Properties

Label 336.4.bl
Level 336336
Weight 44
Character orbit 336.bl
Rep. character χ336(31,)\chi_{336}(31,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 4848
Newform subspaces 1010
Sturm bound 256256
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.bl (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 28 28
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 10 10
Sturm bound: 256256
Trace bound: 55
Distinguishing TpT_p: 55, 1111

Dimensions

The following table gives the dimensions of various subspaces of M4(336,[χ])M_{4}(336, [\chi]).

Total New Old
Modular forms 408 48 360
Cusp forms 360 48 312
Eisenstein series 48 0 48

Trace form

48q216q9+120q21+348q25+108q33+252q37168q49+1176q53+168q57+1800q61840q65+324q73+2304q771944q816240q85+444q93+O(q100) 48 q - 216 q^{9} + 120 q^{21} + 348 q^{25} + 108 q^{33} + 252 q^{37} - 168 q^{49} + 1176 q^{53} + 168 q^{57} + 1800 q^{61} - 840 q^{65} + 324 q^{73} + 2304 q^{77} - 1944 q^{81} - 6240 q^{85} + 444 q^{93}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
336.4.bl.a 336.bl 28.f 22 19.82519.825 Q(3)\Q(\sqrt{-3}) None 336.4.bl.a 00 3-3 6-6 3535 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(3+3ζ6)q3+(4+2ζ6)q5+q+(-3+3\zeta_{6})q^{3}+(-4+2\zeta_{6})q^{5}+\cdots
336.4.bl.b 336.bl 28.f 22 19.82519.825 Q(3)\Q(\sqrt{-3}) None 336.4.bl.b 00 3-3 3-3 7-7 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(3+3ζ6)q3+(2+ζ6)q5+(7+)q7+q+(-3+3\zeta_{6})q^{3}+(-2+\zeta_{6})q^{5}+(7+\cdots)q^{7}+\cdots
336.4.bl.c 336.bl 28.f 22 19.82519.825 Q(3)\Q(\sqrt{-3}) None 336.4.bl.a 00 33 6-6 35-35 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(33ζ6)q3+(4+2ζ6)q5+(14+)q7+q+(3-3\zeta_{6})q^{3}+(-4+2\zeta_{6})q^{5}+(-14+\cdots)q^{7}+\cdots
336.4.bl.d 336.bl 28.f 22 19.82519.825 Q(3)\Q(\sqrt{-3}) None 336.4.bl.b 00 33 3-3 77 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(33ζ6)q3+(2+ζ6)q5+(7+)q7+q+(3-3\zeta_{6})q^{3}+(-2+\zeta_{6})q^{5}+(-7+\cdots)q^{7}+\cdots
336.4.bl.e 336.bl 28.f 66 19.82519.825 6.0.419349987.3 None 336.4.bl.e 00 9-9 21-21 19-19 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q3β1q3+(22β1+2β2β3+)q5+q-3\beta _{1}q^{3}+(-2-2\beta _{1}+2\beta _{2}-\beta _{3}+\cdots)q^{5}+\cdots
336.4.bl.f 336.bl 28.f 66 19.82519.825 6.0.633537072.3 None 336.4.bl.f 00 9-9 1212 7-7 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+3β2q3+(1β2+β3+β4)q5+q+3\beta _{2}q^{3}+(1-\beta _{2}+\beta _{3}+\beta _{4})q^{5}+\cdots
336.4.bl.g 336.bl 28.f 66 19.82519.825 6.0.419349987.3 None 336.4.bl.e 00 99 21-21 1919 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+3β1q3+(22β1+2β2β3+)q5+q+3\beta _{1}q^{3}+(-2-2\beta _{1}+2\beta _{2}-\beta _{3}+\cdots)q^{5}+\cdots
336.4.bl.h 336.bl 28.f 66 19.82519.825 6.0.633537072.3 None 336.4.bl.f 00 99 1212 77 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q3β2q3+(1β2+β3+β4)q5+q-3\beta _{2}q^{3}+(1-\beta _{2}+\beta _{3}+\beta _{4})q^{5}+\cdots
336.4.bl.i 336.bl 28.f 88 19.82519.825 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 336.4.bl.i 00 12-12 1818 12-12 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q3β1q3+(1+2β1+β4+β6)q5+q-3\beta _{1}q^{3}+(1+2\beta _{1}+\beta _{4}+\beta _{6})q^{5}+\cdots
336.4.bl.j 336.bl 28.f 88 19.82519.825 Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots) None 336.4.bl.i 00 1212 1818 1212 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+3β1q3+(1+2β1+β4+β6)q5+q+3\beta _{1}q^{3}+(1+2\beta _{1}+\beta _{4}+\beta _{6})q^{5}+\cdots

Decomposition of S4old(336,[χ])S_{4}^{\mathrm{old}}(336, [\chi]) into lower level spaces

S4old(336,[χ]) S_{4}^{\mathrm{old}}(336, [\chi]) \simeq S4new(28,[χ])S_{4}^{\mathrm{new}}(28, [\chi])6^{\oplus 6}\oplusS4new(84,[χ])S_{4}^{\mathrm{new}}(84, [\chi])3^{\oplus 3}\oplusS4new(112,[χ])S_{4}^{\mathrm{new}}(112, [\chi])2^{\oplus 2}