Properties

Label 338.10.a.e.1.3
Level $338$
Weight $10$
Character 338.1
Self dual yes
Analytic conductor $174.082$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [338,10,Mod(1,338)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(338, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("338.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 338.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-48,156,768,1272] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(174.082112623\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.2119705.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 376x + 1820 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(5.12938\) of defining polynomial
Character \(\chi\) \(=\) 338.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} +249.022 q^{3} +256.000 q^{4} +716.175 q^{5} -3984.35 q^{6} -6927.79 q^{7} -4096.00 q^{8} +42328.8 q^{9} -11458.8 q^{10} +64797.9 q^{11} +63749.5 q^{12} +110845. q^{14} +178343. q^{15} +65536.0 q^{16} -52936.2 q^{17} -677261. q^{18} -811860. q^{19} +183341. q^{20} -1.72517e6 q^{21} -1.03677e6 q^{22} -1.17347e6 q^{23} -1.01999e6 q^{24} -1.44022e6 q^{25} +5.63929e6 q^{27} -1.77351e6 q^{28} -3.27842e6 q^{29} -2.85349e6 q^{30} -7.47282e6 q^{31} -1.04858e6 q^{32} +1.61361e7 q^{33} +846979. q^{34} -4.96151e6 q^{35} +1.08362e7 q^{36} +1.26693e6 q^{37} +1.29898e7 q^{38} -2.93345e6 q^{40} +2.30350e7 q^{41} +2.76027e7 q^{42} -2.89799e7 q^{43} +1.65883e7 q^{44} +3.03148e7 q^{45} +1.87755e7 q^{46} -9.91630e6 q^{47} +1.63199e7 q^{48} +7.64069e6 q^{49} +2.30435e7 q^{50} -1.31823e7 q^{51} -1.08085e8 q^{53} -9.02286e7 q^{54} +4.64066e7 q^{55} +2.83762e7 q^{56} -2.02171e8 q^{57} +5.24548e7 q^{58} -8.73536e7 q^{59} +4.56558e7 q^{60} +1.08586e8 q^{61} +1.19565e8 q^{62} -2.93245e8 q^{63} +1.67772e7 q^{64} -2.58177e8 q^{66} +2.48447e8 q^{67} -1.35517e7 q^{68} -2.92220e8 q^{69} +7.93842e7 q^{70} -2.90630e8 q^{71} -1.73379e8 q^{72} +3.58455e8 q^{73} -2.02709e7 q^{74} -3.58646e8 q^{75} -2.07836e8 q^{76} -4.48906e8 q^{77} +4.06821e8 q^{79} +4.69352e7 q^{80} +5.71148e8 q^{81} -3.68561e8 q^{82} -4.70848e8 q^{83} -4.41644e8 q^{84} -3.79116e7 q^{85} +4.63678e8 q^{86} -8.16398e8 q^{87} -2.65412e8 q^{88} -3.65116e8 q^{89} -4.85037e8 q^{90} -3.00409e8 q^{92} -1.86089e9 q^{93} +1.58661e8 q^{94} -5.81433e8 q^{95} -2.61118e8 q^{96} -8.96766e8 q^{97} -1.22251e8 q^{98} +2.74282e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 48 q^{2} + 156 q^{3} + 768 q^{4} + 1272 q^{5} - 2496 q^{6} - 17058 q^{7} - 12288 q^{8} + 42273 q^{9} - 20352 q^{10} - 73974 q^{11} + 39936 q^{12} + 272928 q^{14} - 393756 q^{15} + 196608 q^{16} + 374976 q^{17}+ \cdots + 2480087466 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) 249.022 1.77497 0.887486 0.460835i \(-0.152450\pi\)
0.887486 + 0.460835i \(0.152450\pi\)
\(4\) 256.000 0.500000
\(5\) 716.175 0.512453 0.256227 0.966617i \(-0.417521\pi\)
0.256227 + 0.966617i \(0.417521\pi\)
\(6\) −3984.35 −1.25509
\(7\) −6927.79 −1.09057 −0.545285 0.838251i \(-0.683579\pi\)
−0.545285 + 0.838251i \(0.683579\pi\)
\(8\) −4096.00 −0.353553
\(9\) 42328.8 2.15052
\(10\) −11458.8 −0.362359
\(11\) 64797.9 1.33442 0.667212 0.744868i \(-0.267488\pi\)
0.667212 + 0.744868i \(0.267488\pi\)
\(12\) 63749.5 0.887486
\(13\) 0 0
\(14\) 110845. 0.771150
\(15\) 178343. 0.909590
\(16\) 65536.0 0.250000
\(17\) −52936.2 −0.153721 −0.0768604 0.997042i \(-0.524490\pi\)
−0.0768604 + 0.997042i \(0.524490\pi\)
\(18\) −677261. −1.52065
\(19\) −811860. −1.42919 −0.714595 0.699539i \(-0.753389\pi\)
−0.714595 + 0.699539i \(0.753389\pi\)
\(20\) 183341. 0.256227
\(21\) −1.72517e6 −1.93573
\(22\) −1.03677e6 −0.943580
\(23\) −1.17347e6 −0.874374 −0.437187 0.899371i \(-0.644025\pi\)
−0.437187 + 0.899371i \(0.644025\pi\)
\(24\) −1.01999e6 −0.627547
\(25\) −1.44022e6 −0.737392
\(26\) 0 0
\(27\) 5.63929e6 2.04215
\(28\) −1.77351e6 −0.545285
\(29\) −3.27842e6 −0.860744 −0.430372 0.902652i \(-0.641618\pi\)
−0.430372 + 0.902652i \(0.641618\pi\)
\(30\) −2.85349e6 −0.643177
\(31\) −7.47282e6 −1.45331 −0.726653 0.687005i \(-0.758925\pi\)
−0.726653 + 0.687005i \(0.758925\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) 1.61361e7 2.36856
\(34\) 846979. 0.108697
\(35\) −4.96151e6 −0.558866
\(36\) 1.08362e7 1.07526
\(37\) 1.26693e6 0.111134 0.0555668 0.998455i \(-0.482303\pi\)
0.0555668 + 0.998455i \(0.482303\pi\)
\(38\) 1.29898e7 1.01059
\(39\) 0 0
\(40\) −2.93345e6 −0.181180
\(41\) 2.30350e7 1.27310 0.636548 0.771237i \(-0.280362\pi\)
0.636548 + 0.771237i \(0.280362\pi\)
\(42\) 2.76027e7 1.36877
\(43\) −2.89799e7 −1.29267 −0.646336 0.763053i \(-0.723699\pi\)
−0.646336 + 0.763053i \(0.723699\pi\)
\(44\) 1.65883e7 0.667212
\(45\) 3.03148e7 1.10204
\(46\) 1.87755e7 0.618276
\(47\) −9.91630e6 −0.296421 −0.148211 0.988956i \(-0.547351\pi\)
−0.148211 + 0.988956i \(0.547351\pi\)
\(48\) 1.63199e7 0.443743
\(49\) 7.64069e6 0.189343
\(50\) 2.30435e7 0.521415
\(51\) −1.31823e7 −0.272850
\(52\) 0 0
\(53\) −1.08085e8 −1.88158 −0.940791 0.338986i \(-0.889916\pi\)
−0.940791 + 0.338986i \(0.889916\pi\)
\(54\) −9.02286e7 −1.44402
\(55\) 4.64066e7 0.683829
\(56\) 2.83762e7 0.385575
\(57\) −2.02171e8 −2.53677
\(58\) 5.24548e7 0.608638
\(59\) −8.73536e7 −0.938527 −0.469263 0.883058i \(-0.655480\pi\)
−0.469263 + 0.883058i \(0.655480\pi\)
\(60\) 4.56558e7 0.454795
\(61\) 1.08586e8 1.00413 0.502065 0.864830i \(-0.332574\pi\)
0.502065 + 0.864830i \(0.332574\pi\)
\(62\) 1.19565e8 1.02764
\(63\) −2.93245e8 −2.34530
\(64\) 1.67772e7 0.125000
\(65\) 0 0
\(66\) −2.58177e8 −1.67483
\(67\) 2.48447e8 1.50625 0.753124 0.657878i \(-0.228546\pi\)
0.753124 + 0.657878i \(0.228546\pi\)
\(68\) −1.35517e7 −0.0768604
\(69\) −2.92220e8 −1.55199
\(70\) 7.93842e7 0.395178
\(71\) −2.90630e8 −1.35731 −0.678653 0.734459i \(-0.737436\pi\)
−0.678653 + 0.734459i \(0.737436\pi\)
\(72\) −1.73379e8 −0.760325
\(73\) 3.58455e8 1.47734 0.738672 0.674065i \(-0.235453\pi\)
0.738672 + 0.674065i \(0.235453\pi\)
\(74\) −2.02709e7 −0.0785834
\(75\) −3.58646e8 −1.30885
\(76\) −2.07836e8 −0.714595
\(77\) −4.48906e8 −1.45528
\(78\) 0 0
\(79\) 4.06821e8 1.17512 0.587559 0.809181i \(-0.300089\pi\)
0.587559 + 0.809181i \(0.300089\pi\)
\(80\) 4.69352e7 0.128113
\(81\) 5.71148e8 1.47423
\(82\) −3.68561e8 −0.900215
\(83\) −4.70848e8 −1.08900 −0.544502 0.838759i \(-0.683281\pi\)
−0.544502 + 0.838759i \(0.683281\pi\)
\(84\) −4.41644e8 −0.967866
\(85\) −3.79116e7 −0.0787747
\(86\) 4.63678e8 0.914057
\(87\) −8.16398e8 −1.52780
\(88\) −2.65412e8 −0.471790
\(89\) −3.65116e8 −0.616845 −0.308422 0.951249i \(-0.599801\pi\)
−0.308422 + 0.951249i \(0.599801\pi\)
\(90\) −4.85037e8 −0.779262
\(91\) 0 0
\(92\) −3.00409e8 −0.437187
\(93\) −1.86089e9 −2.57958
\(94\) 1.58661e8 0.209601
\(95\) −5.81433e8 −0.732392
\(96\) −2.61118e8 −0.313774
\(97\) −8.96766e8 −1.02850 −0.514252 0.857639i \(-0.671931\pi\)
−0.514252 + 0.857639i \(0.671931\pi\)
\(98\) −1.22251e8 −0.133886
\(99\) 2.74282e9 2.86971
\(100\) −3.68696e8 −0.368696
\(101\) −1.62603e8 −0.155482 −0.0777412 0.996974i \(-0.524771\pi\)
−0.0777412 + 0.996974i \(0.524771\pi\)
\(102\) 2.10916e8 0.192934
\(103\) −2.32078e8 −0.203173 −0.101586 0.994827i \(-0.532392\pi\)
−0.101586 + 0.994827i \(0.532392\pi\)
\(104\) 0 0
\(105\) −1.23552e9 −0.991971
\(106\) 1.72936e9 1.33048
\(107\) 1.84672e9 1.36199 0.680994 0.732289i \(-0.261548\pi\)
0.680994 + 0.732289i \(0.261548\pi\)
\(108\) 1.44366e9 1.02107
\(109\) −1.10794e9 −0.751791 −0.375896 0.926662i \(-0.622665\pi\)
−0.375896 + 0.926662i \(0.622665\pi\)
\(110\) −7.42506e8 −0.483540
\(111\) 3.15494e8 0.197259
\(112\) −4.54020e8 −0.272643
\(113\) 2.55084e9 1.47174 0.735868 0.677125i \(-0.236774\pi\)
0.735868 + 0.677125i \(0.236774\pi\)
\(114\) 3.23473e9 1.79377
\(115\) −8.40411e8 −0.448076
\(116\) −8.39276e8 −0.430372
\(117\) 0 0
\(118\) 1.39766e9 0.663638
\(119\) 3.66731e8 0.167643
\(120\) −7.30493e8 −0.321589
\(121\) 1.84082e9 0.780686
\(122\) −1.73738e9 −0.710027
\(123\) 5.73622e9 2.25971
\(124\) −1.91304e9 −0.726653
\(125\) −2.43023e9 −0.890332
\(126\) 4.69192e9 1.65838
\(127\) −1.39169e9 −0.474706 −0.237353 0.971423i \(-0.576280\pi\)
−0.237353 + 0.971423i \(0.576280\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) −7.21661e9 −2.29446
\(130\) 0 0
\(131\) −4.17723e8 −0.123927 −0.0619637 0.998078i \(-0.519736\pi\)
−0.0619637 + 0.998078i \(0.519736\pi\)
\(132\) 4.13084e9 1.18428
\(133\) 5.62439e9 1.55863
\(134\) −3.97515e9 −1.06508
\(135\) 4.03872e9 1.04651
\(136\) 2.16827e8 0.0543485
\(137\) 3.17262e9 0.769441 0.384721 0.923033i \(-0.374298\pi\)
0.384721 + 0.923033i \(0.374298\pi\)
\(138\) 4.67552e9 1.09742
\(139\) 7.49108e8 0.170207 0.0851036 0.996372i \(-0.472878\pi\)
0.0851036 + 0.996372i \(0.472878\pi\)
\(140\) −1.27015e9 −0.279433
\(141\) −2.46937e9 −0.526139
\(142\) 4.65008e9 0.959761
\(143\) 0 0
\(144\) 2.77406e9 0.537631
\(145\) −2.34792e9 −0.441091
\(146\) −5.73527e9 −1.04464
\(147\) 1.90270e9 0.336079
\(148\) 3.24335e8 0.0555668
\(149\) 3.94098e9 0.655038 0.327519 0.944845i \(-0.393787\pi\)
0.327519 + 0.944845i \(0.393787\pi\)
\(150\) 5.73833e9 0.925497
\(151\) −8.63414e9 −1.35152 −0.675760 0.737121i \(-0.736185\pi\)
−0.675760 + 0.737121i \(0.736185\pi\)
\(152\) 3.32538e9 0.505295
\(153\) −2.24072e9 −0.330580
\(154\) 7.18250e9 1.02904
\(155\) −5.35185e9 −0.744751
\(156\) 0 0
\(157\) 1.08229e10 1.42166 0.710829 0.703365i \(-0.248320\pi\)
0.710829 + 0.703365i \(0.248320\pi\)
\(158\) −6.50914e9 −0.830934
\(159\) −2.69155e10 −3.33976
\(160\) −7.50964e8 −0.0905898
\(161\) 8.12956e9 0.953566
\(162\) −9.13837e9 −1.04244
\(163\) 5.62787e8 0.0624453 0.0312226 0.999512i \(-0.490060\pi\)
0.0312226 + 0.999512i \(0.490060\pi\)
\(164\) 5.89697e9 0.636548
\(165\) 1.15563e10 1.21378
\(166\) 7.53358e9 0.770043
\(167\) −7.18451e9 −0.714781 −0.357390 0.933955i \(-0.616333\pi\)
−0.357390 + 0.933955i \(0.616333\pi\)
\(168\) 7.06630e9 0.684384
\(169\) 0 0
\(170\) 6.06585e8 0.0557021
\(171\) −3.43650e10 −3.07351
\(172\) −7.41884e9 −0.646336
\(173\) −7.72366e9 −0.655565 −0.327783 0.944753i \(-0.606301\pi\)
−0.327783 + 0.944753i \(0.606301\pi\)
\(174\) 1.30624e10 1.08031
\(175\) 9.97753e9 0.804178
\(176\) 4.24659e9 0.333606
\(177\) −2.17529e10 −1.66586
\(178\) 5.84186e9 0.436175
\(179\) −2.20856e10 −1.60794 −0.803972 0.594667i \(-0.797284\pi\)
−0.803972 + 0.594667i \(0.797284\pi\)
\(180\) 7.76059e9 0.551022
\(181\) −8.63359e8 −0.0597913 −0.0298956 0.999553i \(-0.509517\pi\)
−0.0298956 + 0.999553i \(0.509517\pi\)
\(182\) 0 0
\(183\) 2.70403e10 1.78230
\(184\) 4.80654e9 0.309138
\(185\) 9.07345e8 0.0569508
\(186\) 2.97743e10 1.82404
\(187\) −3.43015e9 −0.205129
\(188\) −2.53857e9 −0.148211
\(189\) −3.90678e10 −2.22711
\(190\) 9.30293e9 0.517880
\(191\) −6.46347e9 −0.351411 −0.175706 0.984443i \(-0.556221\pi\)
−0.175706 + 0.984443i \(0.556221\pi\)
\(192\) 4.17789e9 0.221871
\(193\) 3.91408e9 0.203059 0.101529 0.994833i \(-0.467626\pi\)
0.101529 + 0.994833i \(0.467626\pi\)
\(194\) 1.43483e10 0.727263
\(195\) 0 0
\(196\) 1.95602e9 0.0946717
\(197\) 1.33095e10 0.629600 0.314800 0.949158i \(-0.398062\pi\)
0.314800 + 0.949158i \(0.398062\pi\)
\(198\) −4.38850e10 −2.02919
\(199\) 4.22698e10 1.91069 0.955347 0.295488i \(-0.0954821\pi\)
0.955347 + 0.295488i \(0.0954821\pi\)
\(200\) 5.89914e9 0.260707
\(201\) 6.18686e10 2.67355
\(202\) 2.60164e9 0.109943
\(203\) 2.27122e10 0.938702
\(204\) −3.37466e9 −0.136425
\(205\) 1.64971e10 0.652402
\(206\) 3.71324e9 0.143665
\(207\) −4.96716e10 −1.88036
\(208\) 0 0
\(209\) −5.26068e10 −1.90714
\(210\) 1.97684e10 0.701430
\(211\) −4.36607e10 −1.51642 −0.758211 0.652010i \(-0.773926\pi\)
−0.758211 + 0.652010i \(0.773926\pi\)
\(212\) −2.76697e10 −0.940791
\(213\) −7.23732e10 −2.40918
\(214\) −2.95475e10 −0.963071
\(215\) −2.07546e10 −0.662434
\(216\) −2.30985e10 −0.722009
\(217\) 5.17702e10 1.58493
\(218\) 1.77271e10 0.531597
\(219\) 8.92630e10 2.62224
\(220\) 1.18801e10 0.341915
\(221\) 0 0
\(222\) −5.04790e9 −0.139483
\(223\) −3.96069e10 −1.07250 −0.536252 0.844058i \(-0.680160\pi\)
−0.536252 + 0.844058i \(0.680160\pi\)
\(224\) 7.26432e9 0.192787
\(225\) −6.09627e10 −1.58578
\(226\) −4.08134e10 −1.04067
\(227\) 5.88274e9 0.147049 0.0735247 0.997293i \(-0.476575\pi\)
0.0735247 + 0.997293i \(0.476575\pi\)
\(228\) −5.17557e10 −1.26839
\(229\) −2.02060e10 −0.485536 −0.242768 0.970084i \(-0.578055\pi\)
−0.242768 + 0.970084i \(0.578055\pi\)
\(230\) 1.34466e10 0.316837
\(231\) −1.11787e11 −2.58309
\(232\) 1.34284e10 0.304319
\(233\) 5.28051e10 1.17375 0.586873 0.809679i \(-0.300359\pi\)
0.586873 + 0.809679i \(0.300359\pi\)
\(234\) 0 0
\(235\) −7.10181e9 −0.151902
\(236\) −2.23625e10 −0.469263
\(237\) 1.01307e11 2.08580
\(238\) −5.86769e9 −0.118542
\(239\) 1.98291e10 0.393109 0.196555 0.980493i \(-0.437025\pi\)
0.196555 + 0.980493i \(0.437025\pi\)
\(240\) 1.16879e10 0.227397
\(241\) 9.13883e10 1.74507 0.872537 0.488548i \(-0.162473\pi\)
0.872537 + 0.488548i \(0.162473\pi\)
\(242\) −2.94531e10 −0.552029
\(243\) 3.12301e10 0.574572
\(244\) 2.77980e10 0.502065
\(245\) 5.47207e9 0.0970296
\(246\) −9.17795e10 −1.59786
\(247\) 0 0
\(248\) 3.06087e10 0.513821
\(249\) −1.17251e11 −1.93295
\(250\) 3.88836e10 0.629560
\(251\) −4.66320e9 −0.0741570 −0.0370785 0.999312i \(-0.511805\pi\)
−0.0370785 + 0.999312i \(0.511805\pi\)
\(252\) −7.50707e10 −1.17265
\(253\) −7.60384e10 −1.16679
\(254\) 2.22670e10 0.335668
\(255\) −9.44080e9 −0.139823
\(256\) 4.29497e9 0.0625000
\(257\) −1.20163e11 −1.71819 −0.859094 0.511817i \(-0.828972\pi\)
−0.859094 + 0.511817i \(0.828972\pi\)
\(258\) 1.15466e11 1.62243
\(259\) −8.77704e9 −0.121199
\(260\) 0 0
\(261\) −1.38772e11 −1.85105
\(262\) 6.68356e9 0.0876299
\(263\) −4.25793e9 −0.0548779 −0.0274389 0.999623i \(-0.508735\pi\)
−0.0274389 + 0.999623i \(0.508735\pi\)
\(264\) −6.60934e10 −0.837414
\(265\) −7.74076e10 −0.964223
\(266\) −8.99903e10 −1.10212
\(267\) −9.09218e10 −1.09488
\(268\) 6.36023e10 0.753124
\(269\) 1.29999e11 1.51375 0.756874 0.653561i \(-0.226726\pi\)
0.756874 + 0.653561i \(0.226726\pi\)
\(270\) −6.46195e10 −0.739991
\(271\) −9.56827e10 −1.07763 −0.538817 0.842423i \(-0.681129\pi\)
−0.538817 + 0.842423i \(0.681129\pi\)
\(272\) −3.46923e9 −0.0384302
\(273\) 0 0
\(274\) −5.07619e10 −0.544077
\(275\) −9.33231e10 −0.983993
\(276\) −7.48083e10 −0.775995
\(277\) −7.37939e10 −0.753115 −0.376558 0.926393i \(-0.622892\pi\)
−0.376558 + 0.926393i \(0.622892\pi\)
\(278\) −1.19857e10 −0.120355
\(279\) −3.16316e11 −3.12537
\(280\) 2.03223e10 0.197589
\(281\) −4.75391e9 −0.0454854 −0.0227427 0.999741i \(-0.507240\pi\)
−0.0227427 + 0.999741i \(0.507240\pi\)
\(282\) 3.95100e10 0.372037
\(283\) 1.13785e11 1.05450 0.527251 0.849710i \(-0.323223\pi\)
0.527251 + 0.849710i \(0.323223\pi\)
\(284\) −7.44013e10 −0.678653
\(285\) −1.44790e11 −1.29998
\(286\) 0 0
\(287\) −1.59582e11 −1.38840
\(288\) −4.43849e10 −0.380163
\(289\) −1.15786e11 −0.976370
\(290\) 3.75668e10 0.311898
\(291\) −2.23314e11 −1.82557
\(292\) 9.17644e10 0.738672
\(293\) −6.88493e10 −0.545752 −0.272876 0.962049i \(-0.587975\pi\)
−0.272876 + 0.962049i \(0.587975\pi\)
\(294\) −3.04432e10 −0.237644
\(295\) −6.25604e10 −0.480951
\(296\) −5.18935e9 −0.0392917
\(297\) 3.65414e11 2.72509
\(298\) −6.30558e10 −0.463182
\(299\) 0 0
\(300\) −9.18133e10 −0.654425
\(301\) 2.00766e11 1.40975
\(302\) 1.38146e11 0.955669
\(303\) −4.04916e10 −0.275977
\(304\) −5.32060e10 −0.357297
\(305\) 7.77666e10 0.514569
\(306\) 3.58516e10 0.233756
\(307\) 1.19876e11 0.770209 0.385105 0.922873i \(-0.374165\pi\)
0.385105 + 0.922873i \(0.374165\pi\)
\(308\) −1.14920e11 −0.727641
\(309\) −5.77924e10 −0.360626
\(310\) 8.56296e10 0.526619
\(311\) −1.92486e11 −1.16675 −0.583375 0.812203i \(-0.698268\pi\)
−0.583375 + 0.812203i \(0.698268\pi\)
\(312\) 0 0
\(313\) −8.85346e10 −0.521391 −0.260695 0.965421i \(-0.583952\pi\)
−0.260695 + 0.965421i \(0.583952\pi\)
\(314\) −1.73166e11 −1.00526
\(315\) −2.10015e11 −1.20186
\(316\) 1.04146e11 0.587559
\(317\) −9.22613e10 −0.513160 −0.256580 0.966523i \(-0.582596\pi\)
−0.256580 + 0.966523i \(0.582596\pi\)
\(318\) 4.30647e11 2.36156
\(319\) −2.12435e11 −1.14860
\(320\) 1.20154e10 0.0640566
\(321\) 4.59873e11 2.41749
\(322\) −1.30073e11 −0.674273
\(323\) 4.29767e10 0.219696
\(324\) 1.46214e11 0.737116
\(325\) 0 0
\(326\) −9.00458e9 −0.0441555
\(327\) −2.75901e11 −1.33441
\(328\) −9.43515e10 −0.450108
\(329\) 6.86981e10 0.323268
\(330\) −1.84900e11 −0.858271
\(331\) −1.73234e11 −0.793246 −0.396623 0.917981i \(-0.629818\pi\)
−0.396623 + 0.917981i \(0.629818\pi\)
\(332\) −1.20537e11 −0.544502
\(333\) 5.36277e10 0.238996
\(334\) 1.14952e11 0.505426
\(335\) 1.77931e11 0.771881
\(336\) −1.13061e11 −0.483933
\(337\) 5.97509e10 0.252354 0.126177 0.992008i \(-0.459729\pi\)
0.126177 + 0.992008i \(0.459729\pi\)
\(338\) 0 0
\(339\) 6.35214e11 2.61229
\(340\) −9.70536e9 −0.0393873
\(341\) −4.84223e11 −1.93933
\(342\) 5.49840e11 2.17330
\(343\) 2.26628e11 0.884078
\(344\) 1.18702e11 0.457028
\(345\) −2.09280e11 −0.795321
\(346\) 1.23579e11 0.463555
\(347\) −1.05729e11 −0.391481 −0.195740 0.980656i \(-0.562711\pi\)
−0.195740 + 0.980656i \(0.562711\pi\)
\(348\) −2.08998e11 −0.763898
\(349\) 3.04810e11 1.09980 0.549901 0.835230i \(-0.314665\pi\)
0.549901 + 0.835230i \(0.314665\pi\)
\(350\) −1.59641e11 −0.568639
\(351\) 0 0
\(352\) −6.79455e10 −0.235895
\(353\) −1.32310e11 −0.453530 −0.226765 0.973950i \(-0.572815\pi\)
−0.226765 + 0.973950i \(0.572815\pi\)
\(354\) 3.48047e11 1.17794
\(355\) −2.08142e11 −0.695556
\(356\) −9.34697e10 −0.308422
\(357\) 9.13239e10 0.297562
\(358\) 3.53370e11 1.13699
\(359\) −3.72672e11 −1.18414 −0.592069 0.805887i \(-0.701689\pi\)
−0.592069 + 0.805887i \(0.701689\pi\)
\(360\) −1.24169e11 −0.389631
\(361\) 3.36428e11 1.04258
\(362\) 1.38137e10 0.0422788
\(363\) 4.58403e11 1.38570
\(364\) 0 0
\(365\) 2.56716e11 0.757069
\(366\) −4.32645e11 −1.26028
\(367\) −4.80734e11 −1.38327 −0.691635 0.722247i \(-0.743109\pi\)
−0.691635 + 0.722247i \(0.743109\pi\)
\(368\) −7.69046e10 −0.218593
\(369\) 9.75045e11 2.73783
\(370\) −1.45175e10 −0.0402703
\(371\) 7.48789e11 2.05200
\(372\) −4.76389e11 −1.28979
\(373\) −6.45327e10 −0.172620 −0.0863098 0.996268i \(-0.527507\pi\)
−0.0863098 + 0.996268i \(0.527507\pi\)
\(374\) 5.48824e10 0.145048
\(375\) −6.05179e11 −1.58031
\(376\) 4.06172e10 0.104801
\(377\) 0 0
\(378\) 6.25085e11 1.57480
\(379\) 4.64545e11 1.15652 0.578258 0.815854i \(-0.303733\pi\)
0.578258 + 0.815854i \(0.303733\pi\)
\(380\) −1.48847e11 −0.366196
\(381\) −3.46560e11 −0.842591
\(382\) 1.03416e11 0.248485
\(383\) 3.32737e11 0.790145 0.395073 0.918650i \(-0.370719\pi\)
0.395073 + 0.918650i \(0.370719\pi\)
\(384\) −6.68462e10 −0.156887
\(385\) −3.21495e11 −0.745764
\(386\) −6.26253e10 −0.143584
\(387\) −1.22668e12 −2.77992
\(388\) −2.29572e11 −0.514252
\(389\) 5.73386e11 1.26962 0.634810 0.772668i \(-0.281078\pi\)
0.634810 + 0.772668i \(0.281078\pi\)
\(390\) 0 0
\(391\) 6.21191e10 0.134409
\(392\) −3.12963e10 −0.0669430
\(393\) −1.04022e11 −0.219968
\(394\) −2.12953e11 −0.445195
\(395\) 2.91355e11 0.602193
\(396\) 7.02161e11 1.43486
\(397\) −5.39945e11 −1.09092 −0.545459 0.838137i \(-0.683645\pi\)
−0.545459 + 0.838137i \(0.683645\pi\)
\(398\) −6.76316e11 −1.35106
\(399\) 1.40060e12 2.76653
\(400\) −9.43862e10 −0.184348
\(401\) 3.41860e11 0.660236 0.330118 0.943940i \(-0.392912\pi\)
0.330118 + 0.943940i \(0.392912\pi\)
\(402\) −9.89898e11 −1.89048
\(403\) 0 0
\(404\) −4.16263e10 −0.0777412
\(405\) 4.09042e11 0.755475
\(406\) −3.63396e11 −0.663762
\(407\) 8.20945e10 0.148299
\(408\) 5.39945e10 0.0964670
\(409\) −4.81409e11 −0.850666 −0.425333 0.905037i \(-0.639843\pi\)
−0.425333 + 0.905037i \(0.639843\pi\)
\(410\) −2.63954e11 −0.461318
\(411\) 7.90051e11 1.36574
\(412\) −5.94119e10 −0.101586
\(413\) 6.05167e11 1.02353
\(414\) 7.94746e11 1.32962
\(415\) −3.37210e11 −0.558064
\(416\) 0 0
\(417\) 1.86544e11 0.302113
\(418\) 8.41708e11 1.34855
\(419\) 4.42064e11 0.700683 0.350342 0.936622i \(-0.386065\pi\)
0.350342 + 0.936622i \(0.386065\pi\)
\(420\) −3.16294e11 −0.495986
\(421\) 4.81550e11 0.747088 0.373544 0.927613i \(-0.378143\pi\)
0.373544 + 0.927613i \(0.378143\pi\)
\(422\) 6.98572e11 1.07227
\(423\) −4.19745e11 −0.637461
\(424\) 4.42715e11 0.665240
\(425\) 7.62397e10 0.113352
\(426\) 1.15797e12 1.70355
\(427\) −7.52262e11 −1.09507
\(428\) 4.72760e11 0.680994
\(429\) 0 0
\(430\) 3.32074e11 0.468411
\(431\) 1.16295e11 0.162335 0.0811676 0.996700i \(-0.474135\pi\)
0.0811676 + 0.996700i \(0.474135\pi\)
\(432\) 3.69577e11 0.510537
\(433\) 8.57306e11 1.17203 0.586017 0.810298i \(-0.300695\pi\)
0.586017 + 0.810298i \(0.300695\pi\)
\(434\) −8.28323e11 −1.12072
\(435\) −5.84684e11 −0.782924
\(436\) −2.83633e11 −0.375896
\(437\) 9.52694e11 1.24965
\(438\) −1.42821e12 −1.85421
\(439\) 1.03627e12 1.33163 0.665814 0.746118i \(-0.268084\pi\)
0.665814 + 0.746118i \(0.268084\pi\)
\(440\) −1.90081e11 −0.241770
\(441\) 3.23421e11 0.407188
\(442\) 0 0
\(443\) −1.13736e12 −1.40307 −0.701535 0.712635i \(-0.747502\pi\)
−0.701535 + 0.712635i \(0.747502\pi\)
\(444\) 8.07663e10 0.0986296
\(445\) −2.61487e11 −0.316104
\(446\) 6.33710e11 0.758375
\(447\) 9.81391e11 1.16267
\(448\) −1.16229e11 −0.136321
\(449\) 4.47904e11 0.520088 0.260044 0.965597i \(-0.416263\pi\)
0.260044 + 0.965597i \(0.416263\pi\)
\(450\) 9.75403e11 1.12132
\(451\) 1.49262e12 1.69885
\(452\) 6.53015e11 0.735868
\(453\) −2.15009e12 −2.39891
\(454\) −9.41238e10 −0.103980
\(455\) 0 0
\(456\) 8.28091e11 0.896884
\(457\) −1.48228e12 −1.58968 −0.794838 0.606822i \(-0.792444\pi\)
−0.794838 + 0.606822i \(0.792444\pi\)
\(458\) 3.23297e11 0.343326
\(459\) −2.98522e11 −0.313921
\(460\) −2.15145e11 −0.224038
\(461\) −1.10053e11 −0.113487 −0.0567435 0.998389i \(-0.518072\pi\)
−0.0567435 + 0.998389i \(0.518072\pi\)
\(462\) 1.78860e12 1.82652
\(463\) 1.90086e11 0.192236 0.0961181 0.995370i \(-0.469357\pi\)
0.0961181 + 0.995370i \(0.469357\pi\)
\(464\) −2.14855e11 −0.215186
\(465\) −1.33273e12 −1.32191
\(466\) −8.44882e11 −0.829964
\(467\) −8.85267e11 −0.861288 −0.430644 0.902522i \(-0.641714\pi\)
−0.430644 + 0.902522i \(0.641714\pi\)
\(468\) 0 0
\(469\) −1.72119e12 −1.64267
\(470\) 1.13629e11 0.107411
\(471\) 2.69514e12 2.52340
\(472\) 3.57800e11 0.331819
\(473\) −1.87783e12 −1.72497
\(474\) −1.62092e12 −1.47488
\(475\) 1.16926e12 1.05387
\(476\) 9.38831e10 0.0838216
\(477\) −4.57510e12 −4.04639
\(478\) −3.17266e11 −0.277970
\(479\) −9.62538e10 −0.0835426 −0.0417713 0.999127i \(-0.513300\pi\)
−0.0417713 + 0.999127i \(0.513300\pi\)
\(480\) −1.87006e11 −0.160794
\(481\) 0 0
\(482\) −1.46221e12 −1.23395
\(483\) 2.02444e12 1.69255
\(484\) 4.71249e11 0.390343
\(485\) −6.42241e11 −0.527060
\(486\) −4.99681e11 −0.406284
\(487\) 1.05656e12 0.851163 0.425581 0.904920i \(-0.360070\pi\)
0.425581 + 0.904920i \(0.360070\pi\)
\(488\) −4.44769e11 −0.355014
\(489\) 1.40146e11 0.110839
\(490\) −8.75531e10 −0.0686103
\(491\) −3.08706e11 −0.239706 −0.119853 0.992792i \(-0.538242\pi\)
−0.119853 + 0.992792i \(0.538242\pi\)
\(492\) 1.46847e12 1.12986
\(493\) 1.73547e11 0.132314
\(494\) 0 0
\(495\) 1.96434e12 1.47059
\(496\) −4.89739e11 −0.363327
\(497\) 2.01342e12 1.48024
\(498\) 1.87602e12 1.36680
\(499\) 2.72504e11 0.196752 0.0983762 0.995149i \(-0.468635\pi\)
0.0983762 + 0.995149i \(0.468635\pi\)
\(500\) −6.22138e11 −0.445166
\(501\) −1.78910e12 −1.26872
\(502\) 7.46112e10 0.0524369
\(503\) −1.67621e12 −1.16754 −0.583769 0.811920i \(-0.698423\pi\)
−0.583769 + 0.811920i \(0.698423\pi\)
\(504\) 1.20113e12 0.829188
\(505\) −1.16452e11 −0.0796774
\(506\) 1.21662e12 0.825042
\(507\) 0 0
\(508\) −3.56272e11 −0.237353
\(509\) 1.08327e11 0.0715331 0.0357666 0.999360i \(-0.488613\pi\)
0.0357666 + 0.999360i \(0.488613\pi\)
\(510\) 1.51053e11 0.0988696
\(511\) −2.48330e12 −1.61115
\(512\) −6.87195e10 −0.0441942
\(513\) −4.57831e12 −2.91862
\(514\) 1.92260e12 1.21494
\(515\) −1.66208e11 −0.104117
\(516\) −1.84745e12 −1.14723
\(517\) −6.42555e11 −0.395552
\(518\) 1.40433e11 0.0857007
\(519\) −1.92336e12 −1.16361
\(520\) 0 0
\(521\) −6.57658e11 −0.391048 −0.195524 0.980699i \(-0.562641\pi\)
−0.195524 + 0.980699i \(0.562641\pi\)
\(522\) 2.22035e12 1.30889
\(523\) 2.28923e11 0.133793 0.0668964 0.997760i \(-0.478690\pi\)
0.0668964 + 0.997760i \(0.478690\pi\)
\(524\) −1.06937e11 −0.0619637
\(525\) 2.48462e12 1.42739
\(526\) 6.81268e10 0.0388045
\(527\) 3.95583e11 0.223403
\(528\) 1.05749e12 0.592141
\(529\) −4.24118e11 −0.235470
\(530\) 1.23852e12 0.681808
\(531\) −3.69757e12 −2.01832
\(532\) 1.43984e12 0.779316
\(533\) 0 0
\(534\) 1.45475e12 0.774199
\(535\) 1.32257e12 0.697955
\(536\) −1.01764e12 −0.532539
\(537\) −5.49980e12 −2.85405
\(538\) −2.07998e12 −1.07038
\(539\) 4.95101e11 0.252664
\(540\) 1.03391e12 0.523253
\(541\) −1.87557e12 −0.941336 −0.470668 0.882310i \(-0.655987\pi\)
−0.470668 + 0.882310i \(0.655987\pi\)
\(542\) 1.53092e12 0.762003
\(543\) −2.14995e11 −0.106128
\(544\) 5.55076e10 0.0271742
\(545\) −7.93479e11 −0.385258
\(546\) 0 0
\(547\) −2.73493e12 −1.30618 −0.653089 0.757281i \(-0.726527\pi\)
−0.653089 + 0.757281i \(0.726527\pi\)
\(548\) 8.12191e11 0.384721
\(549\) 4.59632e12 2.15941
\(550\) 1.49317e12 0.695788
\(551\) 2.66162e12 1.23017
\(552\) 1.19693e12 0.548711
\(553\) −2.81837e12 −1.28155
\(554\) 1.18070e12 0.532533
\(555\) 2.25949e11 0.101086
\(556\) 1.91772e11 0.0851036
\(557\) 2.61842e12 1.15263 0.576316 0.817227i \(-0.304490\pi\)
0.576316 + 0.817227i \(0.304490\pi\)
\(558\) 5.06105e12 2.20997
\(559\) 0 0
\(560\) −3.25158e11 −0.139717
\(561\) −8.54182e11 −0.364097
\(562\) 7.60625e10 0.0321630
\(563\) −3.12388e11 −0.131041 −0.0655203 0.997851i \(-0.520871\pi\)
−0.0655203 + 0.997851i \(0.520871\pi\)
\(564\) −6.32160e11 −0.263070
\(565\) 1.82685e12 0.754196
\(566\) −1.82056e12 −0.745645
\(567\) −3.95679e12 −1.60775
\(568\) 1.19042e12 0.479880
\(569\) −1.39773e12 −0.559006 −0.279503 0.960145i \(-0.590170\pi\)
−0.279503 + 0.960145i \(0.590170\pi\)
\(570\) 2.31663e12 0.919222
\(571\) 2.54454e12 1.00172 0.500861 0.865527i \(-0.333017\pi\)
0.500861 + 0.865527i \(0.333017\pi\)
\(572\) 0 0
\(573\) −1.60954e12 −0.623745
\(574\) 2.55331e12 0.981748
\(575\) 1.69005e12 0.644756
\(576\) 7.10159e11 0.268816
\(577\) −1.47191e12 −0.552828 −0.276414 0.961039i \(-0.589146\pi\)
−0.276414 + 0.961039i \(0.589146\pi\)
\(578\) 1.85257e12 0.690398
\(579\) 9.74691e11 0.360424
\(580\) −6.01068e11 −0.220545
\(581\) 3.26194e12 1.18764
\(582\) 3.57303e12 1.29087
\(583\) −7.00367e12 −2.51083
\(584\) −1.46823e12 −0.522320
\(585\) 0 0
\(586\) 1.10159e12 0.385905
\(587\) 2.93835e12 1.02149 0.510743 0.859733i \(-0.329370\pi\)
0.510743 + 0.859733i \(0.329370\pi\)
\(588\) 4.87091e11 0.168040
\(589\) 6.06688e12 2.07705
\(590\) 1.00097e12 0.340084
\(591\) 3.31436e12 1.11752
\(592\) 8.30297e10 0.0277834
\(593\) −2.96605e12 −0.984991 −0.492495 0.870315i \(-0.663915\pi\)
−0.492495 + 0.870315i \(0.663915\pi\)
\(594\) −5.84662e12 −1.92693
\(595\) 2.62643e11 0.0859093
\(596\) 1.00889e12 0.327519
\(597\) 1.05261e13 3.39143
\(598\) 0 0
\(599\) 5.13235e11 0.162890 0.0814452 0.996678i \(-0.474046\pi\)
0.0814452 + 0.996678i \(0.474046\pi\)
\(600\) 1.46901e12 0.462748
\(601\) −1.16242e12 −0.363436 −0.181718 0.983351i \(-0.558166\pi\)
−0.181718 + 0.983351i \(0.558166\pi\)
\(602\) −3.21226e12 −0.996843
\(603\) 1.05164e13 3.23922
\(604\) −2.21034e12 −0.675760
\(605\) 1.31835e12 0.400065
\(606\) 6.47865e11 0.195145
\(607\) −1.30452e12 −0.390034 −0.195017 0.980800i \(-0.562476\pi\)
−0.195017 + 0.980800i \(0.562476\pi\)
\(608\) 8.51296e11 0.252647
\(609\) 5.65584e12 1.66617
\(610\) −1.24427e12 −0.363856
\(611\) 0 0
\(612\) −5.73625e11 −0.165290
\(613\) −1.51535e12 −0.433453 −0.216727 0.976232i \(-0.569538\pi\)
−0.216727 + 0.976232i \(0.569538\pi\)
\(614\) −1.91801e12 −0.544620
\(615\) 4.10814e12 1.15800
\(616\) 1.83872e12 0.514520
\(617\) −4.34398e12 −1.20672 −0.603358 0.797471i \(-0.706171\pi\)
−0.603358 + 0.797471i \(0.706171\pi\)
\(618\) 9.24678e11 0.255001
\(619\) 3.76078e12 1.02960 0.514802 0.857309i \(-0.327865\pi\)
0.514802 + 0.857309i \(0.327865\pi\)
\(620\) −1.37007e12 −0.372376
\(621\) −6.61754e12 −1.78560
\(622\) 3.07978e12 0.825016
\(623\) 2.52945e12 0.672713
\(624\) 0 0
\(625\) 1.07246e12 0.281139
\(626\) 1.41655e12 0.368679
\(627\) −1.31002e13 −3.38513
\(628\) 2.77066e12 0.710829
\(629\) −6.70665e10 −0.0170835
\(630\) 3.36024e12 0.849840
\(631\) −4.80012e12 −1.20537 −0.602684 0.797980i \(-0.705902\pi\)
−0.602684 + 0.797980i \(0.705902\pi\)
\(632\) −1.66634e12 −0.415467
\(633\) −1.08725e13 −2.69160
\(634\) 1.47618e12 0.362859
\(635\) −9.96692e11 −0.243265
\(636\) −6.89036e12 −1.66988
\(637\) 0 0
\(638\) 3.39896e12 0.812181
\(639\) −1.23020e13 −2.91892
\(640\) −1.92247e11 −0.0452949
\(641\) −2.46922e12 −0.577695 −0.288848 0.957375i \(-0.593272\pi\)
−0.288848 + 0.957375i \(0.593272\pi\)
\(642\) −7.35796e12 −1.70942
\(643\) 5.12941e12 1.18336 0.591682 0.806171i \(-0.298464\pi\)
0.591682 + 0.806171i \(0.298464\pi\)
\(644\) 2.08117e12 0.476783
\(645\) −5.16836e12 −1.17580
\(646\) −6.87628e11 −0.155349
\(647\) 1.17603e12 0.263846 0.131923 0.991260i \(-0.457885\pi\)
0.131923 + 0.991260i \(0.457885\pi\)
\(648\) −2.33942e12 −0.521220
\(649\) −5.66033e12 −1.25239
\(650\) 0 0
\(651\) 1.28919e13 2.81321
\(652\) 1.44073e11 0.0312226
\(653\) −3.83054e12 −0.824424 −0.412212 0.911088i \(-0.635244\pi\)
−0.412212 + 0.911088i \(0.635244\pi\)
\(654\) 4.41442e12 0.943569
\(655\) −2.99162e11 −0.0635070
\(656\) 1.50962e12 0.318274
\(657\) 1.51730e13 3.17706
\(658\) −1.09917e12 −0.228585
\(659\) 7.92312e12 1.63649 0.818243 0.574873i \(-0.194949\pi\)
0.818243 + 0.574873i \(0.194949\pi\)
\(660\) 2.95840e12 0.606889
\(661\) −8.08129e11 −0.164655 −0.0823273 0.996605i \(-0.526235\pi\)
−0.0823273 + 0.996605i \(0.526235\pi\)
\(662\) 2.77175e12 0.560910
\(663\) 0 0
\(664\) 1.92860e12 0.385021
\(665\) 4.02805e12 0.798725
\(666\) −8.58043e11 −0.168995
\(667\) 3.84713e12 0.752612
\(668\) −1.83923e12 −0.357390
\(669\) −9.86297e12 −1.90366
\(670\) −2.84690e12 −0.545803
\(671\) 7.03615e12 1.33993
\(672\) 1.80897e12 0.342192
\(673\) −2.18500e12 −0.410568 −0.205284 0.978702i \(-0.565812\pi\)
−0.205284 + 0.978702i \(0.565812\pi\)
\(674\) −9.56014e11 −0.178441
\(675\) −8.12181e12 −1.50586
\(676\) 0 0
\(677\) −5.92825e12 −1.08462 −0.542310 0.840179i \(-0.682450\pi\)
−0.542310 + 0.840179i \(0.682450\pi\)
\(678\) −1.01634e13 −1.84717
\(679\) 6.21261e12 1.12166
\(680\) 1.55286e11 0.0278510
\(681\) 1.46493e12 0.261009
\(682\) 7.74757e12 1.37131
\(683\) −9.91825e12 −1.74398 −0.871990 0.489523i \(-0.837171\pi\)
−0.871990 + 0.489523i \(0.837171\pi\)
\(684\) −8.79745e12 −1.53675
\(685\) 2.27215e12 0.394303
\(686\) −3.62605e12 −0.625137
\(687\) −5.03174e12 −0.861813
\(688\) −1.89922e12 −0.323168
\(689\) 0 0
\(690\) 3.34849e12 0.562377
\(691\) 7.28392e12 1.21539 0.607693 0.794172i \(-0.292095\pi\)
0.607693 + 0.794172i \(0.292095\pi\)
\(692\) −1.97726e12 −0.327783
\(693\) −1.90017e13 −3.12962
\(694\) 1.69166e12 0.276819
\(695\) 5.36493e11 0.0872232
\(696\) 3.34397e12 0.540157
\(697\) −1.21939e12 −0.195701
\(698\) −4.87696e12 −0.777678
\(699\) 1.31496e13 2.08337
\(700\) 2.55425e12 0.402089
\(701\) 7.97899e12 1.24801 0.624003 0.781422i \(-0.285505\pi\)
0.624003 + 0.781422i \(0.285505\pi\)
\(702\) 0 0
\(703\) −1.02857e12 −0.158831
\(704\) 1.08713e12 0.166803
\(705\) −1.76850e12 −0.269622
\(706\) 2.11696e12 0.320694
\(707\) 1.12648e12 0.169564
\(708\) −5.56875e12 −0.832929
\(709\) −3.06000e12 −0.454793 −0.227396 0.973802i \(-0.573021\pi\)
−0.227396 + 0.973802i \(0.573021\pi\)
\(710\) 3.33027e12 0.491832
\(711\) 1.72202e13 2.52712
\(712\) 1.49552e12 0.218088
\(713\) 8.76914e12 1.27073
\(714\) −1.46118e12 −0.210408
\(715\) 0 0
\(716\) −5.65392e12 −0.803972
\(717\) 4.93788e12 0.697758
\(718\) 5.96276e12 0.837312
\(719\) 1.05167e13 1.46758 0.733789 0.679377i \(-0.237750\pi\)
0.733789 + 0.679377i \(0.237750\pi\)
\(720\) 1.98671e12 0.275511
\(721\) 1.60779e12 0.221574
\(722\) −5.38285e12 −0.737216
\(723\) 2.27577e13 3.09746
\(724\) −2.21020e11 −0.0298956
\(725\) 4.72164e12 0.634705
\(726\) −7.33445e12 −0.979835
\(727\) −8.09614e12 −1.07491 −0.537456 0.843292i \(-0.680615\pi\)
−0.537456 + 0.843292i \(0.680615\pi\)
\(728\) 0 0
\(729\) −3.46495e12 −0.454384
\(730\) −4.10746e12 −0.535329
\(731\) 1.53408e12 0.198710
\(732\) 6.92231e12 0.891151
\(733\) −3.20844e12 −0.410512 −0.205256 0.978708i \(-0.565803\pi\)
−0.205256 + 0.978708i \(0.565803\pi\)
\(734\) 7.69174e12 0.978120
\(735\) 1.36266e12 0.172225
\(736\) 1.23047e12 0.154569
\(737\) 1.60988e13 2.00997
\(738\) −1.56007e13 −1.93594
\(739\) 7.62960e12 0.941026 0.470513 0.882393i \(-0.344069\pi\)
0.470513 + 0.882393i \(0.344069\pi\)
\(740\) 2.32280e11 0.0284754
\(741\) 0 0
\(742\) −1.19806e13 −1.45098
\(743\) 1.41259e12 0.170046 0.0850229 0.996379i \(-0.472904\pi\)
0.0850229 + 0.996379i \(0.472904\pi\)
\(744\) 7.62223e12 0.912018
\(745\) 2.82243e12 0.335676
\(746\) 1.03252e12 0.122060
\(747\) −1.99304e13 −2.34193
\(748\) −8.78119e11 −0.102564
\(749\) −1.27937e13 −1.48534
\(750\) 9.68287e12 1.11745
\(751\) −1.49642e13 −1.71662 −0.858311 0.513130i \(-0.828486\pi\)
−0.858311 + 0.513130i \(0.828486\pi\)
\(752\) −6.49875e11 −0.0741053
\(753\) −1.16124e12 −0.131627
\(754\) 0 0
\(755\) −6.18355e12 −0.692591
\(756\) −1.00014e13 −1.11355
\(757\) −1.41035e12 −0.156097 −0.0780487 0.996950i \(-0.524869\pi\)
−0.0780487 + 0.996950i \(0.524869\pi\)
\(758\) −7.43272e12 −0.817780
\(759\) −1.89352e13 −2.07101
\(760\) 2.38155e12 0.258940
\(761\) −9.06064e12 −0.979327 −0.489664 0.871911i \(-0.662880\pi\)
−0.489664 + 0.871911i \(0.662880\pi\)
\(762\) 5.54497e12 0.595801
\(763\) 7.67558e12 0.819881
\(764\) −1.65465e12 −0.175706
\(765\) −1.60475e12 −0.169407
\(766\) −5.32380e12 −0.558717
\(767\) 0 0
\(768\) 1.06954e12 0.110936
\(769\) 6.70677e12 0.691584 0.345792 0.938311i \(-0.387610\pi\)
0.345792 + 0.938311i \(0.387610\pi\)
\(770\) 5.14393e12 0.527335
\(771\) −2.99231e13 −3.04974
\(772\) 1.00201e12 0.101529
\(773\) 1.17340e13 1.18206 0.591029 0.806650i \(-0.298722\pi\)
0.591029 + 0.806650i \(0.298722\pi\)
\(774\) 1.96269e13 1.96570
\(775\) 1.07625e13 1.07166
\(776\) 3.67315e12 0.363631
\(777\) −2.18567e12 −0.215125
\(778\) −9.17417e12 −0.897757
\(779\) −1.87012e13 −1.81950
\(780\) 0 0
\(781\) −1.88322e13 −1.81122
\(782\) −9.93905e11 −0.0950418
\(783\) −1.84880e13 −1.75777
\(784\) 5.00740e11 0.0473359
\(785\) 7.75109e12 0.728533
\(786\) 1.66435e12 0.155541
\(787\) −1.08434e12 −0.100758 −0.0503790 0.998730i \(-0.516043\pi\)
−0.0503790 + 0.998730i \(0.516043\pi\)
\(788\) 3.40724e12 0.314800
\(789\) −1.06032e12 −0.0974067
\(790\) −4.66168e12 −0.425815
\(791\) −1.76717e13 −1.60503
\(792\) −1.12346e13 −1.01460
\(793\) 0 0
\(794\) 8.63912e12 0.771396
\(795\) −1.92762e13 −1.71147
\(796\) 1.08211e13 0.955347
\(797\) 4.17303e12 0.366344 0.183172 0.983081i \(-0.441363\pi\)
0.183172 + 0.983081i \(0.441363\pi\)
\(798\) −2.24095e13 −1.95623
\(799\) 5.24931e11 0.0455661
\(800\) 1.51018e12 0.130354
\(801\) −1.54549e13 −1.32654
\(802\) −5.46976e12 −0.466857
\(803\) 2.32271e13 1.97140
\(804\) 1.58384e13 1.33677
\(805\) 5.82219e12 0.488658
\(806\) 0 0
\(807\) 3.23725e13 2.68686
\(808\) 6.66020e11 0.0549713
\(809\) 2.03832e13 1.67303 0.836515 0.547944i \(-0.184589\pi\)
0.836515 + 0.547944i \(0.184589\pi\)
\(810\) −6.54467e12 −0.534201
\(811\) −3.12648e12 −0.253782 −0.126891 0.991917i \(-0.540500\pi\)
−0.126891 + 0.991917i \(0.540500\pi\)
\(812\) 5.81433e12 0.469351
\(813\) −2.38271e13 −1.91277
\(814\) −1.31351e12 −0.104863
\(815\) 4.03054e11 0.0320003
\(816\) −8.63912e11 −0.0682125
\(817\) 2.35276e13 1.84747
\(818\) 7.70254e12 0.601512
\(819\) 0 0
\(820\) 4.22326e12 0.326201
\(821\) −1.57719e12 −0.121155 −0.0605773 0.998164i \(-0.519294\pi\)
−0.0605773 + 0.998164i \(0.519294\pi\)
\(822\) −1.26408e13 −0.965722
\(823\) 2.74085e12 0.208250 0.104125 0.994564i \(-0.466796\pi\)
0.104125 + 0.994564i \(0.466796\pi\)
\(824\) 9.50590e11 0.0718325
\(825\) −2.32395e13 −1.74656
\(826\) −9.68268e12 −0.723744
\(827\) 1.51185e13 1.12391 0.561957 0.827166i \(-0.310048\pi\)
0.561957 + 0.827166i \(0.310048\pi\)
\(828\) −1.27159e13 −0.940181
\(829\) −1.10159e13 −0.810070 −0.405035 0.914301i \(-0.632741\pi\)
−0.405035 + 0.914301i \(0.632741\pi\)
\(830\) 5.39536e12 0.394611
\(831\) −1.83763e13 −1.33676
\(832\) 0 0
\(833\) −4.04469e11 −0.0291060
\(834\) −2.98471e12 −0.213626
\(835\) −5.14536e12 −0.366292
\(836\) −1.34673e13 −0.953572
\(837\) −4.21414e13 −2.96787
\(838\) −7.07302e12 −0.495458
\(839\) 1.56657e13 1.09149 0.545747 0.837950i \(-0.316246\pi\)
0.545747 + 0.837950i \(0.316246\pi\)
\(840\) 5.06070e12 0.350715
\(841\) −3.75909e12 −0.259120
\(842\) −7.70479e12 −0.528271
\(843\) −1.18383e12 −0.0807353
\(844\) −1.11771e13 −0.758211
\(845\) 0 0
\(846\) 6.71592e12 0.450753
\(847\) −1.27528e13 −0.851393
\(848\) −7.08345e12 −0.470396
\(849\) 2.83350e13 1.87171
\(850\) −1.21983e12 −0.0801523
\(851\) −1.48671e12 −0.0971724
\(852\) −1.85275e13 −1.20459
\(853\) 9.67583e12 0.625774 0.312887 0.949790i \(-0.398704\pi\)
0.312887 + 0.949790i \(0.398704\pi\)
\(854\) 1.20362e13 0.774334
\(855\) −2.46114e13 −1.57503
\(856\) −7.56416e12 −0.481536
\(857\) 1.90306e13 1.20514 0.602571 0.798065i \(-0.294143\pi\)
0.602571 + 0.798065i \(0.294143\pi\)
\(858\) 0 0
\(859\) −1.52060e13 −0.952895 −0.476447 0.879203i \(-0.658076\pi\)
−0.476447 + 0.879203i \(0.658076\pi\)
\(860\) −5.31319e12 −0.331217
\(861\) −3.97393e13 −2.46437
\(862\) −1.86072e12 −0.114788
\(863\) 9.61352e12 0.589975 0.294988 0.955501i \(-0.404685\pi\)
0.294988 + 0.955501i \(0.404685\pi\)
\(864\) −5.91322e12 −0.361004
\(865\) −5.53149e12 −0.335946
\(866\) −1.37169e13 −0.828754
\(867\) −2.88331e13 −1.73303
\(868\) 1.32532e13 0.792466
\(869\) 2.63611e13 1.56811
\(870\) 9.35494e12 0.553611
\(871\) 0 0
\(872\) 4.53813e12 0.265798
\(873\) −3.79590e13 −2.21183
\(874\) −1.52431e13 −0.883633
\(875\) 1.68361e13 0.970969
\(876\) 2.28513e13 1.31112
\(877\) 1.61211e13 0.920227 0.460114 0.887860i \(-0.347809\pi\)
0.460114 + 0.887860i \(0.347809\pi\)
\(878\) −1.65803e13 −0.941603
\(879\) −1.71450e13 −0.968694
\(880\) 3.04130e12 0.170957
\(881\) 1.55403e13 0.869099 0.434549 0.900648i \(-0.356908\pi\)
0.434549 + 0.900648i \(0.356908\pi\)
\(882\) −5.17474e12 −0.287925
\(883\) 1.81773e13 1.00625 0.503124 0.864214i \(-0.332184\pi\)
0.503124 + 0.864214i \(0.332184\pi\)
\(884\) 0 0
\(885\) −1.55789e13 −0.853674
\(886\) 1.81977e13 0.992121
\(887\) 2.45772e13 1.33314 0.666572 0.745441i \(-0.267761\pi\)
0.666572 + 0.745441i \(0.267761\pi\)
\(888\) −1.29226e12 −0.0697416
\(889\) 9.64132e12 0.517701
\(890\) 4.18379e12 0.223519
\(891\) 3.70092e13 1.96725
\(892\) −1.01394e13 −0.536252
\(893\) 8.05064e12 0.423642
\(894\) −1.57022e13 −0.822135
\(895\) −1.58172e13 −0.823996
\(896\) 1.85966e12 0.0963937
\(897\) 0 0
\(898\) −7.16647e12 −0.367758
\(899\) 2.44991e13 1.25092
\(900\) −1.56065e13 −0.792890
\(901\) 5.72160e12 0.289238
\(902\) −2.38819e13 −1.20127
\(903\) 4.99952e13 2.50227
\(904\) −1.04482e13 −0.520337
\(905\) −6.18316e11 −0.0306402
\(906\) 3.44014e13 1.69629
\(907\) 2.50906e13 1.23106 0.615529 0.788115i \(-0.288943\pi\)
0.615529 + 0.788115i \(0.288943\pi\)
\(908\) 1.50598e12 0.0735247
\(909\) −6.88277e12 −0.334369
\(910\) 0 0
\(911\) −1.70571e13 −0.820490 −0.410245 0.911975i \(-0.634557\pi\)
−0.410245 + 0.911975i \(0.634557\pi\)
\(912\) −1.32495e13 −0.634193
\(913\) −3.05100e13 −1.45319
\(914\) 2.37165e13 1.12407
\(915\) 1.93656e13 0.913346
\(916\) −5.17275e12 −0.242768
\(917\) 2.89390e12 0.135151
\(918\) 4.77636e12 0.221975
\(919\) 3.78241e13 1.74924 0.874620 0.484809i \(-0.161111\pi\)
0.874620 + 0.484809i \(0.161111\pi\)
\(920\) 3.44232e12 0.158419
\(921\) 2.98517e13 1.36710
\(922\) 1.76084e12 0.0802474
\(923\) 0 0
\(924\) −2.86176e13 −1.29154
\(925\) −1.82466e12 −0.0819491
\(926\) −3.04137e12 −0.135932
\(927\) −9.82356e12 −0.436928
\(928\) 3.43767e12 0.152159
\(929\) 2.88455e13 1.27059 0.635297 0.772268i \(-0.280878\pi\)
0.635297 + 0.772268i \(0.280878\pi\)
\(930\) 2.13236e13 0.934733
\(931\) −6.20317e12 −0.270608
\(932\) 1.35181e13 0.586873
\(933\) −4.79332e13 −2.07095
\(934\) 1.41643e13 0.609022
\(935\) −2.45659e12 −0.105119
\(936\) 0 0
\(937\) 6.13062e12 0.259822 0.129911 0.991526i \(-0.458531\pi\)
0.129911 + 0.991526i \(0.458531\pi\)
\(938\) 2.75390e13 1.16154
\(939\) −2.20470e13 −0.925454
\(940\) −1.81806e12 −0.0759510
\(941\) 6.77593e12 0.281719 0.140859 0.990030i \(-0.455013\pi\)
0.140859 + 0.990030i \(0.455013\pi\)
\(942\) −4.31222e13 −1.78432
\(943\) −2.70309e13 −1.11316
\(944\) −5.72480e12 −0.234632
\(945\) −2.79794e13 −1.14129
\(946\) 3.00453e13 1.21974
\(947\) 2.51244e13 1.01513 0.507565 0.861614i \(-0.330546\pi\)
0.507565 + 0.861614i \(0.330546\pi\)
\(948\) 2.59347e13 1.04290
\(949\) 0 0
\(950\) −1.87081e13 −0.745200
\(951\) −2.29751e13 −0.910844
\(952\) −1.50213e12 −0.0592708
\(953\) 6.21828e12 0.244204 0.122102 0.992518i \(-0.461037\pi\)
0.122102 + 0.992518i \(0.461037\pi\)
\(954\) 7.32016e13 2.86123
\(955\) −4.62898e12 −0.180082
\(956\) 5.07626e12 0.196555
\(957\) −5.29009e13 −2.03873
\(958\) 1.54006e12 0.0590735
\(959\) −2.19793e13 −0.839130
\(960\) 2.99210e12 0.113699
\(961\) 2.94035e13 1.11210
\(962\) 0 0
\(963\) 7.81693e13 2.92899
\(964\) 2.33954e13 0.872537
\(965\) 2.80317e12 0.104058
\(966\) −3.23910e13 −1.19682
\(967\) −9.31427e12 −0.342554 −0.171277 0.985223i \(-0.554789\pi\)
−0.171277 + 0.985223i \(0.554789\pi\)
\(968\) −7.53999e12 −0.276014
\(969\) 1.07021e13 0.389954
\(970\) 1.02759e13 0.372688
\(971\) 2.14377e13 0.773912 0.386956 0.922098i \(-0.373527\pi\)
0.386956 + 0.922098i \(0.373527\pi\)
\(972\) 7.99489e12 0.287286
\(973\) −5.18967e12 −0.185623
\(974\) −1.69049e13 −0.601863
\(975\) 0 0
\(976\) 7.11630e12 0.251032
\(977\) 1.22818e13 0.431258 0.215629 0.976475i \(-0.430820\pi\)
0.215629 + 0.976475i \(0.430820\pi\)
\(978\) −2.24234e12 −0.0783747
\(979\) −2.36587e13 −0.823132
\(980\) 1.40085e12 0.0485148
\(981\) −4.68978e13 −1.61675
\(982\) 4.93930e12 0.169498
\(983\) −5.75537e13 −1.96599 −0.982997 0.183622i \(-0.941218\pi\)
−0.982997 + 0.183622i \(0.941218\pi\)
\(984\) −2.34956e13 −0.798929
\(985\) 9.53196e12 0.322641
\(986\) −2.77675e12 −0.0935602
\(987\) 1.71073e13 0.573792
\(988\) 0 0
\(989\) 3.40070e13 1.13028
\(990\) −3.14294e13 −1.03987
\(991\) 3.89816e13 1.28389 0.641945 0.766751i \(-0.278128\pi\)
0.641945 + 0.766751i \(0.278128\pi\)
\(992\) 7.83582e12 0.256911
\(993\) −4.31391e13 −1.40799
\(994\) −3.22148e13 −1.04669
\(995\) 3.02725e13 0.979141
\(996\) −3.00164e13 −0.966476
\(997\) −3.28468e13 −1.05285 −0.526423 0.850223i \(-0.676467\pi\)
−0.526423 + 0.850223i \(0.676467\pi\)
\(998\) −4.36006e12 −0.139125
\(999\) 7.14460e12 0.226952
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 338.10.a.e.1.3 3
13.12 even 2 26.10.a.e.1.3 3
39.38 odd 2 234.10.a.k.1.2 3
52.51 odd 2 208.10.a.d.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.10.a.e.1.3 3 13.12 even 2
208.10.a.d.1.1 3 52.51 odd 2
234.10.a.k.1.2 3 39.38 odd 2
338.10.a.e.1.3 3 1.1 even 1 trivial