11\!\cdots\!44 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 18\!\cdots\!69 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 31\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 17\!\cdots\!24 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 68\!\cdots\!49 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 60\!\cdots\!63 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 60\!\cdots\!25 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 21\!\cdots\!32 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 42\!\cdots\!64 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 58\!\cdots\!96 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 17\!\cdots\!04 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 24\!\cdots\!65 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 20\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 46\!\cdots\!36 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 27\!\cdots\!80 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 14\!\cdots\!20 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 97\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 18\!\cdots\!84 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 79\!\cdots\!96 \) Copy content Toggle raw display
show more
show less