Properties

Label 2-338-1.1-c9-0-86
Degree $2$
Conductor $338$
Sign $-1$
Analytic cond. $174.082$
Root an. cond. $13.1940$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·2-s + 115.·3-s + 256·4-s − 1.19e3·5-s − 1.85e3·6-s + 1.10e4·7-s − 4.09e3·8-s − 6.30e3·9-s + 1.90e4·10-s − 1.66e4·11-s + 2.96e4·12-s − 1.76e5·14-s − 1.38e5·15-s + 6.55e4·16-s + 1.58e4·17-s + 1.00e5·18-s − 8.33e4·19-s − 3.05e5·20-s + 1.27e6·21-s + 2.66e5·22-s + 2.11e6·23-s − 4.73e5·24-s − 5.28e5·25-s − 3.00e6·27-s + 2.81e6·28-s + 9.16e5·29-s + 2.20e6·30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.824·3-s + 0.5·4-s − 0.854·5-s − 0.582·6-s + 1.73·7-s − 0.353·8-s − 0.320·9-s + 0.603·10-s − 0.343·11-s + 0.412·12-s − 1.22·14-s − 0.704·15-s + 0.250·16-s + 0.0460·17-s + 0.226·18-s − 0.146·19-s − 0.427·20-s + 1.42·21-s + 0.242·22-s + 1.57·23-s − 0.291·24-s − 0.270·25-s − 1.08·27-s + 0.866·28-s + 0.240·29-s + 0.497·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338\)    =    \(2 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(174.082\)
Root analytic conductor: \(13.1940\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 338,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 16T \)
13 \( 1 \)
good3 \( 1 - 115.T + 1.96e4T^{2} \)
5 \( 1 + 1.19e3T + 1.95e6T^{2} \)
7 \( 1 - 1.10e4T + 4.03e7T^{2} \)
11 \( 1 + 1.66e4T + 2.35e9T^{2} \)
17 \( 1 - 1.58e4T + 1.18e11T^{2} \)
19 \( 1 + 8.33e4T + 3.22e11T^{2} \)
23 \( 1 - 2.11e6T + 1.80e12T^{2} \)
29 \( 1 - 9.16e5T + 1.45e13T^{2} \)
31 \( 1 + 7.29e6T + 2.64e13T^{2} \)
37 \( 1 + 1.39e7T + 1.29e14T^{2} \)
41 \( 1 - 2.82e7T + 3.27e14T^{2} \)
43 \( 1 - 1.44e7T + 5.02e14T^{2} \)
47 \( 1 + 1.99e7T + 1.11e15T^{2} \)
53 \( 1 + 3.33e7T + 3.29e15T^{2} \)
59 \( 1 - 3.58e7T + 8.66e15T^{2} \)
61 \( 1 - 4.91e7T + 1.16e16T^{2} \)
67 \( 1 + 2.87e8T + 2.72e16T^{2} \)
71 \( 1 + 2.72e8T + 4.58e16T^{2} \)
73 \( 1 + 4.30e8T + 5.88e16T^{2} \)
79 \( 1 - 4.94e8T + 1.19e17T^{2} \)
83 \( 1 + 4.08e8T + 1.86e17T^{2} \)
89 \( 1 - 3.55e8T + 3.50e17T^{2} \)
97 \( 1 - 8.83e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.099859814121440649312507422574, −8.609325250306582305804048633968, −7.74287286787823026422178204310, −7.35163241880435858355822479344, −5.60511528677607822334240743606, −4.53320501432840356388869818159, −3.34259268532672458510684347424, −2.25864998266568267626209216397, −1.27874970938803711402798858810, 0, 1.27874970938803711402798858810, 2.25864998266568267626209216397, 3.34259268532672458510684347424, 4.53320501432840356388869818159, 5.60511528677607822334240743606, 7.35163241880435858355822479344, 7.74287286787823026422178204310, 8.609325250306582305804048633968, 9.099859814121440649312507422574

Graph of the $Z$-function along the critical line