Properties

Label 234.10.a.k.1.2
Level $234$
Weight $10$
Character 234.1
Self dual yes
Analytic conductor $120.518$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,10,Mod(1,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 234.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-48,0,768,1272] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(120.518385662\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.2119705.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 376x + 1820 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(5.12938\) of defining polynomial
Character \(\chi\) \(=\) 234.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} +256.000 q^{4} +716.175 q^{5} +6927.79 q^{7} -4096.00 q^{8} -11458.8 q^{10} +64797.9 q^{11} -28561.0 q^{13} -110845. q^{14} +65536.0 q^{16} +52936.2 q^{17} +811860. q^{19} +183341. q^{20} -1.03677e6 q^{22} +1.17347e6 q^{23} -1.44022e6 q^{25} +456976. q^{26} +1.77351e6 q^{28} +3.27842e6 q^{29} +7.47282e6 q^{31} -1.04858e6 q^{32} -846979. q^{34} +4.96151e6 q^{35} -1.26693e6 q^{37} -1.29898e7 q^{38} -2.93345e6 q^{40} +2.30350e7 q^{41} -2.89799e7 q^{43} +1.65883e7 q^{44} -1.87755e7 q^{46} -9.91630e6 q^{47} +7.64069e6 q^{49} +2.30435e7 q^{50} -7.31162e6 q^{52} +1.08085e8 q^{53} +4.64066e7 q^{55} -2.83762e7 q^{56} -5.24548e7 q^{58} -8.73536e7 q^{59} +1.08586e8 q^{61} -1.19565e8 q^{62} +1.67772e7 q^{64} -2.04547e7 q^{65} -2.48447e8 q^{67} +1.35517e7 q^{68} -7.93842e7 q^{70} -2.90630e8 q^{71} -3.58455e8 q^{73} +2.02709e7 q^{74} +2.07836e8 q^{76} +4.48906e8 q^{77} +4.06821e8 q^{79} +4.69352e7 q^{80} -3.68561e8 q^{82} -4.70848e8 q^{83} +3.79116e7 q^{85} +4.63678e8 q^{86} -2.65412e8 q^{88} -3.65116e8 q^{89} -1.97865e8 q^{91} +3.00409e8 q^{92} +1.58661e8 q^{94} +5.81433e8 q^{95} +8.96766e8 q^{97} -1.22251e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 48 q^{2} + 768 q^{4} + 1272 q^{5} + 17058 q^{7} - 12288 q^{8} - 20352 q^{10} - 73974 q^{11} - 85683 q^{13} - 272928 q^{14} + 196608 q^{16} - 374976 q^{17} + 418338 q^{19} + 325632 q^{20} + 1183584 q^{22}+ \cdots - 734738832 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) 0 0
\(4\) 256.000 0.500000
\(5\) 716.175 0.512453 0.256227 0.966617i \(-0.417521\pi\)
0.256227 + 0.966617i \(0.417521\pi\)
\(6\) 0 0
\(7\) 6927.79 1.09057 0.545285 0.838251i \(-0.316421\pi\)
0.545285 + 0.838251i \(0.316421\pi\)
\(8\) −4096.00 −0.353553
\(9\) 0 0
\(10\) −11458.8 −0.362359
\(11\) 64797.9 1.33442 0.667212 0.744868i \(-0.267488\pi\)
0.667212 + 0.744868i \(0.267488\pi\)
\(12\) 0 0
\(13\) −28561.0 −0.277350
\(14\) −110845. −0.771150
\(15\) 0 0
\(16\) 65536.0 0.250000
\(17\) 52936.2 0.153721 0.0768604 0.997042i \(-0.475510\pi\)
0.0768604 + 0.997042i \(0.475510\pi\)
\(18\) 0 0
\(19\) 811860. 1.42919 0.714595 0.699539i \(-0.246611\pi\)
0.714595 + 0.699539i \(0.246611\pi\)
\(20\) 183341. 0.256227
\(21\) 0 0
\(22\) −1.03677e6 −0.943580
\(23\) 1.17347e6 0.874374 0.437187 0.899371i \(-0.355975\pi\)
0.437187 + 0.899371i \(0.355975\pi\)
\(24\) 0 0
\(25\) −1.44022e6 −0.737392
\(26\) 456976. 0.196116
\(27\) 0 0
\(28\) 1.77351e6 0.545285
\(29\) 3.27842e6 0.860744 0.430372 0.902652i \(-0.358382\pi\)
0.430372 + 0.902652i \(0.358382\pi\)
\(30\) 0 0
\(31\) 7.47282e6 1.45331 0.726653 0.687005i \(-0.241075\pi\)
0.726653 + 0.687005i \(0.241075\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) 0 0
\(34\) −846979. −0.108697
\(35\) 4.96151e6 0.558866
\(36\) 0 0
\(37\) −1.26693e6 −0.111134 −0.0555668 0.998455i \(-0.517697\pi\)
−0.0555668 + 0.998455i \(0.517697\pi\)
\(38\) −1.29898e7 −1.01059
\(39\) 0 0
\(40\) −2.93345e6 −0.181180
\(41\) 2.30350e7 1.27310 0.636548 0.771237i \(-0.280362\pi\)
0.636548 + 0.771237i \(0.280362\pi\)
\(42\) 0 0
\(43\) −2.89799e7 −1.29267 −0.646336 0.763053i \(-0.723699\pi\)
−0.646336 + 0.763053i \(0.723699\pi\)
\(44\) 1.65883e7 0.667212
\(45\) 0 0
\(46\) −1.87755e7 −0.618276
\(47\) −9.91630e6 −0.296421 −0.148211 0.988956i \(-0.547351\pi\)
−0.148211 + 0.988956i \(0.547351\pi\)
\(48\) 0 0
\(49\) 7.64069e6 0.189343
\(50\) 2.30435e7 0.521415
\(51\) 0 0
\(52\) −7.31162e6 −0.138675
\(53\) 1.08085e8 1.88158 0.940791 0.338986i \(-0.110084\pi\)
0.940791 + 0.338986i \(0.110084\pi\)
\(54\) 0 0
\(55\) 4.64066e7 0.683829
\(56\) −2.83762e7 −0.385575
\(57\) 0 0
\(58\) −5.24548e7 −0.608638
\(59\) −8.73536e7 −0.938527 −0.469263 0.883058i \(-0.655480\pi\)
−0.469263 + 0.883058i \(0.655480\pi\)
\(60\) 0 0
\(61\) 1.08586e8 1.00413 0.502065 0.864830i \(-0.332574\pi\)
0.502065 + 0.864830i \(0.332574\pi\)
\(62\) −1.19565e8 −1.02764
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) −2.04547e7 −0.142129
\(66\) 0 0
\(67\) −2.48447e8 −1.50625 −0.753124 0.657878i \(-0.771454\pi\)
−0.753124 + 0.657878i \(0.771454\pi\)
\(68\) 1.35517e7 0.0768604
\(69\) 0 0
\(70\) −7.93842e7 −0.395178
\(71\) −2.90630e8 −1.35731 −0.678653 0.734459i \(-0.737436\pi\)
−0.678653 + 0.734459i \(0.737436\pi\)
\(72\) 0 0
\(73\) −3.58455e8 −1.47734 −0.738672 0.674065i \(-0.764547\pi\)
−0.738672 + 0.674065i \(0.764547\pi\)
\(74\) 2.02709e7 0.0785834
\(75\) 0 0
\(76\) 2.07836e8 0.714595
\(77\) 4.48906e8 1.45528
\(78\) 0 0
\(79\) 4.06821e8 1.17512 0.587559 0.809181i \(-0.300089\pi\)
0.587559 + 0.809181i \(0.300089\pi\)
\(80\) 4.69352e7 0.128113
\(81\) 0 0
\(82\) −3.68561e8 −0.900215
\(83\) −4.70848e8 −1.08900 −0.544502 0.838759i \(-0.683281\pi\)
−0.544502 + 0.838759i \(0.683281\pi\)
\(84\) 0 0
\(85\) 3.79116e7 0.0787747
\(86\) 4.63678e8 0.914057
\(87\) 0 0
\(88\) −2.65412e8 −0.471790
\(89\) −3.65116e8 −0.616845 −0.308422 0.951249i \(-0.599801\pi\)
−0.308422 + 0.951249i \(0.599801\pi\)
\(90\) 0 0
\(91\) −1.97865e8 −0.302470
\(92\) 3.00409e8 0.437187
\(93\) 0 0
\(94\) 1.58661e8 0.209601
\(95\) 5.81433e8 0.732392
\(96\) 0 0
\(97\) 8.96766e8 1.02850 0.514252 0.857639i \(-0.328069\pi\)
0.514252 + 0.857639i \(0.328069\pi\)
\(98\) −1.22251e8 −0.133886
\(99\) 0 0
\(100\) −3.68696e8 −0.368696
\(101\) 1.62603e8 0.155482 0.0777412 0.996974i \(-0.475229\pi\)
0.0777412 + 0.996974i \(0.475229\pi\)
\(102\) 0 0
\(103\) −2.32078e8 −0.203173 −0.101586 0.994827i \(-0.532392\pi\)
−0.101586 + 0.994827i \(0.532392\pi\)
\(104\) 1.16986e8 0.0980581
\(105\) 0 0
\(106\) −1.72936e9 −1.33048
\(107\) −1.84672e9 −1.36199 −0.680994 0.732289i \(-0.738452\pi\)
−0.680994 + 0.732289i \(0.738452\pi\)
\(108\) 0 0
\(109\) 1.10794e9 0.751791 0.375896 0.926662i \(-0.377335\pi\)
0.375896 + 0.926662i \(0.377335\pi\)
\(110\) −7.42506e8 −0.483540
\(111\) 0 0
\(112\) 4.54020e8 0.272643
\(113\) −2.55084e9 −1.47174 −0.735868 0.677125i \(-0.763226\pi\)
−0.735868 + 0.677125i \(0.763226\pi\)
\(114\) 0 0
\(115\) 8.40411e8 0.448076
\(116\) 8.39276e8 0.430372
\(117\) 0 0
\(118\) 1.39766e9 0.663638
\(119\) 3.66731e8 0.167643
\(120\) 0 0
\(121\) 1.84082e9 0.780686
\(122\) −1.73738e9 −0.710027
\(123\) 0 0
\(124\) 1.91304e9 0.726653
\(125\) −2.43023e9 −0.890332
\(126\) 0 0
\(127\) −1.39169e9 −0.474706 −0.237353 0.971423i \(-0.576280\pi\)
−0.237353 + 0.971423i \(0.576280\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) 0 0
\(130\) 3.27275e8 0.100500
\(131\) 4.17723e8 0.123927 0.0619637 0.998078i \(-0.480264\pi\)
0.0619637 + 0.998078i \(0.480264\pi\)
\(132\) 0 0
\(133\) 5.62439e9 1.55863
\(134\) 3.97515e9 1.06508
\(135\) 0 0
\(136\) −2.16827e8 −0.0543485
\(137\) 3.17262e9 0.769441 0.384721 0.923033i \(-0.374298\pi\)
0.384721 + 0.923033i \(0.374298\pi\)
\(138\) 0 0
\(139\) 7.49108e8 0.170207 0.0851036 0.996372i \(-0.472878\pi\)
0.0851036 + 0.996372i \(0.472878\pi\)
\(140\) 1.27015e9 0.279433
\(141\) 0 0
\(142\) 4.65008e9 0.959761
\(143\) −1.85069e9 −0.370103
\(144\) 0 0
\(145\) 2.34792e9 0.441091
\(146\) 5.73527e9 1.04464
\(147\) 0 0
\(148\) −3.24335e8 −0.0555668
\(149\) 3.94098e9 0.655038 0.327519 0.944845i \(-0.393787\pi\)
0.327519 + 0.944845i \(0.393787\pi\)
\(150\) 0 0
\(151\) 8.63414e9 1.35152 0.675760 0.737121i \(-0.263815\pi\)
0.675760 + 0.737121i \(0.263815\pi\)
\(152\) −3.32538e9 −0.505295
\(153\) 0 0
\(154\) −7.18250e9 −1.02904
\(155\) 5.35185e9 0.744751
\(156\) 0 0
\(157\) 1.08229e10 1.42166 0.710829 0.703365i \(-0.248320\pi\)
0.710829 + 0.703365i \(0.248320\pi\)
\(158\) −6.50914e9 −0.830934
\(159\) 0 0
\(160\) −7.50964e8 −0.0905898
\(161\) 8.12956e9 0.953566
\(162\) 0 0
\(163\) −5.62787e8 −0.0624453 −0.0312226 0.999512i \(-0.509940\pi\)
−0.0312226 + 0.999512i \(0.509940\pi\)
\(164\) 5.89697e9 0.636548
\(165\) 0 0
\(166\) 7.53358e9 0.770043
\(167\) −7.18451e9 −0.714781 −0.357390 0.933955i \(-0.616333\pi\)
−0.357390 + 0.933955i \(0.616333\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) −6.06585e8 −0.0557021
\(171\) 0 0
\(172\) −7.41884e9 −0.646336
\(173\) 7.72366e9 0.655565 0.327783 0.944753i \(-0.393699\pi\)
0.327783 + 0.944753i \(0.393699\pi\)
\(174\) 0 0
\(175\) −9.97753e9 −0.804178
\(176\) 4.24659e9 0.333606
\(177\) 0 0
\(178\) 5.84186e9 0.436175
\(179\) 2.20856e10 1.60794 0.803972 0.594667i \(-0.202716\pi\)
0.803972 + 0.594667i \(0.202716\pi\)
\(180\) 0 0
\(181\) −8.63359e8 −0.0597913 −0.0298956 0.999553i \(-0.509517\pi\)
−0.0298956 + 0.999553i \(0.509517\pi\)
\(182\) 3.16583e9 0.213878
\(183\) 0 0
\(184\) −4.80654e9 −0.309138
\(185\) −9.07345e8 −0.0569508
\(186\) 0 0
\(187\) 3.43015e9 0.205129
\(188\) −2.53857e9 −0.148211
\(189\) 0 0
\(190\) −9.30293e9 −0.517880
\(191\) 6.46347e9 0.351411 0.175706 0.984443i \(-0.443779\pi\)
0.175706 + 0.984443i \(0.443779\pi\)
\(192\) 0 0
\(193\) −3.91408e9 −0.203059 −0.101529 0.994833i \(-0.532374\pi\)
−0.101529 + 0.994833i \(0.532374\pi\)
\(194\) −1.43483e10 −0.727263
\(195\) 0 0
\(196\) 1.95602e9 0.0946717
\(197\) 1.33095e10 0.629600 0.314800 0.949158i \(-0.398062\pi\)
0.314800 + 0.949158i \(0.398062\pi\)
\(198\) 0 0
\(199\) 4.22698e10 1.91069 0.955347 0.295488i \(-0.0954821\pi\)
0.955347 + 0.295488i \(0.0954821\pi\)
\(200\) 5.89914e9 0.260707
\(201\) 0 0
\(202\) −2.60164e9 −0.109943
\(203\) 2.27122e10 0.938702
\(204\) 0 0
\(205\) 1.64971e10 0.652402
\(206\) 3.71324e9 0.143665
\(207\) 0 0
\(208\) −1.87177e9 −0.0693375
\(209\) 5.26068e10 1.90714
\(210\) 0 0
\(211\) −4.36607e10 −1.51642 −0.758211 0.652010i \(-0.773926\pi\)
−0.758211 + 0.652010i \(0.773926\pi\)
\(212\) 2.76697e10 0.940791
\(213\) 0 0
\(214\) 2.95475e10 0.963071
\(215\) −2.07546e10 −0.662434
\(216\) 0 0
\(217\) 5.17702e10 1.58493
\(218\) −1.77271e10 −0.531597
\(219\) 0 0
\(220\) 1.18801e10 0.341915
\(221\) −1.51191e9 −0.0426345
\(222\) 0 0
\(223\) 3.96069e10 1.07250 0.536252 0.844058i \(-0.319840\pi\)
0.536252 + 0.844058i \(0.319840\pi\)
\(224\) −7.26432e9 −0.192787
\(225\) 0 0
\(226\) 4.08134e10 1.04067
\(227\) 5.88274e9 0.147049 0.0735247 0.997293i \(-0.476575\pi\)
0.0735247 + 0.997293i \(0.476575\pi\)
\(228\) 0 0
\(229\) 2.02060e10 0.485536 0.242768 0.970084i \(-0.421945\pi\)
0.242768 + 0.970084i \(0.421945\pi\)
\(230\) −1.34466e10 −0.316837
\(231\) 0 0
\(232\) −1.34284e10 −0.304319
\(233\) −5.28051e10 −1.17375 −0.586873 0.809679i \(-0.699641\pi\)
−0.586873 + 0.809679i \(0.699641\pi\)
\(234\) 0 0
\(235\) −7.10181e9 −0.151902
\(236\) −2.23625e10 −0.469263
\(237\) 0 0
\(238\) −5.86769e9 −0.118542
\(239\) 1.98291e10 0.393109 0.196555 0.980493i \(-0.437025\pi\)
0.196555 + 0.980493i \(0.437025\pi\)
\(240\) 0 0
\(241\) −9.13883e10 −1.74507 −0.872537 0.488548i \(-0.837527\pi\)
−0.872537 + 0.488548i \(0.837527\pi\)
\(242\) −2.94531e10 −0.552029
\(243\) 0 0
\(244\) 2.77980e10 0.502065
\(245\) 5.47207e9 0.0970296
\(246\) 0 0
\(247\) −2.31875e10 −0.396386
\(248\) −3.06087e10 −0.513821
\(249\) 0 0
\(250\) 3.88836e10 0.629560
\(251\) 4.66320e9 0.0741570 0.0370785 0.999312i \(-0.488195\pi\)
0.0370785 + 0.999312i \(0.488195\pi\)
\(252\) 0 0
\(253\) 7.60384e10 1.16679
\(254\) 2.22670e10 0.335668
\(255\) 0 0
\(256\) 4.29497e9 0.0625000
\(257\) 1.20163e11 1.71819 0.859094 0.511817i \(-0.171028\pi\)
0.859094 + 0.511817i \(0.171028\pi\)
\(258\) 0 0
\(259\) −8.77704e9 −0.121199
\(260\) −5.23640e9 −0.0710644
\(261\) 0 0
\(262\) −6.68356e9 −0.0876299
\(263\) 4.25793e9 0.0548779 0.0274389 0.999623i \(-0.491265\pi\)
0.0274389 + 0.999623i \(0.491265\pi\)
\(264\) 0 0
\(265\) 7.74076e10 0.964223
\(266\) −8.99903e10 −1.10212
\(267\) 0 0
\(268\) −6.36023e10 −0.753124
\(269\) −1.29999e11 −1.51375 −0.756874 0.653561i \(-0.773274\pi\)
−0.756874 + 0.653561i \(0.773274\pi\)
\(270\) 0 0
\(271\) 9.56827e10 1.07763 0.538817 0.842423i \(-0.318871\pi\)
0.538817 + 0.842423i \(0.318871\pi\)
\(272\) 3.46923e9 0.0384302
\(273\) 0 0
\(274\) −5.07619e10 −0.544077
\(275\) −9.33231e10 −0.983993
\(276\) 0 0
\(277\) −7.37939e10 −0.753115 −0.376558 0.926393i \(-0.622892\pi\)
−0.376558 + 0.926393i \(0.622892\pi\)
\(278\) −1.19857e10 −0.120355
\(279\) 0 0
\(280\) −2.03223e10 −0.197589
\(281\) −4.75391e9 −0.0454854 −0.0227427 0.999741i \(-0.507240\pi\)
−0.0227427 + 0.999741i \(0.507240\pi\)
\(282\) 0 0
\(283\) 1.13785e11 1.05450 0.527251 0.849710i \(-0.323223\pi\)
0.527251 + 0.849710i \(0.323223\pi\)
\(284\) −7.44013e10 −0.678653
\(285\) 0 0
\(286\) 2.96111e10 0.261702
\(287\) 1.59582e11 1.38840
\(288\) 0 0
\(289\) −1.15786e11 −0.976370
\(290\) −3.75668e10 −0.311898
\(291\) 0 0
\(292\) −9.17644e10 −0.738672
\(293\) −6.88493e10 −0.545752 −0.272876 0.962049i \(-0.587975\pi\)
−0.272876 + 0.962049i \(0.587975\pi\)
\(294\) 0 0
\(295\) −6.25604e10 −0.480951
\(296\) 5.18935e9 0.0392917
\(297\) 0 0
\(298\) −6.30558e10 −0.463182
\(299\) −3.35155e10 −0.242508
\(300\) 0 0
\(301\) −2.00766e11 −1.40975
\(302\) −1.38146e11 −0.955669
\(303\) 0 0
\(304\) 5.32060e10 0.357297
\(305\) 7.77666e10 0.514569
\(306\) 0 0
\(307\) −1.19876e11 −0.770209 −0.385105 0.922873i \(-0.625835\pi\)
−0.385105 + 0.922873i \(0.625835\pi\)
\(308\) 1.14920e11 0.727641
\(309\) 0 0
\(310\) −8.56296e10 −0.526619
\(311\) 1.92486e11 1.16675 0.583375 0.812203i \(-0.301732\pi\)
0.583375 + 0.812203i \(0.301732\pi\)
\(312\) 0 0
\(313\) −8.85346e10 −0.521391 −0.260695 0.965421i \(-0.583952\pi\)
−0.260695 + 0.965421i \(0.583952\pi\)
\(314\) −1.73166e11 −1.00526
\(315\) 0 0
\(316\) 1.04146e11 0.587559
\(317\) −9.22613e10 −0.513160 −0.256580 0.966523i \(-0.582596\pi\)
−0.256580 + 0.966523i \(0.582596\pi\)
\(318\) 0 0
\(319\) 2.12435e11 1.14860
\(320\) 1.20154e10 0.0640566
\(321\) 0 0
\(322\) −1.30073e11 −0.674273
\(323\) 4.29767e10 0.219696
\(324\) 0 0
\(325\) 4.11341e10 0.204516
\(326\) 9.00458e9 0.0441555
\(327\) 0 0
\(328\) −9.43515e10 −0.450108
\(329\) −6.86981e10 −0.323268
\(330\) 0 0
\(331\) 1.73234e11 0.793246 0.396623 0.917981i \(-0.370182\pi\)
0.396623 + 0.917981i \(0.370182\pi\)
\(332\) −1.20537e11 −0.544502
\(333\) 0 0
\(334\) 1.14952e11 0.505426
\(335\) −1.77931e11 −0.771881
\(336\) 0 0
\(337\) 5.97509e10 0.252354 0.126177 0.992008i \(-0.459729\pi\)
0.126177 + 0.992008i \(0.459729\pi\)
\(338\) −1.30517e10 −0.0543928
\(339\) 0 0
\(340\) 9.70536e9 0.0393873
\(341\) 4.84223e11 1.93933
\(342\) 0 0
\(343\) −2.26628e11 −0.884078
\(344\) 1.18702e11 0.457028
\(345\) 0 0
\(346\) −1.23579e11 −0.463555
\(347\) 1.05729e11 0.391481 0.195740 0.980656i \(-0.437289\pi\)
0.195740 + 0.980656i \(0.437289\pi\)
\(348\) 0 0
\(349\) −3.04810e11 −1.09980 −0.549901 0.835230i \(-0.685335\pi\)
−0.549901 + 0.835230i \(0.685335\pi\)
\(350\) 1.59641e11 0.568639
\(351\) 0 0
\(352\) −6.79455e10 −0.235895
\(353\) −1.32310e11 −0.453530 −0.226765 0.973950i \(-0.572815\pi\)
−0.226765 + 0.973950i \(0.572815\pi\)
\(354\) 0 0
\(355\) −2.08142e11 −0.695556
\(356\) −9.34697e10 −0.308422
\(357\) 0 0
\(358\) −3.53370e11 −1.13699
\(359\) −3.72672e11 −1.18414 −0.592069 0.805887i \(-0.701689\pi\)
−0.592069 + 0.805887i \(0.701689\pi\)
\(360\) 0 0
\(361\) 3.36428e11 1.04258
\(362\) 1.38137e10 0.0422788
\(363\) 0 0
\(364\) −5.06534e10 −0.151235
\(365\) −2.56716e11 −0.757069
\(366\) 0 0
\(367\) −4.80734e11 −1.38327 −0.691635 0.722247i \(-0.743109\pi\)
−0.691635 + 0.722247i \(0.743109\pi\)
\(368\) 7.69046e10 0.218593
\(369\) 0 0
\(370\) 1.45175e10 0.0402703
\(371\) 7.48789e11 2.05200
\(372\) 0 0
\(373\) −6.45327e10 −0.172620 −0.0863098 0.996268i \(-0.527507\pi\)
−0.0863098 + 0.996268i \(0.527507\pi\)
\(374\) −5.48824e10 −0.145048
\(375\) 0 0
\(376\) 4.06172e10 0.104801
\(377\) −9.36350e10 −0.238727
\(378\) 0 0
\(379\) −4.64545e11 −1.15652 −0.578258 0.815854i \(-0.696267\pi\)
−0.578258 + 0.815854i \(0.696267\pi\)
\(380\) 1.48847e11 0.366196
\(381\) 0 0
\(382\) −1.03416e11 −0.248485
\(383\) 3.32737e11 0.790145 0.395073 0.918650i \(-0.370719\pi\)
0.395073 + 0.918650i \(0.370719\pi\)
\(384\) 0 0
\(385\) 3.21495e11 0.745764
\(386\) 6.26253e10 0.143584
\(387\) 0 0
\(388\) 2.29572e11 0.514252
\(389\) −5.73386e11 −1.26962 −0.634810 0.772668i \(-0.718922\pi\)
−0.634810 + 0.772668i \(0.718922\pi\)
\(390\) 0 0
\(391\) 6.21191e10 0.134409
\(392\) −3.12963e10 −0.0669430
\(393\) 0 0
\(394\) −2.12953e11 −0.445195
\(395\) 2.91355e11 0.602193
\(396\) 0 0
\(397\) 5.39945e11 1.09092 0.545459 0.838137i \(-0.316355\pi\)
0.545459 + 0.838137i \(0.316355\pi\)
\(398\) −6.76316e11 −1.35106
\(399\) 0 0
\(400\) −9.43862e10 −0.184348
\(401\) 3.41860e11 0.660236 0.330118 0.943940i \(-0.392912\pi\)
0.330118 + 0.943940i \(0.392912\pi\)
\(402\) 0 0
\(403\) −2.13431e11 −0.403075
\(404\) 4.16263e10 0.0777412
\(405\) 0 0
\(406\) −3.63396e11 −0.663762
\(407\) −8.20945e10 −0.148299
\(408\) 0 0
\(409\) 4.81409e11 0.850666 0.425333 0.905037i \(-0.360157\pi\)
0.425333 + 0.905037i \(0.360157\pi\)
\(410\) −2.63954e11 −0.461318
\(411\) 0 0
\(412\) −5.94119e10 −0.101586
\(413\) −6.05167e11 −1.02353
\(414\) 0 0
\(415\) −3.37210e11 −0.558064
\(416\) 2.99484e10 0.0490290
\(417\) 0 0
\(418\) −8.41708e11 −1.34855
\(419\) −4.42064e11 −0.700683 −0.350342 0.936622i \(-0.613935\pi\)
−0.350342 + 0.936622i \(0.613935\pi\)
\(420\) 0 0
\(421\) −4.81550e11 −0.747088 −0.373544 0.927613i \(-0.621857\pi\)
−0.373544 + 0.927613i \(0.621857\pi\)
\(422\) 6.98572e11 1.07227
\(423\) 0 0
\(424\) −4.42715e11 −0.665240
\(425\) −7.62397e10 −0.113352
\(426\) 0 0
\(427\) 7.52262e11 1.09507
\(428\) −4.72760e11 −0.680994
\(429\) 0 0
\(430\) 3.32074e11 0.468411
\(431\) 1.16295e11 0.162335 0.0811676 0.996700i \(-0.474135\pi\)
0.0811676 + 0.996700i \(0.474135\pi\)
\(432\) 0 0
\(433\) 8.57306e11 1.17203 0.586017 0.810298i \(-0.300695\pi\)
0.586017 + 0.810298i \(0.300695\pi\)
\(434\) −8.28323e11 −1.12072
\(435\) 0 0
\(436\) 2.83633e11 0.375896
\(437\) 9.52694e11 1.24965
\(438\) 0 0
\(439\) 1.03627e12 1.33163 0.665814 0.746118i \(-0.268084\pi\)
0.665814 + 0.746118i \(0.268084\pi\)
\(440\) −1.90081e11 −0.241770
\(441\) 0 0
\(442\) 2.41906e10 0.0301471
\(443\) 1.13736e12 1.40307 0.701535 0.712635i \(-0.252498\pi\)
0.701535 + 0.712635i \(0.252498\pi\)
\(444\) 0 0
\(445\) −2.61487e11 −0.316104
\(446\) −6.33710e11 −0.758375
\(447\) 0 0
\(448\) 1.16229e11 0.136321
\(449\) 4.47904e11 0.520088 0.260044 0.965597i \(-0.416263\pi\)
0.260044 + 0.965597i \(0.416263\pi\)
\(450\) 0 0
\(451\) 1.49262e12 1.69885
\(452\) −6.53015e11 −0.735868
\(453\) 0 0
\(454\) −9.41238e10 −0.103980
\(455\) −1.41706e11 −0.155002
\(456\) 0 0
\(457\) 1.48228e12 1.58968 0.794838 0.606822i \(-0.207556\pi\)
0.794838 + 0.606822i \(0.207556\pi\)
\(458\) −3.23297e11 −0.343326
\(459\) 0 0
\(460\) 2.15145e11 0.224038
\(461\) −1.10053e11 −0.113487 −0.0567435 0.998389i \(-0.518072\pi\)
−0.0567435 + 0.998389i \(0.518072\pi\)
\(462\) 0 0
\(463\) −1.90086e11 −0.192236 −0.0961181 0.995370i \(-0.530643\pi\)
−0.0961181 + 0.995370i \(0.530643\pi\)
\(464\) 2.14855e11 0.215186
\(465\) 0 0
\(466\) 8.44882e11 0.829964
\(467\) 8.85267e11 0.861288 0.430644 0.902522i \(-0.358286\pi\)
0.430644 + 0.902522i \(0.358286\pi\)
\(468\) 0 0
\(469\) −1.72119e12 −1.64267
\(470\) 1.13629e11 0.107411
\(471\) 0 0
\(472\) 3.57800e11 0.331819
\(473\) −1.87783e12 −1.72497
\(474\) 0 0
\(475\) −1.16926e12 −1.05387
\(476\) 9.38831e10 0.0838216
\(477\) 0 0
\(478\) −3.17266e11 −0.277970
\(479\) −9.62538e10 −0.0835426 −0.0417713 0.999127i \(-0.513300\pi\)
−0.0417713 + 0.999127i \(0.513300\pi\)
\(480\) 0 0
\(481\) 3.61848e10 0.0308229
\(482\) 1.46221e12 1.23395
\(483\) 0 0
\(484\) 4.71249e11 0.390343
\(485\) 6.42241e11 0.527060
\(486\) 0 0
\(487\) −1.05656e12 −0.851163 −0.425581 0.904920i \(-0.639930\pi\)
−0.425581 + 0.904920i \(0.639930\pi\)
\(488\) −4.44769e11 −0.355014
\(489\) 0 0
\(490\) −8.75531e10 −0.0686103
\(491\) 3.08706e11 0.239706 0.119853 0.992792i \(-0.461758\pi\)
0.119853 + 0.992792i \(0.461758\pi\)
\(492\) 0 0
\(493\) 1.73547e11 0.132314
\(494\) 3.71000e11 0.280287
\(495\) 0 0
\(496\) 4.89739e11 0.363327
\(497\) −2.01342e12 −1.48024
\(498\) 0 0
\(499\) −2.72504e11 −0.196752 −0.0983762 0.995149i \(-0.531365\pi\)
−0.0983762 + 0.995149i \(0.531365\pi\)
\(500\) −6.22138e11 −0.445166
\(501\) 0 0
\(502\) −7.46112e10 −0.0524369
\(503\) 1.67621e12 1.16754 0.583769 0.811920i \(-0.301577\pi\)
0.583769 + 0.811920i \(0.301577\pi\)
\(504\) 0 0
\(505\) 1.16452e11 0.0796774
\(506\) −1.21662e12 −0.825042
\(507\) 0 0
\(508\) −3.56272e11 −0.237353
\(509\) 1.08327e11 0.0715331 0.0357666 0.999360i \(-0.488613\pi\)
0.0357666 + 0.999360i \(0.488613\pi\)
\(510\) 0 0
\(511\) −2.48330e12 −1.61115
\(512\) −6.87195e10 −0.0441942
\(513\) 0 0
\(514\) −1.92260e12 −1.21494
\(515\) −1.66208e11 −0.104117
\(516\) 0 0
\(517\) −6.42555e11 −0.395552
\(518\) 1.40433e11 0.0857007
\(519\) 0 0
\(520\) 8.37823e10 0.0502502
\(521\) 6.57658e11 0.391048 0.195524 0.980699i \(-0.437359\pi\)
0.195524 + 0.980699i \(0.437359\pi\)
\(522\) 0 0
\(523\) 2.28923e11 0.133793 0.0668964 0.997760i \(-0.478690\pi\)
0.0668964 + 0.997760i \(0.478690\pi\)
\(524\) 1.06937e11 0.0619637
\(525\) 0 0
\(526\) −6.81268e10 −0.0388045
\(527\) 3.95583e11 0.223403
\(528\) 0 0
\(529\) −4.24118e11 −0.235470
\(530\) −1.23852e12 −0.681808
\(531\) 0 0
\(532\) 1.43984e12 0.779316
\(533\) −6.57904e11 −0.353094
\(534\) 0 0
\(535\) −1.32257e12 −0.697955
\(536\) 1.01764e12 0.532539
\(537\) 0 0
\(538\) 2.07998e12 1.07038
\(539\) 4.95101e11 0.252664
\(540\) 0 0
\(541\) 1.87557e12 0.941336 0.470668 0.882310i \(-0.344013\pi\)
0.470668 + 0.882310i \(0.344013\pi\)
\(542\) −1.53092e12 −0.762003
\(543\) 0 0
\(544\) −5.55076e10 −0.0271742
\(545\) 7.93479e11 0.385258
\(546\) 0 0
\(547\) −2.73493e12 −1.30618 −0.653089 0.757281i \(-0.726527\pi\)
−0.653089 + 0.757281i \(0.726527\pi\)
\(548\) 8.12191e11 0.384721
\(549\) 0 0
\(550\) 1.49317e12 0.695788
\(551\) 2.66162e12 1.23017
\(552\) 0 0
\(553\) 2.81837e12 1.28155
\(554\) 1.18070e12 0.532533
\(555\) 0 0
\(556\) 1.91772e11 0.0851036
\(557\) 2.61842e12 1.15263 0.576316 0.817227i \(-0.304490\pi\)
0.576316 + 0.817227i \(0.304490\pi\)
\(558\) 0 0
\(559\) 8.27694e11 0.358523
\(560\) 3.25158e11 0.139717
\(561\) 0 0
\(562\) 7.60625e10 0.0321630
\(563\) 3.12388e11 0.131041 0.0655203 0.997851i \(-0.479129\pi\)
0.0655203 + 0.997851i \(0.479129\pi\)
\(564\) 0 0
\(565\) −1.82685e12 −0.754196
\(566\) −1.82056e12 −0.745645
\(567\) 0 0
\(568\) 1.19042e12 0.479880
\(569\) 1.39773e12 0.559006 0.279503 0.960145i \(-0.409830\pi\)
0.279503 + 0.960145i \(0.409830\pi\)
\(570\) 0 0
\(571\) 2.54454e12 1.00172 0.500861 0.865527i \(-0.333017\pi\)
0.500861 + 0.865527i \(0.333017\pi\)
\(572\) −4.73777e11 −0.185051
\(573\) 0 0
\(574\) −2.55331e12 −0.981748
\(575\) −1.69005e12 −0.644756
\(576\) 0 0
\(577\) 1.47191e12 0.552828 0.276414 0.961039i \(-0.410854\pi\)
0.276414 + 0.961039i \(0.410854\pi\)
\(578\) 1.85257e12 0.690398
\(579\) 0 0
\(580\) 6.01068e11 0.220545
\(581\) −3.26194e12 −1.18764
\(582\) 0 0
\(583\) 7.00367e12 2.51083
\(584\) 1.46823e12 0.522320
\(585\) 0 0
\(586\) 1.10159e12 0.385905
\(587\) 2.93835e12 1.02149 0.510743 0.859733i \(-0.329370\pi\)
0.510743 + 0.859733i \(0.329370\pi\)
\(588\) 0 0
\(589\) 6.06688e12 2.07705
\(590\) 1.00097e12 0.340084
\(591\) 0 0
\(592\) −8.30297e10 −0.0277834
\(593\) −2.96605e12 −0.984991 −0.492495 0.870315i \(-0.663915\pi\)
−0.492495 + 0.870315i \(0.663915\pi\)
\(594\) 0 0
\(595\) 2.62643e11 0.0859093
\(596\) 1.00889e12 0.327519
\(597\) 0 0
\(598\) 5.36248e11 0.171479
\(599\) −5.13235e11 −0.162890 −0.0814452 0.996678i \(-0.525954\pi\)
−0.0814452 + 0.996678i \(0.525954\pi\)
\(600\) 0 0
\(601\) −1.16242e12 −0.363436 −0.181718 0.983351i \(-0.558166\pi\)
−0.181718 + 0.983351i \(0.558166\pi\)
\(602\) 3.21226e12 0.996843
\(603\) 0 0
\(604\) 2.21034e12 0.675760
\(605\) 1.31835e12 0.400065
\(606\) 0 0
\(607\) −1.30452e12 −0.390034 −0.195017 0.980800i \(-0.562476\pi\)
−0.195017 + 0.980800i \(0.562476\pi\)
\(608\) −8.51296e11 −0.252647
\(609\) 0 0
\(610\) −1.24427e12 −0.363856
\(611\) 2.83220e11 0.0822125
\(612\) 0 0
\(613\) 1.51535e12 0.433453 0.216727 0.976232i \(-0.430462\pi\)
0.216727 + 0.976232i \(0.430462\pi\)
\(614\) 1.91801e12 0.544620
\(615\) 0 0
\(616\) −1.83872e12 −0.514520
\(617\) −4.34398e12 −1.20672 −0.603358 0.797471i \(-0.706171\pi\)
−0.603358 + 0.797471i \(0.706171\pi\)
\(618\) 0 0
\(619\) −3.76078e12 −1.02960 −0.514802 0.857309i \(-0.672135\pi\)
−0.514802 + 0.857309i \(0.672135\pi\)
\(620\) 1.37007e12 0.372376
\(621\) 0 0
\(622\) −3.07978e12 −0.825016
\(623\) −2.52945e12 −0.672713
\(624\) 0 0
\(625\) 1.07246e12 0.281139
\(626\) 1.41655e12 0.368679
\(627\) 0 0
\(628\) 2.77066e12 0.710829
\(629\) −6.70665e10 −0.0170835
\(630\) 0 0
\(631\) 4.80012e12 1.20537 0.602684 0.797980i \(-0.294098\pi\)
0.602684 + 0.797980i \(0.294098\pi\)
\(632\) −1.66634e12 −0.415467
\(633\) 0 0
\(634\) 1.47618e12 0.362859
\(635\) −9.96692e11 −0.243265
\(636\) 0 0
\(637\) −2.18226e11 −0.0525144
\(638\) −3.39896e12 −0.812181
\(639\) 0 0
\(640\) −1.92247e11 −0.0452949
\(641\) 2.46922e12 0.577695 0.288848 0.957375i \(-0.406728\pi\)
0.288848 + 0.957375i \(0.406728\pi\)
\(642\) 0 0
\(643\) −5.12941e12 −1.18336 −0.591682 0.806171i \(-0.701536\pi\)
−0.591682 + 0.806171i \(0.701536\pi\)
\(644\) 2.08117e12 0.476783
\(645\) 0 0
\(646\) −6.87628e11 −0.155349
\(647\) −1.17603e12 −0.263846 −0.131923 0.991260i \(-0.542115\pi\)
−0.131923 + 0.991260i \(0.542115\pi\)
\(648\) 0 0
\(649\) −5.66033e12 −1.25239
\(650\) −6.58145e11 −0.144614
\(651\) 0 0
\(652\) −1.44073e11 −0.0312226
\(653\) 3.83054e12 0.824424 0.412212 0.911088i \(-0.364756\pi\)
0.412212 + 0.911088i \(0.364756\pi\)
\(654\) 0 0
\(655\) 2.99162e11 0.0635070
\(656\) 1.50962e12 0.318274
\(657\) 0 0
\(658\) 1.09917e12 0.228585
\(659\) −7.92312e12 −1.63649 −0.818243 0.574873i \(-0.805051\pi\)
−0.818243 + 0.574873i \(0.805051\pi\)
\(660\) 0 0
\(661\) 8.08129e11 0.164655 0.0823273 0.996605i \(-0.473765\pi\)
0.0823273 + 0.996605i \(0.473765\pi\)
\(662\) −2.77175e12 −0.560910
\(663\) 0 0
\(664\) 1.92860e12 0.385021
\(665\) 4.02805e12 0.798725
\(666\) 0 0
\(667\) 3.84713e12 0.752612
\(668\) −1.83923e12 −0.357390
\(669\) 0 0
\(670\) 2.84690e12 0.545803
\(671\) 7.03615e12 1.33993
\(672\) 0 0
\(673\) −2.18500e12 −0.410568 −0.205284 0.978702i \(-0.565812\pi\)
−0.205284 + 0.978702i \(0.565812\pi\)
\(674\) −9.56014e11 −0.178441
\(675\) 0 0
\(676\) 2.08827e11 0.0384615
\(677\) 5.92825e12 1.08462 0.542310 0.840179i \(-0.317550\pi\)
0.542310 + 0.840179i \(0.317550\pi\)
\(678\) 0 0
\(679\) 6.21261e12 1.12166
\(680\) −1.55286e11 −0.0278510
\(681\) 0 0
\(682\) −7.74757e12 −1.37131
\(683\) −9.91825e12 −1.74398 −0.871990 0.489523i \(-0.837171\pi\)
−0.871990 + 0.489523i \(0.837171\pi\)
\(684\) 0 0
\(685\) 2.27215e12 0.394303
\(686\) 3.62605e12 0.625137
\(687\) 0 0
\(688\) −1.89922e12 −0.323168
\(689\) −3.08701e12 −0.521857
\(690\) 0 0
\(691\) −7.28392e12 −1.21539 −0.607693 0.794172i \(-0.707905\pi\)
−0.607693 + 0.794172i \(0.707905\pi\)
\(692\) 1.97726e12 0.327783
\(693\) 0 0
\(694\) −1.69166e12 −0.276819
\(695\) 5.36493e11 0.0872232
\(696\) 0 0
\(697\) 1.21939e12 0.195701
\(698\) 4.87696e12 0.777678
\(699\) 0 0
\(700\) −2.55425e12 −0.402089
\(701\) −7.97899e12 −1.24801 −0.624003 0.781422i \(-0.714495\pi\)
−0.624003 + 0.781422i \(0.714495\pi\)
\(702\) 0 0
\(703\) −1.02857e12 −0.158831
\(704\) 1.08713e12 0.166803
\(705\) 0 0
\(706\) 2.11696e12 0.320694
\(707\) 1.12648e12 0.169564
\(708\) 0 0
\(709\) 3.06000e12 0.454793 0.227396 0.973802i \(-0.426979\pi\)
0.227396 + 0.973802i \(0.426979\pi\)
\(710\) 3.33027e12 0.491832
\(711\) 0 0
\(712\) 1.49552e12 0.218088
\(713\) 8.76914e12 1.27073
\(714\) 0 0
\(715\) −1.32542e12 −0.189660
\(716\) 5.65392e12 0.803972
\(717\) 0 0
\(718\) 5.96276e12 0.837312
\(719\) −1.05167e13 −1.46758 −0.733789 0.679377i \(-0.762250\pi\)
−0.733789 + 0.679377i \(0.762250\pi\)
\(720\) 0 0
\(721\) −1.60779e12 −0.221574
\(722\) −5.38285e12 −0.737216
\(723\) 0 0
\(724\) −2.21020e11 −0.0298956
\(725\) −4.72164e12 −0.634705
\(726\) 0 0
\(727\) −8.09614e12 −1.07491 −0.537456 0.843292i \(-0.680615\pi\)
−0.537456 + 0.843292i \(0.680615\pi\)
\(728\) 8.10454e11 0.106939
\(729\) 0 0
\(730\) 4.10746e12 0.535329
\(731\) −1.53408e12 −0.198710
\(732\) 0 0
\(733\) 3.20844e12 0.410512 0.205256 0.978708i \(-0.434197\pi\)
0.205256 + 0.978708i \(0.434197\pi\)
\(734\) 7.69174e12 0.978120
\(735\) 0 0
\(736\) −1.23047e12 −0.154569
\(737\) −1.60988e13 −2.00997
\(738\) 0 0
\(739\) −7.62960e12 −0.941026 −0.470513 0.882393i \(-0.655931\pi\)
−0.470513 + 0.882393i \(0.655931\pi\)
\(740\) −2.32280e11 −0.0284754
\(741\) 0 0
\(742\) −1.19806e13 −1.45098
\(743\) 1.41259e12 0.170046 0.0850229 0.996379i \(-0.472904\pi\)
0.0850229 + 0.996379i \(0.472904\pi\)
\(744\) 0 0
\(745\) 2.82243e12 0.335676
\(746\) 1.03252e12 0.122060
\(747\) 0 0
\(748\) 8.78119e11 0.102564
\(749\) −1.27937e13 −1.48534
\(750\) 0 0
\(751\) −1.49642e13 −1.71662 −0.858311 0.513130i \(-0.828486\pi\)
−0.858311 + 0.513130i \(0.828486\pi\)
\(752\) −6.49875e11 −0.0741053
\(753\) 0 0
\(754\) 1.49816e12 0.168806
\(755\) 6.18355e12 0.692591
\(756\) 0 0
\(757\) −1.41035e12 −0.156097 −0.0780487 0.996950i \(-0.524869\pi\)
−0.0780487 + 0.996950i \(0.524869\pi\)
\(758\) 7.43272e12 0.817780
\(759\) 0 0
\(760\) −2.38155e12 −0.258940
\(761\) −9.06064e12 −0.979327 −0.489664 0.871911i \(-0.662880\pi\)
−0.489664 + 0.871911i \(0.662880\pi\)
\(762\) 0 0
\(763\) 7.67558e12 0.819881
\(764\) 1.65465e12 0.175706
\(765\) 0 0
\(766\) −5.32380e12 −0.558717
\(767\) 2.49490e12 0.260300
\(768\) 0 0
\(769\) −6.70677e12 −0.691584 −0.345792 0.938311i \(-0.612390\pi\)
−0.345792 + 0.938311i \(0.612390\pi\)
\(770\) −5.14393e12 −0.527335
\(771\) 0 0
\(772\) −1.00201e12 −0.101529
\(773\) 1.17340e13 1.18206 0.591029 0.806650i \(-0.298722\pi\)
0.591029 + 0.806650i \(0.298722\pi\)
\(774\) 0 0
\(775\) −1.07625e13 −1.07166
\(776\) −3.67315e12 −0.363631
\(777\) 0 0
\(778\) 9.17417e12 0.897757
\(779\) 1.87012e13 1.81950
\(780\) 0 0
\(781\) −1.88322e13 −1.81122
\(782\) −9.93905e11 −0.0950418
\(783\) 0 0
\(784\) 5.00740e11 0.0473359
\(785\) 7.75109e12 0.728533
\(786\) 0 0
\(787\) 1.08434e12 0.100758 0.0503790 0.998730i \(-0.483957\pi\)
0.0503790 + 0.998730i \(0.483957\pi\)
\(788\) 3.40724e12 0.314800
\(789\) 0 0
\(790\) −4.66168e12 −0.425815
\(791\) −1.76717e13 −1.60503
\(792\) 0 0
\(793\) −3.10133e12 −0.278496
\(794\) −8.63912e12 −0.771396
\(795\) 0 0
\(796\) 1.08211e13 0.955347
\(797\) −4.17303e12 −0.366344 −0.183172 0.983081i \(-0.558637\pi\)
−0.183172 + 0.983081i \(0.558637\pi\)
\(798\) 0 0
\(799\) −5.24931e11 −0.0455661
\(800\) 1.51018e12 0.130354
\(801\) 0 0
\(802\) −5.46976e12 −0.466857
\(803\) −2.32271e13 −1.97140
\(804\) 0 0
\(805\) 5.82219e12 0.488658
\(806\) 3.41490e12 0.285017
\(807\) 0 0
\(808\) −6.66020e11 −0.0549713
\(809\) −2.03832e13 −1.67303 −0.836515 0.547944i \(-0.815411\pi\)
−0.836515 + 0.547944i \(0.815411\pi\)
\(810\) 0 0
\(811\) 3.12648e12 0.253782 0.126891 0.991917i \(-0.459500\pi\)
0.126891 + 0.991917i \(0.459500\pi\)
\(812\) 5.81433e12 0.469351
\(813\) 0 0
\(814\) 1.31351e12 0.104863
\(815\) −4.03054e11 −0.0320003
\(816\) 0 0
\(817\) −2.35276e13 −1.84747
\(818\) −7.70254e12 −0.601512
\(819\) 0 0
\(820\) 4.22326e12 0.326201
\(821\) −1.57719e12 −0.121155 −0.0605773 0.998164i \(-0.519294\pi\)
−0.0605773 + 0.998164i \(0.519294\pi\)
\(822\) 0 0
\(823\) 2.74085e12 0.208250 0.104125 0.994564i \(-0.466796\pi\)
0.104125 + 0.994564i \(0.466796\pi\)
\(824\) 9.50590e11 0.0718325
\(825\) 0 0
\(826\) 9.68268e12 0.723744
\(827\) 1.51185e13 1.12391 0.561957 0.827166i \(-0.310048\pi\)
0.561957 + 0.827166i \(0.310048\pi\)
\(828\) 0 0
\(829\) −1.10159e13 −0.810070 −0.405035 0.914301i \(-0.632741\pi\)
−0.405035 + 0.914301i \(0.632741\pi\)
\(830\) 5.39536e12 0.394611
\(831\) 0 0
\(832\) −4.79174e11 −0.0346688
\(833\) 4.04469e11 0.0291060
\(834\) 0 0
\(835\) −5.14536e12 −0.366292
\(836\) 1.34673e13 0.953572
\(837\) 0 0
\(838\) 7.07302e12 0.495458
\(839\) 1.56657e13 1.09149 0.545747 0.837950i \(-0.316246\pi\)
0.545747 + 0.837950i \(0.316246\pi\)
\(840\) 0 0
\(841\) −3.75909e12 −0.259120
\(842\) 7.70479e12 0.528271
\(843\) 0 0
\(844\) −1.11771e13 −0.758211
\(845\) 5.84206e11 0.0394195
\(846\) 0 0
\(847\) 1.27528e13 0.851393
\(848\) 7.08345e12 0.470396
\(849\) 0 0
\(850\) 1.21983e12 0.0801523
\(851\) −1.48671e12 −0.0971724
\(852\) 0 0
\(853\) −9.67583e12 −0.625774 −0.312887 0.949790i \(-0.601296\pi\)
−0.312887 + 0.949790i \(0.601296\pi\)
\(854\) −1.20362e13 −0.774334
\(855\) 0 0
\(856\) 7.56416e12 0.481536
\(857\) −1.90306e13 −1.20514 −0.602571 0.798065i \(-0.705857\pi\)
−0.602571 + 0.798065i \(0.705857\pi\)
\(858\) 0 0
\(859\) −1.52060e13 −0.952895 −0.476447 0.879203i \(-0.658076\pi\)
−0.476447 + 0.879203i \(0.658076\pi\)
\(860\) −5.31319e12 −0.331217
\(861\) 0 0
\(862\) −1.86072e12 −0.114788
\(863\) 9.61352e12 0.589975 0.294988 0.955501i \(-0.404685\pi\)
0.294988 + 0.955501i \(0.404685\pi\)
\(864\) 0 0
\(865\) 5.53149e12 0.335946
\(866\) −1.37169e13 −0.828754
\(867\) 0 0
\(868\) 1.32532e13 0.792466
\(869\) 2.63611e13 1.56811
\(870\) 0 0
\(871\) 7.09589e12 0.417758
\(872\) −4.53813e12 −0.265798
\(873\) 0 0
\(874\) −1.52431e13 −0.883633
\(875\) −1.68361e13 −0.970969
\(876\) 0 0
\(877\) −1.61211e13 −0.920227 −0.460114 0.887860i \(-0.652191\pi\)
−0.460114 + 0.887860i \(0.652191\pi\)
\(878\) −1.65803e13 −0.941603
\(879\) 0 0
\(880\) 3.04130e12 0.170957
\(881\) −1.55403e13 −0.869099 −0.434549 0.900648i \(-0.643092\pi\)
−0.434549 + 0.900648i \(0.643092\pi\)
\(882\) 0 0
\(883\) 1.81773e13 1.00625 0.503124 0.864214i \(-0.332184\pi\)
0.503124 + 0.864214i \(0.332184\pi\)
\(884\) −3.87049e11 −0.0213172
\(885\) 0 0
\(886\) −1.81977e13 −0.992121
\(887\) −2.45772e13 −1.33314 −0.666572 0.745441i \(-0.732239\pi\)
−0.666572 + 0.745441i \(0.732239\pi\)
\(888\) 0 0
\(889\) −9.64132e12 −0.517701
\(890\) 4.18379e12 0.223519
\(891\) 0 0
\(892\) 1.01394e13 0.536252
\(893\) −8.05064e12 −0.423642
\(894\) 0 0
\(895\) 1.58172e13 0.823996
\(896\) −1.85966e12 −0.0963937
\(897\) 0 0
\(898\) −7.16647e12 −0.367758
\(899\) 2.44991e13 1.25092
\(900\) 0 0
\(901\) 5.72160e12 0.289238
\(902\) −2.38819e13 −1.20127
\(903\) 0 0
\(904\) 1.04482e13 0.520337
\(905\) −6.18316e11 −0.0306402
\(906\) 0 0
\(907\) 2.50906e13 1.23106 0.615529 0.788115i \(-0.288943\pi\)
0.615529 + 0.788115i \(0.288943\pi\)
\(908\) 1.50598e12 0.0735247
\(909\) 0 0
\(910\) 2.26729e12 0.109603
\(911\) 1.70571e13 0.820490 0.410245 0.911975i \(-0.365443\pi\)
0.410245 + 0.911975i \(0.365443\pi\)
\(912\) 0 0
\(913\) −3.05100e13 −1.45319
\(914\) −2.37165e13 −1.12407
\(915\) 0 0
\(916\) 5.17275e12 0.242768
\(917\) 2.89390e12 0.135151
\(918\) 0 0
\(919\) 3.78241e13 1.74924 0.874620 0.484809i \(-0.161111\pi\)
0.874620 + 0.484809i \(0.161111\pi\)
\(920\) −3.44232e12 −0.158419
\(921\) 0 0
\(922\) 1.76084e12 0.0802474
\(923\) 8.30069e12 0.376449
\(924\) 0 0
\(925\) 1.82466e12 0.0819491
\(926\) 3.04137e12 0.135932
\(927\) 0 0
\(928\) −3.43767e12 −0.152159
\(929\) 2.88455e13 1.27059 0.635297 0.772268i \(-0.280878\pi\)
0.635297 + 0.772268i \(0.280878\pi\)
\(930\) 0 0
\(931\) 6.20317e12 0.270608
\(932\) −1.35181e13 −0.586873
\(933\) 0 0
\(934\) −1.41643e13 −0.609022
\(935\) 2.45659e12 0.105119
\(936\) 0 0
\(937\) 6.13062e12 0.259822 0.129911 0.991526i \(-0.458531\pi\)
0.129911 + 0.991526i \(0.458531\pi\)
\(938\) 2.75390e13 1.16154
\(939\) 0 0
\(940\) −1.81806e12 −0.0759510
\(941\) 6.77593e12 0.281719 0.140859 0.990030i \(-0.455013\pi\)
0.140859 + 0.990030i \(0.455013\pi\)
\(942\) 0 0
\(943\) 2.70309e13 1.11316
\(944\) −5.72480e12 −0.234632
\(945\) 0 0
\(946\) 3.00453e13 1.21974
\(947\) 2.51244e13 1.01513 0.507565 0.861614i \(-0.330546\pi\)
0.507565 + 0.861614i \(0.330546\pi\)
\(948\) 0 0
\(949\) 1.02378e13 0.409741
\(950\) 1.87081e13 0.745200
\(951\) 0 0
\(952\) −1.50213e12 −0.0592708
\(953\) −6.21828e12 −0.244204 −0.122102 0.992518i \(-0.538963\pi\)
−0.122102 + 0.992518i \(0.538963\pi\)
\(954\) 0 0
\(955\) 4.62898e12 0.180082
\(956\) 5.07626e12 0.196555
\(957\) 0 0
\(958\) 1.54006e12 0.0590735
\(959\) 2.19793e13 0.839130
\(960\) 0 0
\(961\) 2.94035e13 1.11210
\(962\) −5.78958e11 −0.0217951
\(963\) 0 0
\(964\) −2.33954e13 −0.872537
\(965\) −2.80317e12 −0.104058
\(966\) 0 0
\(967\) 9.31427e12 0.342554 0.171277 0.985223i \(-0.445211\pi\)
0.171277 + 0.985223i \(0.445211\pi\)
\(968\) −7.53999e12 −0.276014
\(969\) 0 0
\(970\) −1.02759e13 −0.372688
\(971\) −2.14377e13 −0.773912 −0.386956 0.922098i \(-0.626473\pi\)
−0.386956 + 0.922098i \(0.626473\pi\)
\(972\) 0 0
\(973\) 5.18967e12 0.185623
\(974\) 1.69049e13 0.601863
\(975\) 0 0
\(976\) 7.11630e12 0.251032
\(977\) 1.22818e13 0.431258 0.215629 0.976475i \(-0.430820\pi\)
0.215629 + 0.976475i \(0.430820\pi\)
\(978\) 0 0
\(979\) −2.36587e13 −0.823132
\(980\) 1.40085e12 0.0485148
\(981\) 0 0
\(982\) −4.93930e12 −0.169498
\(983\) −5.75537e13 −1.96599 −0.982997 0.183622i \(-0.941218\pi\)
−0.982997 + 0.183622i \(0.941218\pi\)
\(984\) 0 0
\(985\) 9.53196e12 0.322641
\(986\) −2.77675e12 −0.0935602
\(987\) 0 0
\(988\) −5.93601e12 −0.198193
\(989\) −3.40070e13 −1.13028
\(990\) 0 0
\(991\) 3.89816e13 1.28389 0.641945 0.766751i \(-0.278128\pi\)
0.641945 + 0.766751i \(0.278128\pi\)
\(992\) −7.83582e12 −0.256911
\(993\) 0 0
\(994\) 3.22148e13 1.04669
\(995\) 3.02725e13 0.979141
\(996\) 0 0
\(997\) −3.28468e13 −1.05285 −0.526423 0.850223i \(-0.676467\pi\)
−0.526423 + 0.850223i \(0.676467\pi\)
\(998\) 4.36006e12 0.139125
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.10.a.k.1.2 3
3.2 odd 2 26.10.a.e.1.3 3
12.11 even 2 208.10.a.d.1.1 3
39.38 odd 2 338.10.a.e.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.10.a.e.1.3 3 3.2 odd 2
208.10.a.d.1.1 3 12.11 even 2
234.10.a.k.1.2 3 1.1 even 1 trivial
338.10.a.e.1.3 3 39.38 odd 2