Properties

Label 28.4.f
Level $28$
Weight $4$
Character orbit 28.f
Rep. character $\chi_{28}(3,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $20$
Newform subspaces $1$
Sturm bound $16$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 28 = 2^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 28.f (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(16\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(28, [\chi])\).

Total New Old
Modular forms 28 28 0
Cusp forms 20 20 0
Eisenstein series 8 8 0

Trace form

\( 20 q + 4 q^{4} - 6 q^{5} + 72 q^{8} - 56 q^{9} + O(q^{10}) \) \( 20 q + 4 q^{4} - 6 q^{5} + 72 q^{8} - 56 q^{9} - 12 q^{10} - 168 q^{12} - 56 q^{14} - 104 q^{16} - 6 q^{17} + 68 q^{18} + 238 q^{21} - 184 q^{22} + 348 q^{24} - 36 q^{25} + 396 q^{26} + 448 q^{28} - 352 q^{29} + 644 q^{30} - 40 q^{32} + 30 q^{33} + 208 q^{36} + 258 q^{37} - 1620 q^{38} - 1548 q^{40} - 980 q^{42} - 1248 q^{44} - 504 q^{45} + 232 q^{46} - 644 q^{49} - 864 q^{50} + 2592 q^{52} + 570 q^{53} + 4572 q^{54} + 1904 q^{56} + 1452 q^{57} + 2244 q^{58} - 736 q^{60} + 294 q^{61} + 2560 q^{64} - 124 q^{65} - 4272 q^{66} - 6084 q^{68} - 4144 q^{70} - 4672 q^{72} + 966 q^{73} + 832 q^{74} - 378 q^{77} - 4056 q^{78} + 7032 q^{80} - 1262 q^{81} + 7692 q^{82} + 6188 q^{84} - 2980 q^{85} + 5696 q^{86} - 1396 q^{88} - 3186 q^{89} + 3312 q^{92} - 306 q^{93} - 6780 q^{94} - 11784 q^{96} - 4900 q^{98} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(28, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
28.4.f.a 28.f 28.f $20$ $1.652$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 28.4.f.a \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{1}+\beta _{5})q^{2}-\beta _{10}q^{3}-\beta _{14}q^{4}+\cdots\)