Properties

Label 336.4.bl.j.31.3
Level $336$
Weight $4$
Character 336.31
Analytic conductor $19.825$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(31,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.31"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 336.bl (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,12,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8246417619\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 23x^{6} + 48x^{5} + 422x^{4} + 384x^{3} + 1247x^{2} - 637x + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.3
Root \(2.64566 + 4.58242i\) of defining polynomial
Character \(\chi\) \(=\) 336.31
Dual form 336.4.bl.j.271.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 - 2.59808i) q^{3} +(11.0480 - 6.37855i) q^{5} +(17.4241 + 6.27712i) q^{7} +(-4.50000 - 7.79423i) q^{9} +(37.8201 + 21.8355i) q^{11} +83.9138i q^{13} -38.2713i q^{15} +(71.7005 + 41.3963i) q^{17} +(-38.8686 - 67.3223i) q^{19} +(42.4445 - 35.8534i) q^{21} +(-3.93978 + 2.27463i) q^{23} +(18.8717 - 32.6868i) q^{25} -27.0000 q^{27} -120.805 q^{29} +(15.9132 - 27.5625i) q^{31} +(113.460 - 65.5064i) q^{33} +(232.539 - 41.7908i) q^{35} +(38.1272 + 66.0382i) q^{37} +(218.015 + 125.871i) q^{39} +264.843i q^{41} -391.848i q^{43} +(-99.4317 - 57.4069i) q^{45} +(-147.029 - 254.662i) q^{47} +(264.196 + 218.746i) q^{49} +(215.101 - 124.189i) q^{51} +(192.305 - 333.081i) q^{53} +557.114 q^{55} -233.211 q^{57} +(370.142 - 641.105i) q^{59} +(-179.037 + 103.367i) q^{61} +(-29.4830 - 164.054i) q^{63} +(535.248 + 927.077i) q^{65} +(172.423 + 99.5486i) q^{67} +13.6478i q^{69} +508.919i q^{71} +(-936.719 - 540.815i) q^{73} +(-56.6152 - 98.0604i) q^{75} +(521.917 + 617.864i) q^{77} +(1105.44 - 638.226i) q^{79} +(-40.5000 + 70.1481i) q^{81} -966.467 q^{83} +1056.19 q^{85} +(-181.208 + 313.861i) q^{87} +(-626.787 + 361.876i) q^{89} +(-526.737 + 1462.12i) q^{91} +(-47.7396 - 82.6875i) q^{93} +(-858.838 - 495.850i) q^{95} -1763.41i q^{97} -393.038i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{3} + 18 q^{5} + 12 q^{7} - 36 q^{9} - 150 q^{11} + 192 q^{17} + 66 q^{19} + 90 q^{21} + 492 q^{23} + 322 q^{25} - 216 q^{27} - 372 q^{29} - 156 q^{31} - 450 q^{33} - 36 q^{35} + 554 q^{37} + 198 q^{39}+ \cdots - 108 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 2.59808i 0.288675 0.500000i
\(4\) 0 0
\(5\) 11.0480 6.37855i 0.988160 0.570515i 0.0834364 0.996513i \(-0.473410\pi\)
0.904724 + 0.425998i \(0.140077\pi\)
\(6\) 0 0
\(7\) 17.4241 + 6.27712i 0.940811 + 0.338933i
\(8\) 0 0
\(9\) −4.50000 7.79423i −0.166667 0.288675i
\(10\) 0 0
\(11\) 37.8201 + 21.8355i 1.03665 + 0.598513i 0.918884 0.394528i \(-0.129092\pi\)
0.117771 + 0.993041i \(0.462425\pi\)
\(12\) 0 0
\(13\) 83.9138i 1.79027i 0.445795 + 0.895135i \(0.352921\pi\)
−0.445795 + 0.895135i \(0.647079\pi\)
\(14\) 0 0
\(15\) 38.2713i 0.658774i
\(16\) 0 0
\(17\) 71.7005 + 41.3963i 1.02294 + 0.590593i 0.914953 0.403560i \(-0.132227\pi\)
0.107984 + 0.994153i \(0.465561\pi\)
\(18\) 0 0
\(19\) −38.8686 67.3223i −0.469319 0.812885i 0.530066 0.847957i \(-0.322167\pi\)
−0.999385 + 0.0350721i \(0.988834\pi\)
\(20\) 0 0
\(21\) 42.4445 35.8534i 0.441055 0.372564i
\(22\) 0 0
\(23\) −3.93978 + 2.27463i −0.0357175 + 0.0206215i −0.517752 0.855531i \(-0.673231\pi\)
0.482035 + 0.876152i \(0.339898\pi\)
\(24\) 0 0
\(25\) 18.8717 32.6868i 0.150974 0.261494i
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −120.805 −0.773551 −0.386776 0.922174i \(-0.626411\pi\)
−0.386776 + 0.922174i \(0.626411\pi\)
\(30\) 0 0
\(31\) 15.9132 27.5625i 0.0921967 0.159689i −0.816239 0.577715i \(-0.803944\pi\)
0.908435 + 0.418026i \(0.137278\pi\)
\(32\) 0 0
\(33\) 113.460 65.5064i 0.598513 0.345552i
\(34\) 0 0
\(35\) 232.539 41.7908i 1.12304 0.201827i
\(36\) 0 0
\(37\) 38.1272 + 66.0382i 0.169407 + 0.293422i 0.938212 0.346062i \(-0.112481\pi\)
−0.768804 + 0.639484i \(0.779148\pi\)
\(38\) 0 0
\(39\) 218.015 + 125.871i 0.895135 + 0.516806i
\(40\) 0 0
\(41\) 264.843i 1.00882i 0.863465 + 0.504408i \(0.168289\pi\)
−0.863465 + 0.504408i \(0.831711\pi\)
\(42\) 0 0
\(43\) 391.848i 1.38968i −0.719164 0.694840i \(-0.755475\pi\)
0.719164 0.694840i \(-0.244525\pi\)
\(44\) 0 0
\(45\) −99.4317 57.4069i −0.329387 0.190172i
\(46\) 0 0
\(47\) −147.029 254.662i −0.456306 0.790345i 0.542456 0.840084i \(-0.317494\pi\)
−0.998762 + 0.0497387i \(0.984161\pi\)
\(48\) 0 0
\(49\) 264.196 + 218.746i 0.770249 + 0.637743i
\(50\) 0 0
\(51\) 215.101 124.189i 0.590593 0.340979i
\(52\) 0 0
\(53\) 192.305 333.081i 0.498398 0.863250i −0.501601 0.865099i \(-0.667255\pi\)
0.999998 + 0.00184939i \(0.000588679\pi\)
\(54\) 0 0
\(55\) 557.114 1.36584
\(56\) 0 0
\(57\) −233.211 −0.541923
\(58\) 0 0
\(59\) 370.142 641.105i 0.816752 1.41466i −0.0913106 0.995822i \(-0.529106\pi\)
0.908063 0.418834i \(-0.137561\pi\)
\(60\) 0 0
\(61\) −179.037 + 103.367i −0.375793 + 0.216964i −0.675986 0.736914i \(-0.736282\pi\)
0.300193 + 0.953878i \(0.402949\pi\)
\(62\) 0 0
\(63\) −29.4830 164.054i −0.0589604 0.328077i
\(64\) 0 0
\(65\) 535.248 + 927.077i 1.02138 + 1.76907i
\(66\) 0 0
\(67\) 172.423 + 99.5486i 0.314401 + 0.181519i 0.648894 0.760879i \(-0.275232\pi\)
−0.334493 + 0.942398i \(0.608565\pi\)
\(68\) 0 0
\(69\) 13.6478i 0.0238116i
\(70\) 0 0
\(71\) 508.919i 0.850670i 0.905036 + 0.425335i \(0.139844\pi\)
−0.905036 + 0.425335i \(0.860156\pi\)
\(72\) 0 0
\(73\) −936.719 540.815i −1.50184 0.867091i −0.999998 0.00213422i \(-0.999321\pi\)
−0.501847 0.864956i \(-0.667346\pi\)
\(74\) 0 0
\(75\) −56.6152 98.0604i −0.0871648 0.150974i
\(76\) 0 0
\(77\) 521.917 + 617.864i 0.772440 + 0.914443i
\(78\) 0 0
\(79\) 1105.44 638.226i 1.57433 0.908937i 0.578696 0.815543i \(-0.303562\pi\)
0.995629 0.0933936i \(-0.0297715\pi\)
\(80\) 0 0
\(81\) −40.5000 + 70.1481i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −966.467 −1.27811 −0.639057 0.769159i \(-0.720675\pi\)
−0.639057 + 0.769159i \(0.720675\pi\)
\(84\) 0 0
\(85\) 1056.19 1.34777
\(86\) 0 0
\(87\) −181.208 + 313.861i −0.223305 + 0.386776i
\(88\) 0 0
\(89\) −626.787 + 361.876i −0.746509 + 0.430997i −0.824431 0.565962i \(-0.808505\pi\)
0.0779219 + 0.996959i \(0.475172\pi\)
\(90\) 0 0
\(91\) −526.737 + 1462.12i −0.606781 + 1.68430i
\(92\) 0 0
\(93\) −47.7396 82.6875i −0.0532298 0.0921967i
\(94\) 0 0
\(95\) −858.838 495.850i −0.927525 0.535507i
\(96\) 0 0
\(97\) 1763.41i 1.84584i −0.384986 0.922922i \(-0.625794\pi\)
0.384986 0.922922i \(-0.374206\pi\)
\(98\) 0 0
\(99\) 393.038i 0.399009i
\(100\) 0 0
\(101\) 838.138 + 483.899i 0.825721 + 0.476730i 0.852385 0.522914i \(-0.175155\pi\)
−0.0266642 + 0.999644i \(0.508488\pi\)
\(102\) 0 0
\(103\) −133.523 231.269i −0.127733 0.221239i 0.795065 0.606524i \(-0.207437\pi\)
−0.922798 + 0.385285i \(0.874103\pi\)
\(104\) 0 0
\(105\) 240.233 666.841i 0.223280 0.619781i
\(106\) 0 0
\(107\) −1182.50 + 682.719i −1.06838 + 0.616832i −0.927739 0.373229i \(-0.878251\pi\)
−0.140644 + 0.990060i \(0.544917\pi\)
\(108\) 0 0
\(109\) 482.433 835.598i 0.423933 0.734273i −0.572387 0.819984i \(-0.693983\pi\)
0.996320 + 0.0857100i \(0.0273159\pi\)
\(110\) 0 0
\(111\) 228.763 0.195615
\(112\) 0 0
\(113\) −1492.35 −1.24238 −0.621190 0.783660i \(-0.713350\pi\)
−0.621190 + 0.783660i \(0.713350\pi\)
\(114\) 0 0
\(115\) −29.0177 + 50.2602i −0.0235297 + 0.0407547i
\(116\) 0 0
\(117\) 654.044 377.612i 0.516806 0.298378i
\(118\) 0 0
\(119\) 989.464 + 1171.36i 0.762219 + 0.902343i
\(120\) 0 0
\(121\) 288.075 + 498.961i 0.216435 + 0.374877i
\(122\) 0 0
\(123\) 688.081 + 397.264i 0.504408 + 0.291220i
\(124\) 0 0
\(125\) 1113.14i 0.796498i
\(126\) 0 0
\(127\) 48.9270i 0.0341856i 0.999854 + 0.0170928i \(0.00544107\pi\)
−0.999854 + 0.0170928i \(0.994559\pi\)
\(128\) 0 0
\(129\) −1018.05 587.772i −0.694840 0.401166i
\(130\) 0 0
\(131\) −202.141 350.118i −0.134818 0.233511i 0.790710 0.612191i \(-0.209712\pi\)
−0.925528 + 0.378680i \(0.876378\pi\)
\(132\) 0 0
\(133\) −254.658 1417.01i −0.166027 0.923838i
\(134\) 0 0
\(135\) −298.295 + 172.221i −0.190172 + 0.109796i
\(136\) 0 0
\(137\) −1302.03 + 2255.19i −0.811972 + 1.40638i 0.0995107 + 0.995036i \(0.468272\pi\)
−0.911482 + 0.411339i \(0.865061\pi\)
\(138\) 0 0
\(139\) −598.627 −0.365287 −0.182643 0.983179i \(-0.558465\pi\)
−0.182643 + 0.983179i \(0.558465\pi\)
\(140\) 0 0
\(141\) −882.174 −0.526897
\(142\) 0 0
\(143\) −1832.30 + 3173.63i −1.07150 + 1.85589i
\(144\) 0 0
\(145\) −1334.65 + 770.563i −0.764393 + 0.441322i
\(146\) 0 0
\(147\) 964.611 358.282i 0.541223 0.201024i
\(148\) 0 0
\(149\) 316.337 + 547.912i 0.173929 + 0.301253i 0.939790 0.341753i \(-0.111020\pi\)
−0.765861 + 0.643006i \(0.777687\pi\)
\(150\) 0 0
\(151\) −1969.82 1137.28i −1.06160 0.612917i −0.135728 0.990746i \(-0.543337\pi\)
−0.925875 + 0.377829i \(0.876671\pi\)
\(152\) 0 0
\(153\) 745.133i 0.393729i
\(154\) 0 0
\(155\) 406.013i 0.210398i
\(156\) 0 0
\(157\) 90.6457 + 52.3343i 0.0460784 + 0.0266034i 0.522862 0.852417i \(-0.324864\pi\)
−0.476784 + 0.879021i \(0.658198\pi\)
\(158\) 0 0
\(159\) −576.914 999.244i −0.287750 0.498398i
\(160\) 0 0
\(161\) −82.9252 + 14.9029i −0.0405927 + 0.00729510i
\(162\) 0 0
\(163\) −240.337 + 138.759i −0.115489 + 0.0666775i −0.556632 0.830759i \(-0.687907\pi\)
0.441143 + 0.897437i \(0.354573\pi\)
\(164\) 0 0
\(165\) 835.671 1447.43i 0.394284 0.682921i
\(166\) 0 0
\(167\) −682.244 −0.316130 −0.158065 0.987429i \(-0.550525\pi\)
−0.158065 + 0.987429i \(0.550525\pi\)
\(168\) 0 0
\(169\) −4844.53 −2.20507
\(170\) 0 0
\(171\) −349.817 + 605.901i −0.156440 + 0.270962i
\(172\) 0 0
\(173\) 3792.47 2189.59i 1.66668 0.962261i 0.697277 0.716802i \(-0.254395\pi\)
0.969407 0.245459i \(-0.0789386\pi\)
\(174\) 0 0
\(175\) 534.001 451.077i 0.230667 0.194847i
\(176\) 0 0
\(177\) −1110.43 1923.31i −0.471552 0.816752i
\(178\) 0 0
\(179\) −109.563 63.2560i −0.0457491 0.0264133i 0.476951 0.878930i \(-0.341742\pi\)
−0.522700 + 0.852517i \(0.675075\pi\)
\(180\) 0 0
\(181\) 3978.09i 1.63364i −0.576892 0.816820i \(-0.695735\pi\)
0.576892 0.816820i \(-0.304265\pi\)
\(182\) 0 0
\(183\) 620.204i 0.250529i
\(184\) 0 0
\(185\) 842.455 + 486.392i 0.334803 + 0.193299i
\(186\) 0 0
\(187\) 1807.82 + 3131.23i 0.706955 + 1.22448i
\(188\) 0 0
\(189\) −470.450 169.482i −0.181059 0.0652276i
\(190\) 0 0
\(191\) −3431.93 + 1981.43i −1.30013 + 0.750633i −0.980427 0.196883i \(-0.936918\pi\)
−0.319708 + 0.947516i \(0.603585\pi\)
\(192\) 0 0
\(193\) −598.539 + 1036.70i −0.223232 + 0.386649i −0.955788 0.294058i \(-0.904994\pi\)
0.732555 + 0.680707i \(0.238327\pi\)
\(194\) 0 0
\(195\) 3211.49 1.17938
\(196\) 0 0
\(197\) −1156.54 −0.418276 −0.209138 0.977886i \(-0.567066\pi\)
−0.209138 + 0.977886i \(0.567066\pi\)
\(198\) 0 0
\(199\) −1365.38 + 2364.90i −0.486377 + 0.842430i −0.999877 0.0156593i \(-0.995015\pi\)
0.513500 + 0.858090i \(0.328349\pi\)
\(200\) 0 0
\(201\) 517.270 298.646i 0.181519 0.104800i
\(202\) 0 0
\(203\) −2104.92 758.309i −0.727765 0.262182i
\(204\) 0 0
\(205\) 1689.31 + 2925.97i 0.575544 + 0.996872i
\(206\) 0 0
\(207\) 35.4580 + 20.4717i 0.0119058 + 0.00687383i
\(208\) 0 0
\(209\) 3394.85i 1.12357i
\(210\) 0 0
\(211\) 84.4515i 0.0275539i −0.999905 0.0137770i \(-0.995615\pi\)
0.999905 0.0137770i \(-0.00438549\pi\)
\(212\) 0 0
\(213\) 1322.21 + 763.378i 0.425335 + 0.245567i
\(214\) 0 0
\(215\) −2499.42 4329.12i −0.792833 1.37323i
\(216\) 0 0
\(217\) 450.286 380.361i 0.140863 0.118989i
\(218\) 0 0
\(219\) −2810.16 + 1622.45i −0.867091 + 0.500615i
\(220\) 0 0
\(221\) −3473.72 + 6016.66i −1.05732 + 1.83133i
\(222\) 0 0
\(223\) 1329.75 0.399313 0.199656 0.979866i \(-0.436017\pi\)
0.199656 + 0.979866i \(0.436017\pi\)
\(224\) 0 0
\(225\) −339.691 −0.100649
\(226\) 0 0
\(227\) −273.008 + 472.864i −0.0798246 + 0.138260i −0.903174 0.429274i \(-0.858769\pi\)
0.823350 + 0.567535i \(0.192103\pi\)
\(228\) 0 0
\(229\) 631.143 364.391i 0.182127 0.105151i −0.406165 0.913800i \(-0.633134\pi\)
0.588292 + 0.808649i \(0.299801\pi\)
\(230\) 0 0
\(231\) 2388.13 429.183i 0.680206 0.122243i
\(232\) 0 0
\(233\) 1655.87 + 2868.05i 0.465577 + 0.806403i 0.999227 0.0393019i \(-0.0125134\pi\)
−0.533650 + 0.845705i \(0.679180\pi\)
\(234\) 0 0
\(235\) −3248.74 1875.66i −0.901807 0.520659i
\(236\) 0 0
\(237\) 3829.36i 1.04955i
\(238\) 0 0
\(239\) 3516.68i 0.951778i −0.879505 0.475889i \(-0.842126\pi\)
0.879505 0.475889i \(-0.157874\pi\)
\(240\) 0 0
\(241\) 4731.01 + 2731.45i 1.26453 + 0.730076i 0.973947 0.226775i \(-0.0728181\pi\)
0.290581 + 0.956850i \(0.406151\pi\)
\(242\) 0 0
\(243\) 121.500 + 210.444i 0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 4314.10 + 731.512i 1.12497 + 0.190753i
\(246\) 0 0
\(247\) 5649.28 3261.61i 1.45528 0.840208i
\(248\) 0 0
\(249\) −1449.70 + 2510.95i −0.368960 + 0.639057i
\(250\) 0 0
\(251\) 6658.12 1.67433 0.837165 0.546951i \(-0.184211\pi\)
0.837165 + 0.546951i \(0.184211\pi\)
\(252\) 0 0
\(253\) −198.671 −0.0493689
\(254\) 0 0
\(255\) 1584.29 2744.07i 0.389067 0.673884i
\(256\) 0 0
\(257\) −6153.56 + 3552.76i −1.49357 + 0.862316i −0.999973 0.00737241i \(-0.997653\pi\)
−0.493602 + 0.869688i \(0.664320\pi\)
\(258\) 0 0
\(259\) 249.800 + 1389.98i 0.0599299 + 0.333472i
\(260\) 0 0
\(261\) 543.624 + 941.584i 0.128925 + 0.223305i
\(262\) 0 0
\(263\) 6125.14 + 3536.35i 1.43609 + 0.829128i 0.997575 0.0695950i \(-0.0221707\pi\)
0.438517 + 0.898723i \(0.355504\pi\)
\(264\) 0 0
\(265\) 4906.50i 1.13737i
\(266\) 0 0
\(267\) 2171.26i 0.497673i
\(268\) 0 0
\(269\) 4478.18 + 2585.48i 1.01502 + 0.586021i 0.912657 0.408727i \(-0.134027\pi\)
0.102361 + 0.994747i \(0.467360\pi\)
\(270\) 0 0
\(271\) 1699.20 + 2943.11i 0.380883 + 0.659709i 0.991189 0.132457i \(-0.0422867\pi\)
−0.610306 + 0.792166i \(0.708953\pi\)
\(272\) 0 0
\(273\) 3008.59 + 3561.68i 0.666990 + 0.789607i
\(274\) 0 0
\(275\) 1427.46 824.146i 0.313015 0.180720i
\(276\) 0 0
\(277\) 1036.24 1794.82i 0.224772 0.389316i −0.731479 0.681864i \(-0.761170\pi\)
0.956251 + 0.292548i \(0.0945031\pi\)
\(278\) 0 0
\(279\) −286.438 −0.0614644
\(280\) 0 0
\(281\) 3189.71 0.677161 0.338580 0.940937i \(-0.390053\pi\)
0.338580 + 0.940937i \(0.390053\pi\)
\(282\) 0 0
\(283\) 3711.47 6428.45i 0.779590 1.35029i −0.152589 0.988290i \(-0.548761\pi\)
0.932178 0.361999i \(-0.117906\pi\)
\(284\) 0 0
\(285\) −2576.51 + 1487.55i −0.535507 + 0.309175i
\(286\) 0 0
\(287\) −1662.45 + 4614.63i −0.341921 + 0.949105i
\(288\) 0 0
\(289\) 970.808 + 1681.49i 0.197600 + 0.342253i
\(290\) 0 0
\(291\) −4581.47 2645.11i −0.922922 0.532849i
\(292\) 0 0
\(293\) 5969.48i 1.19024i −0.803636 0.595121i \(-0.797104\pi\)
0.803636 0.595121i \(-0.202896\pi\)
\(294\) 0 0
\(295\) 9443.87i 1.86388i
\(296\) 0 0
\(297\) −1021.14 589.558i −0.199504 0.115184i
\(298\) 0 0
\(299\) −190.873 330.602i −0.0369180 0.0639439i
\(300\) 0 0
\(301\) 2459.68 6827.58i 0.471008 1.30743i
\(302\) 0 0
\(303\) 2514.41 1451.70i 0.476730 0.275240i
\(304\) 0 0
\(305\) −1318.67 + 2284.00i −0.247563 + 0.428791i
\(306\) 0 0
\(307\) 7160.29 1.33114 0.665569 0.746337i \(-0.268189\pi\)
0.665569 + 0.746337i \(0.268189\pi\)
\(308\) 0 0
\(309\) −801.141 −0.147493
\(310\) 0 0
\(311\) 1363.69 2361.98i 0.248642 0.430660i −0.714507 0.699628i \(-0.753349\pi\)
0.963149 + 0.268967i \(0.0866824\pi\)
\(312\) 0 0
\(313\) −3402.40 + 1964.38i −0.614425 + 0.354739i −0.774695 0.632335i \(-0.782097\pi\)
0.160270 + 0.987073i \(0.448763\pi\)
\(314\) 0 0
\(315\) −1372.15 1624.41i −0.245435 0.290555i
\(316\) 0 0
\(317\) 1683.01 + 2915.06i 0.298193 + 0.516486i 0.975723 0.219010i \(-0.0702826\pi\)
−0.677529 + 0.735496i \(0.736949\pi\)
\(318\) 0 0
\(319\) −4568.87 2637.84i −0.801906 0.462980i
\(320\) 0 0
\(321\) 4096.32i 0.712256i
\(322\) 0 0
\(323\) 6436.06i 1.10871i
\(324\) 0 0
\(325\) 2742.87 + 1583.60i 0.468145 + 0.270284i
\(326\) 0 0
\(327\) −1447.30 2506.80i −0.244758 0.423933i
\(328\) 0 0
\(329\) −963.301 5360.16i −0.161424 0.898222i
\(330\) 0 0
\(331\) −7043.99 + 4066.85i −1.16971 + 0.675330i −0.953611 0.301043i \(-0.902665\pi\)
−0.216095 + 0.976372i \(0.569332\pi\)
\(332\) 0 0
\(333\) 343.144 594.344i 0.0564691 0.0978073i
\(334\) 0 0
\(335\) 2539.90 0.414238
\(336\) 0 0
\(337\) −8055.00 −1.30203 −0.651015 0.759065i \(-0.725656\pi\)
−0.651015 + 0.759065i \(0.725656\pi\)
\(338\) 0 0
\(339\) −2238.53 + 3877.25i −0.358644 + 0.621190i
\(340\) 0 0
\(341\) 1203.68 694.945i 0.191152 0.110362i
\(342\) 0 0
\(343\) 3230.27 + 5469.83i 0.508507 + 0.861058i
\(344\) 0 0
\(345\) 87.0532 + 150.781i 0.0135849 + 0.0235297i
\(346\) 0 0
\(347\) −1010.15 583.211i −0.156276 0.0902259i 0.419823 0.907606i \(-0.362092\pi\)
−0.576099 + 0.817380i \(0.695426\pi\)
\(348\) 0 0
\(349\) 10232.0i 1.56936i 0.619898 + 0.784682i \(0.287174\pi\)
−0.619898 + 0.784682i \(0.712826\pi\)
\(350\) 0 0
\(351\) 2265.67i 0.344538i
\(352\) 0 0
\(353\) −3494.85 2017.76i −0.526947 0.304233i 0.212825 0.977090i \(-0.431733\pi\)
−0.739772 + 0.672857i \(0.765067\pi\)
\(354\) 0 0
\(355\) 3246.16 + 5622.52i 0.485320 + 0.840598i
\(356\) 0 0
\(357\) 4527.49 813.657i 0.671205 0.120626i
\(358\) 0 0
\(359\) −2424.44 + 1399.75i −0.356426 + 0.205783i −0.667512 0.744599i \(-0.732641\pi\)
0.311086 + 0.950382i \(0.399307\pi\)
\(360\) 0 0
\(361\) 407.968 706.621i 0.0594792 0.103021i
\(362\) 0 0
\(363\) 1728.45 0.249918
\(364\) 0 0
\(365\) −13798.5 −1.97875
\(366\) 0 0
\(367\) −2637.37 + 4568.05i −0.375121 + 0.649728i −0.990345 0.138624i \(-0.955732\pi\)
0.615224 + 0.788352i \(0.289065\pi\)
\(368\) 0 0
\(369\) 2064.24 1191.79i 0.291220 0.168136i
\(370\) 0 0
\(371\) 5441.52 4596.51i 0.761481 0.643232i
\(372\) 0 0
\(373\) 5577.61 + 9660.71i 0.774257 + 1.34105i 0.935211 + 0.354090i \(0.115209\pi\)
−0.160955 + 0.986962i \(0.551457\pi\)
\(374\) 0 0
\(375\) 2892.02 + 1669.71i 0.398249 + 0.229929i
\(376\) 0 0
\(377\) 10137.2i 1.38487i
\(378\) 0 0
\(379\) 10145.3i 1.37501i −0.726180 0.687504i \(-0.758706\pi\)
0.726180 0.687504i \(-0.241294\pi\)
\(380\) 0 0
\(381\) 127.116 + 73.3905i 0.0170928 + 0.00986853i
\(382\) 0 0
\(383\) 1600.44 + 2772.05i 0.213522 + 0.369831i 0.952814 0.303554i \(-0.0981732\pi\)
−0.739292 + 0.673385i \(0.764840\pi\)
\(384\) 0 0
\(385\) 9707.19 + 3497.07i 1.28500 + 0.462928i
\(386\) 0 0
\(387\) −3054.15 + 1763.32i −0.401166 + 0.231613i
\(388\) 0 0
\(389\) 2376.25 4115.79i 0.309719 0.536450i −0.668581 0.743639i \(-0.733098\pi\)
0.978301 + 0.207189i \(0.0664315\pi\)
\(390\) 0 0
\(391\) −376.646 −0.0487156
\(392\) 0 0
\(393\) −1212.84 −0.155674
\(394\) 0 0
\(395\) 8141.91 14102.2i 1.03712 1.79635i
\(396\) 0 0
\(397\) 1259.19 726.995i 0.159186 0.0919064i −0.418291 0.908313i \(-0.637371\pi\)
0.577477 + 0.816407i \(0.304037\pi\)
\(398\) 0 0
\(399\) −4063.49 1463.90i −0.509847 0.183675i
\(400\) 0 0
\(401\) 310.342 + 537.528i 0.0386477 + 0.0669399i 0.884702 0.466157i \(-0.154362\pi\)
−0.846055 + 0.533096i \(0.821028\pi\)
\(402\) 0 0
\(403\) 2312.87 + 1335.34i 0.285887 + 0.165057i
\(404\) 0 0
\(405\) 1033.32i 0.126781i
\(406\) 0 0
\(407\) 3330.10i 0.405570i
\(408\) 0 0
\(409\) −4375.16 2526.00i −0.528943 0.305386i 0.211643 0.977347i \(-0.432119\pi\)
−0.740586 + 0.671962i \(0.765452\pi\)
\(410\) 0 0
\(411\) 3906.10 + 6765.56i 0.468792 + 0.811972i
\(412\) 0 0
\(413\) 10473.7 8847.22i 1.24788 1.05410i
\(414\) 0 0
\(415\) −10677.5 + 6164.66i −1.26298 + 0.729183i
\(416\) 0 0
\(417\) −897.941 + 1555.28i −0.105449 + 0.182643i
\(418\) 0 0
\(419\) −3832.00 −0.446791 −0.223395 0.974728i \(-0.571714\pi\)
−0.223395 + 0.974728i \(0.571714\pi\)
\(420\) 0 0
\(421\) −9483.96 −1.09791 −0.548955 0.835852i \(-0.684974\pi\)
−0.548955 + 0.835852i \(0.684974\pi\)
\(422\) 0 0
\(423\) −1323.26 + 2291.96i −0.152102 + 0.263448i
\(424\) 0 0
\(425\) 2706.23 1562.44i 0.308873 0.178328i
\(426\) 0 0
\(427\) −3768.41 + 677.239i −0.427087 + 0.0767538i
\(428\) 0 0
\(429\) 5496.89 + 9520.90i 0.618631 + 1.07150i
\(430\) 0 0
\(431\) 10181.6 + 5878.32i 1.13788 + 0.656958i 0.945906 0.324441i \(-0.105176\pi\)
0.191979 + 0.981399i \(0.438509\pi\)
\(432\) 0 0
\(433\) 806.702i 0.0895326i 0.998997 + 0.0447663i \(0.0142543\pi\)
−0.998997 + 0.0447663i \(0.985746\pi\)
\(434\) 0 0
\(435\) 4623.38i 0.509595i
\(436\) 0 0
\(437\) 306.267 + 176.824i 0.0335258 + 0.0193561i
\(438\) 0 0
\(439\) −6152.35 10656.2i −0.668874 1.15852i −0.978219 0.207574i \(-0.933443\pi\)
0.309345 0.950950i \(-0.399890\pi\)
\(440\) 0 0
\(441\) 516.074 3043.56i 0.0557255 0.328642i
\(442\) 0 0
\(443\) −13244.5 + 7646.70i −1.42046 + 0.820103i −0.996338 0.0855016i \(-0.972751\pi\)
−0.424122 + 0.905605i \(0.639417\pi\)
\(444\) 0 0
\(445\) −4616.49 + 7995.99i −0.491781 + 0.851789i
\(446\) 0 0
\(447\) 1898.02 0.200835
\(448\) 0 0
\(449\) −4118.02 −0.432832 −0.216416 0.976301i \(-0.569437\pi\)
−0.216416 + 0.976301i \(0.569437\pi\)
\(450\) 0 0
\(451\) −5782.96 + 10016.4i −0.603789 + 1.04579i
\(452\) 0 0
\(453\) −5909.47 + 3411.84i −0.612917 + 0.353868i
\(454\) 0 0
\(455\) 3506.82 + 19513.3i 0.361324 + 2.01054i
\(456\) 0 0
\(457\) 1179.13 + 2042.31i 0.120694 + 0.209049i 0.920042 0.391820i \(-0.128155\pi\)
−0.799347 + 0.600869i \(0.794821\pi\)
\(458\) 0 0
\(459\) −1935.91 1117.70i −0.196864 0.113660i
\(460\) 0 0
\(461\) 16195.4i 1.63622i −0.575063 0.818109i \(-0.695023\pi\)
0.575063 0.818109i \(-0.304977\pi\)
\(462\) 0 0
\(463\) 11212.8i 1.12550i 0.826629 + 0.562748i \(0.190256\pi\)
−0.826629 + 0.562748i \(0.809744\pi\)
\(464\) 0 0
\(465\) −1054.85 609.019i −0.105199 0.0607367i
\(466\) 0 0
\(467\) −2028.44 3513.36i −0.200995 0.348134i 0.747854 0.663863i \(-0.231084\pi\)
−0.948849 + 0.315729i \(0.897751\pi\)
\(468\) 0 0
\(469\) 2379.43 + 2816.86i 0.234269 + 0.277336i
\(470\) 0 0
\(471\) 271.937 157.003i 0.0266034 0.0153595i
\(472\) 0 0
\(473\) 8556.18 14819.7i 0.831742 1.44062i
\(474\) 0 0
\(475\) −2934.07 −0.283420
\(476\) 0 0
\(477\) −3461.48 −0.332265
\(478\) 0 0
\(479\) 2759.51 4779.61i 0.263226 0.455920i −0.703872 0.710327i \(-0.748547\pi\)
0.967097 + 0.254407i \(0.0818803\pi\)
\(480\) 0 0
\(481\) −5541.52 + 3199.40i −0.525304 + 0.303285i
\(482\) 0 0
\(483\) −85.6689 + 237.800i −0.00807054 + 0.0224022i
\(484\) 0 0
\(485\) −11248.0 19482.1i −1.05308 1.82399i
\(486\) 0 0
\(487\) −1286.31 742.651i −0.119688 0.0691021i 0.438961 0.898506i \(-0.355347\pi\)
−0.558649 + 0.829404i \(0.688680\pi\)
\(488\) 0 0
\(489\) 832.553i 0.0769925i
\(490\) 0 0
\(491\) 1233.26i 0.113352i −0.998393 0.0566762i \(-0.981950\pi\)
0.998393 0.0566762i \(-0.0180503\pi\)
\(492\) 0 0
\(493\) −8661.80 5000.89i −0.791294 0.456854i
\(494\) 0 0
\(495\) −2507.01 4342.28i −0.227640 0.394284i
\(496\) 0 0
\(497\) −3194.54 + 8867.43i −0.288320 + 0.800319i
\(498\) 0 0
\(499\) −9573.75 + 5527.41i −0.858878 + 0.495873i −0.863636 0.504115i \(-0.831819\pi\)
0.00475846 + 0.999989i \(0.498485\pi\)
\(500\) 0 0
\(501\) −1023.37 + 1772.52i −0.0912587 + 0.158065i
\(502\) 0 0
\(503\) −12446.0 −1.10326 −0.551630 0.834089i \(-0.685994\pi\)
−0.551630 + 0.834089i \(0.685994\pi\)
\(504\) 0 0
\(505\) 12346.3 1.08793
\(506\) 0 0
\(507\) −7266.79 + 12586.5i −0.636548 + 1.10253i
\(508\) 0 0
\(509\) −3244.49 + 1873.21i −0.282534 + 0.163121i −0.634570 0.772866i \(-0.718823\pi\)
0.352036 + 0.935986i \(0.385489\pi\)
\(510\) 0 0
\(511\) −12926.7 15303.1i −1.11907 1.32479i
\(512\) 0 0
\(513\) 1049.45 + 1817.70i 0.0903205 + 0.156440i
\(514\) 0 0
\(515\) −2950.33 1703.37i −0.252440 0.145747i
\(516\) 0 0
\(517\) 12841.8i 1.09242i
\(518\) 0 0
\(519\) 13137.5i 1.11112i
\(520\) 0 0
\(521\) 4299.89 + 2482.54i 0.361577 + 0.208756i 0.669772 0.742567i \(-0.266392\pi\)
−0.308195 + 0.951323i \(0.599725\pi\)
\(522\) 0 0
\(523\) −6050.05 10479.0i −0.505832 0.876127i −0.999977 0.00674731i \(-0.997852\pi\)
0.494145 0.869379i \(-0.335481\pi\)
\(524\) 0 0
\(525\) −370.930 2063.99i −0.0308356 0.171581i
\(526\) 0 0
\(527\) 2281.97 1317.50i 0.188623 0.108901i
\(528\) 0 0
\(529\) −6073.15 + 10519.0i −0.499150 + 0.864552i
\(530\) 0 0
\(531\) −6662.56 −0.544501
\(532\) 0 0
\(533\) −22223.9 −1.80605
\(534\) 0 0
\(535\) −8709.52 + 15085.3i −0.703823 + 1.21906i
\(536\) 0 0
\(537\) −328.688 + 189.768i −0.0264133 + 0.0152497i
\(538\) 0 0
\(539\) 5215.50 + 14041.8i 0.416786 + 1.12212i
\(540\) 0 0
\(541\) −3750.69 6496.38i −0.298068 0.516269i 0.677626 0.735407i \(-0.263009\pi\)
−0.975694 + 0.219138i \(0.929676\pi\)
\(542\) 0 0
\(543\) −10335.4 5967.13i −0.816820 0.471591i
\(544\) 0 0
\(545\) 12308.9i 0.967440i
\(546\) 0 0
\(547\) 19340.6i 1.51178i 0.654699 + 0.755889i \(0.272795\pi\)
−0.654699 + 0.755889i \(0.727205\pi\)
\(548\) 0 0
\(549\) 1611.34 + 930.306i 0.125264 + 0.0723215i
\(550\) 0 0
\(551\) 4695.53 + 8132.90i 0.363042 + 0.628808i
\(552\) 0 0
\(553\) 23267.5 4181.51i 1.78921 0.321548i
\(554\) 0 0
\(555\) 2527.37 1459.18i 0.193299 0.111601i
\(556\) 0 0
\(557\) −10442.9 + 18087.6i −0.794396 + 1.37593i 0.128826 + 0.991667i \(0.458879\pi\)
−0.923222 + 0.384267i \(0.874454\pi\)
\(558\) 0 0
\(559\) 32881.5 2.48790
\(560\) 0 0
\(561\) 10846.9 0.816321
\(562\) 0 0
\(563\) 11303.0 19577.3i 0.846115 1.46551i −0.0385346 0.999257i \(-0.512269\pi\)
0.884649 0.466257i \(-0.154398\pi\)
\(564\) 0 0
\(565\) −16487.5 + 9519.06i −1.22767 + 0.708796i
\(566\) 0 0
\(567\) −1146.00 + 968.041i −0.0848811 + 0.0717000i
\(568\) 0 0
\(569\) 210.319 + 364.283i 0.0154956 + 0.0268392i 0.873669 0.486520i \(-0.161734\pi\)
−0.858174 + 0.513360i \(0.828401\pi\)
\(570\) 0 0
\(571\) 1009.41 + 582.783i 0.0739799 + 0.0427123i 0.536534 0.843879i \(-0.319733\pi\)
−0.462554 + 0.886591i \(0.653067\pi\)
\(572\) 0 0
\(573\) 11888.6i 0.866756i
\(574\) 0 0
\(575\) 171.705i 0.0124532i
\(576\) 0 0
\(577\) 2682.59 + 1548.79i 0.193549 + 0.111745i 0.593643 0.804729i \(-0.297689\pi\)
−0.400094 + 0.916474i \(0.631023\pi\)
\(578\) 0 0
\(579\) 1795.62 + 3110.10i 0.128883 + 0.223232i
\(580\) 0 0
\(581\) −16839.8 6066.63i −1.20246 0.433195i
\(582\) 0 0
\(583\) 14546.0 8398.12i 1.03333 0.596595i
\(584\) 0 0
\(585\) 4817.23 8343.70i 0.340458 0.589691i
\(586\) 0 0
\(587\) 8108.04 0.570110 0.285055 0.958511i \(-0.407988\pi\)
0.285055 + 0.958511i \(0.407988\pi\)
\(588\) 0 0
\(589\) −2474.09 −0.173079
\(590\) 0 0
\(591\) −1734.82 + 3004.79i −0.120746 + 0.209138i
\(592\) 0 0
\(593\) 5174.34 2987.41i 0.358322 0.206877i −0.310023 0.950729i \(-0.600337\pi\)
0.668344 + 0.743852i \(0.267003\pi\)
\(594\) 0 0
\(595\) 18403.2 + 6629.85i 1.26799 + 0.456802i
\(596\) 0 0
\(597\) 4096.13 + 7094.71i 0.280810 + 0.486377i
\(598\) 0 0
\(599\) −7433.56 4291.77i −0.507057 0.292749i 0.224566 0.974459i \(-0.427903\pi\)
−0.731623 + 0.681709i \(0.761237\pi\)
\(600\) 0 0
\(601\) 26516.8i 1.79974i −0.436159 0.899870i \(-0.643662\pi\)
0.436159 0.899870i \(-0.356338\pi\)
\(602\) 0 0
\(603\) 1791.88i 0.121013i
\(604\) 0 0
\(605\) 6365.30 + 3675.00i 0.427746 + 0.246959i
\(606\) 0 0
\(607\) 90.0198 + 155.919i 0.00601942 + 0.0104259i 0.869019 0.494778i \(-0.164751\pi\)
−0.863000 + 0.505204i \(0.831417\pi\)
\(608\) 0 0
\(609\) −5127.52 + 4331.28i −0.341179 + 0.288197i
\(610\) 0 0
\(611\) 21369.6 12337.8i 1.41493 0.816911i
\(612\) 0 0
\(613\) 11987.9 20763.7i 0.789866 1.36809i −0.136183 0.990684i \(-0.543483\pi\)
0.926049 0.377404i \(-0.123183\pi\)
\(614\) 0 0
\(615\) 10135.9 0.664581
\(616\) 0 0
\(617\) 21357.3 1.39354 0.696768 0.717296i \(-0.254621\pi\)
0.696768 + 0.717296i \(0.254621\pi\)
\(618\) 0 0
\(619\) 565.488 979.454i 0.0367187 0.0635987i −0.847082 0.531462i \(-0.821643\pi\)
0.883801 + 0.467863i \(0.154976\pi\)
\(620\) 0 0
\(621\) 106.374 61.4151i 0.00687383 0.00396861i
\(622\) 0 0
\(623\) −13192.7 + 2370.93i −0.848403 + 0.152471i
\(624\) 0 0
\(625\) 9459.18 + 16383.8i 0.605388 + 1.04856i
\(626\) 0 0
\(627\) −8820.09 5092.28i −0.561787 0.324348i
\(628\) 0 0
\(629\) 6313.29i 0.400203i
\(630\) 0 0
\(631\) 21331.4i 1.34579i −0.739740 0.672893i \(-0.765052\pi\)
0.739740 0.672893i \(-0.234948\pi\)
\(632\) 0 0
\(633\) −219.411 126.677i −0.0137770 0.00795414i
\(634\) 0 0
\(635\) 312.083 + 540.544i 0.0195034 + 0.0337808i
\(636\) 0 0
\(637\) −18355.8 + 22169.7i −1.14173 + 1.37895i
\(638\) 0 0
\(639\) 3966.63 2290.14i 0.245567 0.141778i
\(640\) 0 0
\(641\) −7215.00 + 12496.7i −0.444579 + 0.770034i −0.998023 0.0628529i \(-0.979980\pi\)
0.553444 + 0.832887i \(0.313313\pi\)
\(642\) 0 0
\(643\) −19538.7 −1.19834 −0.599170 0.800622i \(-0.704503\pi\)
−0.599170 + 0.800622i \(0.704503\pi\)
\(644\) 0 0
\(645\) −14996.5 −0.915485
\(646\) 0 0
\(647\) −13576.4 + 23515.1i −0.824953 + 1.42886i 0.0770024 + 0.997031i \(0.475465\pi\)
−0.901955 + 0.431829i \(0.857868\pi\)
\(648\) 0 0
\(649\) 27997.6 16164.4i 1.69338 0.977673i
\(650\) 0 0
\(651\) −312.779 1740.42i −0.0188307 0.104781i
\(652\) 0 0
\(653\) 12093.9 + 20947.3i 0.724766 + 1.25533i 0.959070 + 0.283168i \(0.0913855\pi\)
−0.234304 + 0.972163i \(0.575281\pi\)
\(654\) 0 0
\(655\) −4466.49 2578.73i −0.266443 0.153831i
\(656\) 0 0
\(657\) 9734.67i 0.578060i
\(658\) 0 0
\(659\) 32707.6i 1.93340i −0.255918 0.966699i \(-0.582378\pi\)
0.255918 0.966699i \(-0.417622\pi\)
\(660\) 0 0
\(661\) 3022.47 + 1745.02i 0.177852 + 0.102683i 0.586283 0.810106i \(-0.300591\pi\)
−0.408431 + 0.912789i \(0.633924\pi\)
\(662\) 0 0
\(663\) 10421.2 + 18050.0i 0.610444 + 1.05732i
\(664\) 0 0
\(665\) −11851.9 14030.7i −0.691125 0.818179i
\(666\) 0 0
\(667\) 475.947 274.788i 0.0276293 0.0159518i
\(668\) 0 0
\(669\) 1994.63 3454.79i 0.115272 0.199656i
\(670\) 0 0
\(671\) −9028.30 −0.519424
\(672\) 0 0
\(673\) −12215.6 −0.699667 −0.349834 0.936812i \(-0.613762\pi\)
−0.349834 + 0.936812i \(0.613762\pi\)
\(674\) 0 0
\(675\) −509.537 + 882.543i −0.0290549 + 0.0503246i
\(676\) 0 0
\(677\) 19115.3 11036.2i 1.08517 0.626525i 0.152885 0.988244i \(-0.451143\pi\)
0.932287 + 0.361719i \(0.117810\pi\)
\(678\) 0 0
\(679\) 11069.1 30725.7i 0.625617 1.73659i
\(680\) 0 0
\(681\) 819.024 + 1418.59i 0.0460867 + 0.0798246i
\(682\) 0 0
\(683\) 11877.9 + 6857.71i 0.665440 + 0.384192i 0.794347 0.607465i \(-0.207813\pi\)
−0.128907 + 0.991657i \(0.541147\pi\)
\(684\) 0 0
\(685\) 33220.3i 1.85297i
\(686\) 0 0
\(687\) 2186.34i 0.121418i
\(688\) 0 0
\(689\) 27950.1 + 16137.0i 1.54545 + 0.892266i
\(690\) 0 0
\(691\) −2105.60 3647.01i −0.115920 0.200780i 0.802227 0.597019i \(-0.203648\pi\)
−0.918147 + 0.396239i \(0.870315\pi\)
\(692\) 0 0
\(693\) 2467.15 6848.32i 0.135237 0.375392i
\(694\) 0 0
\(695\) −6613.61 + 3818.37i −0.360962 + 0.208402i
\(696\) 0 0
\(697\) −10963.5 + 18989.3i −0.595799 + 1.03195i
\(698\) 0 0
\(699\) 9935.21 0.537602
\(700\) 0 0
\(701\) 17197.5 0.926592 0.463296 0.886204i \(-0.346667\pi\)
0.463296 + 0.886204i \(0.346667\pi\)
\(702\) 0 0
\(703\) 2963.90 5133.62i 0.159012 0.275417i
\(704\) 0 0
\(705\) −9746.23 + 5626.99i −0.520659 + 0.300602i
\(706\) 0 0
\(707\) 11566.3 + 13692.6i 0.615268 + 0.728377i
\(708\) 0 0
\(709\) −10033.9 17379.2i −0.531497 0.920579i −0.999324 0.0367592i \(-0.988297\pi\)
0.467828 0.883820i \(-0.345037\pi\)
\(710\) 0 0
\(711\) −9948.96 5744.03i −0.524775 0.302979i
\(712\) 0 0
\(713\) 144.787i 0.00760493i
\(714\) 0 0
\(715\) 46749.6i 2.44522i
\(716\) 0 0
\(717\) −9136.59 5275.02i −0.475889 0.274755i
\(718\) 0 0
\(719\) −8577.09 14856.0i −0.444884 0.770561i 0.553160 0.833075i \(-0.313422\pi\)
−0.998044 + 0.0625134i \(0.980088\pi\)
\(720\) 0 0
\(721\) −874.815 4867.79i −0.0451870 0.251437i
\(722\) 0 0
\(723\) 14193.0 8194.35i 0.730076 0.421509i
\(724\) 0 0
\(725\) −2279.81 + 3948.74i −0.116786 + 0.202279i
\(726\) 0 0
\(727\) 4014.26 0.204788 0.102394 0.994744i \(-0.467350\pi\)
0.102394 + 0.994744i \(0.467350\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 16221.1 28095.7i 0.820735 1.42156i
\(732\) 0 0
\(733\) 22785.7 13155.3i 1.14817 0.662897i 0.199730 0.979851i \(-0.435993\pi\)
0.948441 + 0.316954i \(0.102660\pi\)
\(734\) 0 0
\(735\) 8371.68 10111.1i 0.420128 0.507420i
\(736\) 0 0
\(737\) 4347.38 + 7529.89i 0.217283 + 0.376346i
\(738\) 0 0
\(739\) −11093.7 6404.97i −0.552219 0.318824i 0.197798 0.980243i \(-0.436621\pi\)
−0.750016 + 0.661419i \(0.769954\pi\)
\(740\) 0 0
\(741\) 19569.7i 0.970188i
\(742\) 0 0
\(743\) 4199.36i 0.207348i −0.994611 0.103674i \(-0.966940\pi\)
0.994611 0.103674i \(-0.0330599\pi\)
\(744\) 0 0
\(745\) 6989.77 + 4035.54i 0.343739 + 0.198458i
\(746\) 0 0
\(747\) 4349.10 + 7532.86i 0.213019 + 0.368960i
\(748\) 0 0
\(749\) −24889.5 + 4473.02i −1.21421 + 0.218212i
\(750\) 0 0
\(751\) 12052.1 6958.30i 0.585603 0.338098i −0.177754 0.984075i \(-0.556883\pi\)
0.763357 + 0.645977i \(0.223550\pi\)
\(752\) 0 0
\(753\) 9987.18 17298.3i 0.483337 0.837165i
\(754\) 0 0
\(755\) −29016.7 −1.39871
\(756\) 0 0
\(757\) 15356.4 0.737301 0.368650 0.929568i \(-0.379820\pi\)
0.368650 + 0.929568i \(0.379820\pi\)
\(758\) 0 0
\(759\) −298.006 + 516.162i −0.0142516 + 0.0246844i
\(760\) 0 0
\(761\) 11619.3 6708.43i 0.553483 0.319554i −0.197043 0.980395i \(-0.563134\pi\)
0.750526 + 0.660841i \(0.229800\pi\)
\(762\) 0 0
\(763\) 13651.1 11531.2i 0.647710 0.547128i
\(764\) 0 0
\(765\) −4752.87 8232.21i −0.224628 0.389067i
\(766\) 0 0
\(767\) 53797.5 + 31060.0i 2.53262 + 1.46221i
\(768\) 0 0
\(769\) 6362.25i 0.298347i 0.988811 + 0.149173i \(0.0476612\pi\)
−0.988811 + 0.149173i \(0.952339\pi\)
\(770\) 0 0
\(771\) 21316.6i 0.995716i
\(772\) 0 0
\(773\) 683.703 + 394.736i 0.0318125 + 0.0183670i 0.515822 0.856696i \(-0.327487\pi\)
−0.484009 + 0.875063i \(0.660820\pi\)
\(774\) 0 0
\(775\) −600.620 1040.30i −0.0278386 0.0482178i
\(776\) 0 0
\(777\) 3985.98 + 1435.97i 0.184036 + 0.0663001i
\(778\) 0 0
\(779\) 17829.8 10294.1i 0.820051 0.473457i
\(780\) 0 0
\(781\) −11112.5 + 19247.4i −0.509137 + 0.881851i
\(782\) 0 0
\(783\) 3261.74 0.148870
\(784\) 0 0
\(785\) 1335.27 0.0607105
\(786\) 0 0
\(787\) 1637.91 2836.94i 0.0741869 0.128495i −0.826546 0.562870i \(-0.809697\pi\)
0.900732 + 0.434374i \(0.143031\pi\)
\(788\) 0 0
\(789\) 18375.4 10609.0i 0.829128 0.478697i
\(790\) 0 0
\(791\) −26002.9 9367.69i −1.16884 0.421083i
\(792\) 0 0
\(793\) −8673.95 15023.7i −0.388425 0.672772i
\(794\) 0 0
\(795\) −12747.5 7359.74i −0.568686 0.328331i
\(796\) 0 0
\(797\) 2241.13i 0.0996045i 0.998759 + 0.0498023i \(0.0158591\pi\)
−0.998759 + 0.0498023i \(0.984141\pi\)
\(798\) 0 0
\(799\) 24345.8i 1.07796i
\(800\) 0 0
\(801\) 5641.09 + 3256.88i 0.248836 + 0.143666i
\(802\) 0 0
\(803\) −23617.9 40907.4i −1.03793 1.79775i
\(804\) 0 0
\(805\) −821.096 + 693.589i −0.0359501 + 0.0303674i
\(806\) 0 0
\(807\) 13434.6 7756.44i 0.586021 0.338339i
\(808\) 0 0
\(809\) −12640.5 + 21894.0i −0.549340 + 0.951486i 0.448979 + 0.893542i \(0.351788\pi\)
−0.998320 + 0.0579435i \(0.981546\pi\)
\(810\) 0 0
\(811\) 34777.3 1.50579 0.752894 0.658141i \(-0.228657\pi\)
0.752894 + 0.658141i \(0.228657\pi\)
\(812\) 0 0
\(813\) 10195.2 0.439806
\(814\) 0 0
\(815\) −1770.16 + 3066.01i −0.0760809 + 0.131776i
\(816\) 0 0
\(817\) −26380.1 + 15230.6i −1.12965 + 0.652204i
\(818\) 0 0
\(819\) 13766.4 2474.03i 0.587347 0.105555i
\(820\) 0 0
\(821\) 9958.23 + 17248.2i 0.423319 + 0.733209i 0.996262 0.0863857i \(-0.0275317\pi\)
−0.572943 + 0.819595i \(0.694198\pi\)
\(822\) 0 0
\(823\) 16066.6 + 9276.03i 0.680492 + 0.392882i 0.800040 0.599946i \(-0.204811\pi\)
−0.119548 + 0.992828i \(0.538145\pi\)
\(824\) 0 0
\(825\) 4944.88i 0.208677i
\(826\) 0 0
\(827\) 18820.5i 0.791358i 0.918389 + 0.395679i \(0.129491\pi\)
−0.918389 + 0.395679i \(0.870509\pi\)
\(828\) 0 0
\(829\) −16671.9 9625.55i −0.698481 0.403268i 0.108301 0.994118i \(-0.465459\pi\)
−0.806781 + 0.590850i \(0.798792\pi\)
\(830\) 0 0
\(831\) −3108.73 5384.47i −0.129772 0.224772i
\(832\) 0 0
\(833\) 9887.69 + 26620.9i 0.411270 + 1.10727i
\(834\) 0 0
\(835\) −7537.41 + 4351.73i −0.312387 + 0.180357i
\(836\) 0 0
\(837\) −429.657 + 744.187i −0.0177433 + 0.0307322i
\(838\) 0 0
\(839\) −31608.3 −1.30064 −0.650321 0.759660i \(-0.725366\pi\)
−0.650321 + 0.759660i \(0.725366\pi\)
\(840\) 0 0
\(841\) −9795.07 −0.401618
\(842\) 0 0
\(843\) 4784.57 8287.11i 0.195480 0.338580i
\(844\) 0 0
\(845\) −53522.2 + 30901.1i −2.17896 + 1.25802i
\(846\) 0 0
\(847\) 1887.40 + 10502.2i 0.0765667 + 0.426045i
\(848\) 0 0
\(849\) −11134.4 19285.4i −0.450096 0.779590i
\(850\) 0 0
\(851\) −300.425 173.451i −0.0121016 0.00698685i
\(852\) 0 0
\(853\) 43451.9i 1.74416i 0.489366 + 0.872079i \(0.337228\pi\)
−0.489366 + 0.872079i \(0.662772\pi\)
\(854\) 0 0
\(855\) 8925.30i 0.357005i
\(856\) 0 0
\(857\) −23342.8 13476.9i −0.930424 0.537180i −0.0434783 0.999054i \(-0.513844\pi\)
−0.886946 + 0.461874i \(0.847177\pi\)
\(858\) 0 0
\(859\) −2904.53 5030.79i −0.115368 0.199824i 0.802559 0.596573i \(-0.203471\pi\)
−0.917927 + 0.396750i \(0.870138\pi\)
\(860\) 0 0
\(861\) 9495.49 + 11241.1i 0.375848 + 0.444943i
\(862\) 0 0
\(863\) −9823.54 + 5671.62i −0.387482 + 0.223713i −0.681069 0.732220i \(-0.738484\pi\)
0.293586 + 0.955933i \(0.405151\pi\)
\(864\) 0 0
\(865\) 27932.7 48380.9i 1.09797 1.90174i
\(866\) 0 0
\(867\) 5824.85 0.228169
\(868\) 0 0
\(869\) 55743.8 2.17604
\(870\) 0 0
\(871\) −8353.51 + 14468.7i −0.324969 + 0.562862i
\(872\) 0 0
\(873\) −13744.4 + 7935.34i −0.532849 + 0.307641i
\(874\) 0 0
\(875\) −6987.31 + 19395.4i −0.269959 + 0.749354i
\(876\) 0 0
\(877\) −21412.5 37087.5i −0.824455 1.42800i −0.902335 0.431036i \(-0.858148\pi\)
0.0778794 0.996963i \(-0.475185\pi\)
\(878\) 0 0
\(879\) −15509.2 8954.22i −0.595121 0.343593i
\(880\) 0 0
\(881\) 24785.0i 0.947818i 0.880574 + 0.473909i \(0.157157\pi\)
−0.880574 + 0.473909i \(0.842843\pi\)
\(882\) 0 0
\(883\) 3938.21i 0.150092i 0.997180 + 0.0750460i \(0.0239104\pi\)
−0.997180 + 0.0750460i \(0.976090\pi\)
\(884\) 0 0
\(885\) −24535.9 14165.8i −0.931938 0.538055i
\(886\) 0 0
\(887\) 12558.0 + 21751.2i 0.475375 + 0.823374i 0.999602 0.0282048i \(-0.00897905\pi\)
−0.524227 + 0.851578i \(0.675646\pi\)
\(888\) 0 0
\(889\) −307.121 + 852.507i −0.0115866 + 0.0321622i
\(890\) 0 0
\(891\) −3063.43 + 1768.67i −0.115184 + 0.0665014i
\(892\) 0 0
\(893\) −11429.6 + 19796.7i −0.428306 + 0.741848i
\(894\) 0 0
\(895\) −1613.93 −0.0602767
\(896\) 0 0
\(897\) −1145.24 −0.0426293
\(898\) 0 0
\(899\) −1922.40 + 3329.69i −0.0713188 + 0.123528i
\(900\) 0 0
\(901\) 27576.7 15921.4i 1.01966 0.588700i
\(902\) 0 0
\(903\) −14049.1 16631.8i −0.517745 0.612925i
\(904\) 0 0
\(905\) −25374.4 43949.8i −0.932016 1.61430i
\(906\) 0 0
\(907\) −47018.2 27146.0i −1.72129 0.993789i −0.916287 0.400522i \(-0.868829\pi\)
−0.805006 0.593267i \(-0.797838\pi\)
\(908\) 0 0
\(909\) 8710.18i 0.317820i
\(910\) 0 0
\(911\) 32933.0i 1.19772i 0.800855 + 0.598858i \(0.204379\pi\)
−0.800855 + 0.598858i \(0.795621\pi\)
\(912\) 0 0
\(913\) −36551.9 21103.3i −1.32496 0.764968i
\(914\) 0 0
\(915\) 3956.00 + 6851.99i 0.142930 + 0.247563i
\(916\) 0 0
\(917\) −1324.38 7369.34i −0.0476934 0.265384i
\(918\) 0 0
\(919\) −23666.0 + 13663.5i −0.849476 + 0.490445i −0.860474 0.509495i \(-0.829832\pi\)
0.0109983 + 0.999940i \(0.496499\pi\)
\(920\) 0 0
\(921\) 10740.4 18603.0i 0.384266 0.665569i
\(922\) 0 0
\(923\) −42705.3 −1.52293
\(924\) 0 0
\(925\) 2878.10 0.102304
\(926\) 0 0
\(927\) −1201.71 + 2081.42i −0.0425775 + 0.0737464i
\(928\) 0 0
\(929\) 21572.8 12455.1i 0.761875 0.439869i −0.0680933 0.997679i \(-0.521692\pi\)
0.829969 + 0.557810i \(0.188358\pi\)
\(930\) 0 0
\(931\) 4457.57 26288.6i 0.156918 0.925429i
\(932\) 0 0
\(933\) −4091.06 7085.93i −0.143553 0.248642i
\(934\) 0 0
\(935\) 39945.4 + 23062.5i 1.39717 + 0.806656i
\(936\) 0 0
\(937\) 10564.4i 0.368328i −0.982896 0.184164i \(-0.941042\pi\)
0.982896 0.184164i \(-0.0589578\pi\)
\(938\) 0 0
\(939\) 11786.3i 0.409617i
\(940\) 0 0
\(941\) 28671.9 + 16553.7i 0.993281 + 0.573471i 0.906254 0.422735i \(-0.138930\pi\)
0.0870279 + 0.996206i \(0.472263\pi\)
\(942\) 0 0
\(943\) −602.420 1043.42i −0.0208033 0.0360323i
\(944\) 0 0
\(945\) −6278.56 + 1128.35i −0.216129 + 0.0388415i
\(946\) 0 0
\(947\) −38030.2 + 21956.8i −1.30498 + 0.753431i −0.981254 0.192720i \(-0.938269\pi\)
−0.323726 + 0.946151i \(0.604936\pi\)
\(948\) 0 0
\(949\) 45381.9 78603.7i 1.55233 2.68871i
\(950\) 0 0
\(951\) 10098.1 0.344324
\(952\) 0 0
\(953\) 28321.2 0.962660 0.481330 0.876539i \(-0.340154\pi\)
0.481330 + 0.876539i \(0.340154\pi\)
\(954\) 0 0
\(955\) −25277.2 + 43781.4i −0.856494 + 1.48349i
\(956\) 0 0
\(957\) −13706.6 + 7913.52i −0.462980 + 0.267302i
\(958\) 0 0
\(959\) −36842.7 + 31121.5i −1.24058 + 1.04793i
\(960\) 0 0
\(961\) 14389.0 + 24922.5i 0.483000 + 0.836580i
\(962\) 0 0
\(963\) 10642.5 + 6144.48i 0.356128 + 0.205611i
\(964\) 0 0
\(965\) 15271.2i 0.509429i
\(966\) 0 0
\(967\) 11889.1i 0.395375i 0.980265 + 0.197688i \(0.0633431\pi\)
−0.980265 + 0.197688i \(0.936657\pi\)
\(968\) 0 0
\(969\) −16721.4 9654.09i −0.554353 0.320056i
\(970\) 0 0
\(971\) −8075.19 13986.6i −0.266885 0.462258i 0.701171 0.712993i \(-0.252661\pi\)
−0.968056 + 0.250735i \(0.919328\pi\)
\(972\) 0 0
\(973\) −10430.5 3757.65i −0.343666 0.123808i
\(974\) 0 0
\(975\) 8228.62 4750.80i 0.270284 0.156048i
\(976\) 0 0
\(977\) −5607.74 + 9712.90i −0.183631 + 0.318058i −0.943114 0.332468i \(-0.892119\pi\)
0.759483 + 0.650527i \(0.225452\pi\)
\(978\) 0 0
\(979\) −31606.9 −1.03183
\(980\) 0 0
\(981\) −8683.79 −0.282622
\(982\) 0 0
\(983\) 25317.0 43850.3i 0.821451 1.42280i −0.0831503 0.996537i \(-0.526498\pi\)
0.904602 0.426258i \(-0.140169\pi\)
\(984\) 0 0
\(985\) −12777.5 + 7377.07i −0.413324 + 0.238632i
\(986\) 0 0
\(987\) −15371.1 5537.51i −0.495710 0.178583i
\(988\) 0 0
\(989\) 891.311 + 1543.80i 0.0286573 + 0.0496358i
\(990\) 0 0
\(991\) 34579.1 + 19964.3i 1.10842 + 0.639945i 0.938419 0.345499i \(-0.112290\pi\)
0.169998 + 0.985444i \(0.445624\pi\)
\(992\) 0 0
\(993\) 24401.1i 0.779804i
\(994\) 0 0
\(995\) 34836.5i 1.10994i
\(996\) 0 0
\(997\) −34285.4 19794.7i −1.08910 0.628790i −0.155761 0.987795i \(-0.549783\pi\)
−0.933336 + 0.359005i \(0.883116\pi\)
\(998\) 0 0
\(999\) −1029.43 1783.03i −0.0326024 0.0564691i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.4.bl.j.31.3 yes 8
4.3 odd 2 336.4.bl.i.31.3 8
7.5 odd 6 336.4.bl.i.271.3 yes 8
28.19 even 6 inner 336.4.bl.j.271.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.4.bl.i.31.3 8 4.3 odd 2
336.4.bl.i.271.3 yes 8 7.5 odd 6
336.4.bl.j.31.3 yes 8 1.1 even 1 trivial
336.4.bl.j.271.3 yes 8 28.19 even 6 inner