gp: [N,k,chi] = [336,4,Mod(31,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.31");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 0, 0, 1]))
N = Newforms(chi, 4, names="a")
Newform invariants
sage: traces = [8,0,12,0,18]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 − x 7 + 23 x 6 + 48 x 5 + 422 x 4 + 384 x 3 + 1247 x 2 − 637 x + 2401 x^{8} - x^{7} + 23x^{6} + 48x^{5} + 422x^{4} + 384x^{3} + 1247x^{2} - 637x + 2401 x 8 − x 7 + 2 3 x 6 + 4 8 x 5 + 4 2 2 x 4 + 3 8 4 x 3 + 1 2 4 7 x 2 − 6 3 7 x + 2 4 0 1
x^8 - x^7 + 23*x^6 + 48*x^5 + 422*x^4 + 384*x^3 + 1247*x^2 - 637*x + 2401
:
β 1 \beta_{1} β 1 = = =
( − 7171 ν 7 − 18162 ν 6 − 126125 ν 5 − 885413 ν 4 − 3954271 ν 3 + ⋯ + 2536681 ) / 29185380 ( - 7171 \nu^{7} - 18162 \nu^{6} - 126125 \nu^{5} - 885413 \nu^{4} - 3954271 \nu^{3} + \cdots + 2536681 ) / 29185380 ( − 7 1 7 1 ν 7 − 1 8 1 6 2 ν 6 − 1 2 6 1 2 5 ν 5 − 8 8 5 4 1 3 ν 4 − 3 9 5 4 2 7 1 ν 3 + ⋯ + 2 5 3 6 6 8 1 ) / 2 9 1 8 5 3 8 0
(-7171*v^7 - 18162*v^6 - 126125*v^5 - 885413*v^4 - 3954271*v^3 - 12950515*v^2 - 9644652*v + 2536681) / 29185380
β 2 \beta_{2} β 2 = = =
( − 39196 ν 7 + 110736 ν 6 − 1663115 ν 5 + 2963467 ν 4 − 31828957 ν 3 + ⋯ + 349753327 ) / 14592690 ( - 39196 \nu^{7} + 110736 \nu^{6} - 1663115 \nu^{5} + 2963467 \nu^{4} - 31828957 \nu^{3} + \cdots + 349753327 ) / 14592690 ( − 3 9 1 9 6 ν 7 + 1 1 0 7 3 6 ν 6 − 1 6 6 3 1 1 5 ν 5 + 2 9 6 3 4 6 7 ν 4 − 3 1 8 2 8 9 5 7 ν 3 + ⋯ + 3 4 9 7 5 3 3 2 7 ) / 1 4 5 9 2 6 9 0
(-39196*v^7 + 110736*v^6 - 1663115*v^5 + 2963467*v^4 - 31828957*v^3 + 23022275*v^2 - 164298627*v + 349753327) / 14592690
β 3 \beta_{3} β 3 = = =
( − 12521 ν 7 + 133236 ν 6 − 348715 ν 5 + 1409357 ν 4 + 3876583 ν 3 + ⋯ − 4518283 ) / 4169340 ( - 12521 \nu^{7} + 133236 \nu^{6} - 348715 \nu^{5} + 1409357 \nu^{4} + 3876583 \nu^{3} + \cdots - 4518283 ) / 4169340 ( − 1 2 5 2 1 ν 7 + 1 3 3 2 3 6 ν 6 − 3 4 8 7 1 5 ν 5 + 1 4 0 9 3 5 7 ν 4 + 3 8 7 6 5 8 3 ν 3 + ⋯ − 4 5 1 8 2 8 3 ) / 4 1 6 9 3 4 0
(-12521*v^7 + 133236*v^6 - 348715*v^5 + 1409357*v^4 + 3876583*v^3 + 29569195*v^2 + 51221088*v - 4518283) / 4169340
β 4 \beta_{4} β 4 = = =
( 1735 ν 7 − 11388 ν 6 + 88205 ν 5 − 186115 ν 4 + 904951 ν 3 − 875405 ν 2 + ⋯ − 3416371 ) / 463260 ( 1735 \nu^{7} - 11388 \nu^{6} + 88205 \nu^{5} - 186115 \nu^{4} + 904951 \nu^{3} - 875405 \nu^{2} + \cdots - 3416371 ) / 463260 ( 1 7 3 5 ν 7 − 1 1 3 8 8 ν 6 + 8 8 2 0 5 ν 5 − 1 8 6 1 1 5 ν 4 + 9 0 4 9 5 1 ν 3 − 8 7 5 4 0 5 ν 2 + ⋯ − 3 4 1 6 3 7 1 ) / 4 6 3 2 6 0
(1735*v^7 - 11388*v^6 + 88205*v^5 - 186115*v^4 + 904951*v^3 - 875405*v^2 + 7097040*v - 3416371) / 463260
β 5 \beta_{5} β 5 = = =
( 55366 ν 7 − 352845 ν 6 + 2008565 ν 5 − 2371057 ν 4 + 11139295 ν 3 + ⋯ + 182322140 ) / 14592690 ( 55366 \nu^{7} - 352845 \nu^{6} + 2008565 \nu^{5} - 2371057 \nu^{4} + 11139295 \nu^{3} + \cdots + 182322140 ) / 14592690 ( 5 5 3 6 6 ν 7 − 3 5 2 8 4 5 ν 6 + 2 0 0 8 5 6 5 ν 5 − 2 3 7 1 0 5 7 ν 4 + 1 1 1 3 9 2 9 5 ν 3 + ⋯ + 1 8 2 3 2 2 1 4 0 ) / 1 4 5 9 2 6 9 0
(55366*v^7 - 352845*v^6 + 2008565*v^5 - 2371057*v^4 + 11139295*v^3 - 22573925*v^2 + 165595167*v + 182322140) / 14592690
β 6 \beta_{6} β 6 = = =
( 382289 ν 7 − 575496 ν 6 + 6542665 ν 5 + 22181917 ν 4 + 87917147 ν 3 + ⋯ − 36139607 ) / 29185380 ( 382289 \nu^{7} - 575496 \nu^{6} + 6542665 \nu^{5} + 22181917 \nu^{4} + 87917147 \nu^{3} + \cdots - 36139607 ) / 29185380 ( 3 8 2 2 8 9 ν 7 − 5 7 5 4 9 6 ν 6 + 6 5 4 2 6 6 5 ν 5 + 2 2 1 8 1 9 1 7 ν 4 + 8 7 9 1 7 1 4 7 ν 3 + ⋯ − 3 6 1 3 9 6 0 7 ) / 2 9 1 8 5 3 8 0
(382289*v^7 - 575496*v^6 + 6542665*v^5 + 22181917*v^4 + 87917147*v^3 + 46066295*v^2 - 183987162*v - 36139607) / 29185380
β 7 \beta_{7} β 7 = = =
( 403145 ν 7 + 220086 ν 6 + 6392605 ν 5 + 36645265 ν 4 + 159794903 ν 3 + ⋯ − 51618413 ) / 29185380 ( 403145 \nu^{7} + 220086 \nu^{6} + 6392605 \nu^{5} + 36645265 \nu^{4} + 159794903 \nu^{3} + \cdots - 51618413 ) / 29185380 ( 4 0 3 1 4 5 ν 7 + 2 2 0 0 8 6 ν 6 + 6 3 9 2 6 0 5 ν 5 + 3 6 6 4 5 2 6 5 ν 4 + 1 5 9 7 9 4 9 0 3 ν 3 + ⋯ − 5 1 6 1 8 4 1 3 ) / 2 9 1 8 5 3 8 0
(403145*v^7 + 220086*v^6 + 6392605*v^5 + 36645265*v^4 + 159794903*v^3 + 268810835*v^2 + 75588570*v - 51618413) / 29185380
ν \nu ν = = =
( − β 7 + β 6 + β 5 − β 4 + β 3 − β 2 − 4 β 1 + 5 ) / 12 ( -\beta_{7} + \beta_{6} + \beta_{5} - \beta_{4} + \beta_{3} - \beta_{2} - 4\beta _1 + 5 ) / 12 ( − β 7 + β 6 + β 5 − β 4 + β 3 − β 2 − 4 β 1 + 5 ) / 1 2
(-b7 + b6 + b5 - b4 + b3 - b2 - 4*b1 + 5) / 12
ν 2 \nu^{2} ν 2 = = =
( − β 7 − 3 β 6 + 4 β 5 − 6 β 4 − 5 β 3 − 4 β 2 − 141 β 1 + 3 ) / 12 ( -\beta_{7} - 3\beta_{6} + 4\beta_{5} - 6\beta_{4} - 5\beta_{3} - 4\beta_{2} - 141\beta _1 + 3 ) / 12 ( − β 7 − 3 β 6 + 4 β 5 − 6 β 4 − 5 β 3 − 4 β 2 − 1 4 1 β 1 + 3 ) / 1 2
(-b7 - 3*b6 + 4*b5 - 6*b4 - 5*b3 - 4*b2 - 141*b1 + 3) / 12
ν 3 \nu^{3} ν 3 = = =
( 19 β 7 − 26 β 6 + 14 β 5 − 13 β 4 − 19 β 3 − 5 β 2 − 13 β 1 − 169 ) / 6 ( 19\beta_{7} - 26\beta_{6} + 14\beta_{5} - 13\beta_{4} - 19\beta_{3} - 5\beta_{2} - 13\beta _1 - 169 ) / 6 ( 1 9 β 7 − 2 6 β 6 + 1 4 β 5 − 1 3 β 4 − 1 9 β 3 − 5 β 2 − 1 3 β 1 − 1 6 9 ) / 6
(19*b7 - 26*b6 + 14*b5 - 13*b4 - 19*b3 - 5*b2 - 13*b1 - 169) / 6
ν 4 \nu^{4} ν 4 = = =
( 151 β 7 − 105 β 6 − β 5 + 105 β 4 − β 3 + 151 β 2 + 2838 β 1 − 2943 ) / 12 ( 151\beta_{7} - 105\beta_{6} - \beta_{5} + 105\beta_{4} - \beta_{3} + 151\beta_{2} + 2838\beta _1 - 2943 ) / 12 ( 1 5 1 β 7 − 1 0 5 β 6 − β 5 + 1 0 5 β 4 − β 3 + 1 5 1 β 2 + 2 8 3 8 β 1 − 2 9 4 3 ) / 1 2
(151*b7 - 105*b6 - b5 + 105*b4 - b3 + 151*b2 + 2838*b1 - 2943) / 12
ν 5 \nu^{5} ν 5 = = =
( − 159 β 7 + 667 β 6 − 942 β 5 + 1334 β 4 + 783 β 3 + 942 β 2 + 12539 β 1 − 667 ) / 12 ( -159\beta_{7} + 667\beta_{6} - 942\beta_{5} + 1334\beta_{4} + 783\beta_{3} + 942\beta_{2} + 12539\beta _1 - 667 ) / 12 ( − 1 5 9 β 7 + 6 6 7 β 6 − 9 4 2 β 5 + 1 3 3 4 β 4 + 7 8 3 β 3 + 9 4 2 β 2 + 1 2 5 3 9 β 1 − 6 6 7 ) / 1 2
(-159*b7 + 667*b6 - 942*b5 + 1334*b4 + 783*b3 + 942*b2 + 12539*b1 - 667) / 12
ν 6 \nu^{6} ν 6 = = =
− 382 β 7 + 528 β 6 − 352 β 5 + 264 β 4 + 382 β 3 + 30 β 2 + 264 β 1 + 5995 -382\beta_{7} + 528\beta_{6} - 352\beta_{5} + 264\beta_{4} + 382\beta_{3} + 30\beta_{2} + 264\beta _1 + 5995 − 3 8 2 β 7 + 5 2 8 β 6 − 3 5 2 β 5 + 2 6 4 β 4 + 3 8 2 β 3 + 3 0 β 2 + 2 6 4 β 1 + 5 9 9 5
-382*b7 + 528*b6 - 352*b5 + 264*b4 + 382*b3 + 30*b2 + 264*b1 + 5995
ν 7 \nu^{7} ν 7 = = =
( − 22041 β 7 + 17933 β 6 + 3381 β 5 − 17933 β 4 + 3381 β 3 + ⋯ + 371389 ) / 12 ( - 22041 \beta_{7} + 17933 \beta_{6} + 3381 \beta_{5} - 17933 \beta_{4} + 3381 \beta_{3} + \cdots + 371389 ) / 12 ( − 2 2 0 4 1 β 7 + 1 7 9 3 3 β 6 + 3 3 8 1 β 5 − 1 7 9 3 3 β 4 + 3 3 8 1 β 3 + ⋯ + 3 7 1 3 8 9 ) / 1 2
(-22041*b7 + 17933*b6 + 3381*b5 - 17933*b4 + 3381*b3 - 22041*b2 - 353456*b1 + 371389) / 12
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
− 1 -1 − 1
1 − β 1 1 - \beta_{1} 1 − β 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) :
T 5 8 − 18 T 5 7 − 249 T 5 6 + 6426 T 5 5 + 78093 T 5 4 − 1002456 T 5 3 + ⋯ + 1056770064 T_{5}^{8} - 18 T_{5}^{7} - 249 T_{5}^{6} + 6426 T_{5}^{5} + 78093 T_{5}^{4} - 1002456 T_{5}^{3} + \cdots + 1056770064 T 5 8 − 1 8 T 5 7 − 2 4 9 T 5 6 + 6 4 2 6 T 5 5 + 7 8 0 9 3 T 5 4 − 1 0 0 2 4 5 6 T 5 3 + ⋯ + 1 0 5 6 7 7 0 0 6 4
T5^8 - 18*T5^7 - 249*T5^6 + 6426*T5^5 + 78093*T5^4 - 1002456*T5^3 - 8977068*T5^2 + 91282464*T5 + 1056770064
T 11 8 + 150 T 11 7 + 7011 T 11 6 − 73350 T 11 5 − 11031003 T 11 4 + ⋯ + 7923526895376 T_{11}^{8} + 150 T_{11}^{7} + 7011 T_{11}^{6} - 73350 T_{11}^{5} - 11031003 T_{11}^{4} + \cdots + 7923526895376 T 1 1 8 + 1 5 0 T 1 1 7 + 7 0 1 1 T 1 1 6 − 7 3 3 5 0 T 1 1 5 − 1 1 0 3 1 0 0 3 T 1 1 4 + ⋯ + 7 9 2 3 5 2 6 8 9 5 3 7 6
T11^8 + 150*T11^7 + 7011*T11^6 - 73350*T11^5 - 11031003*T11^4 + 137751300*T11^3 + 27828104364*T11^2 + 792950569200*T11 + 7923526895376
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
( T 2 − 3 T + 9 ) 4 (T^{2} - 3 T + 9)^{4} ( T 2 − 3 T + 9 ) 4
(T^2 - 3*T + 9)^4
5 5 5
T 8 + ⋯ + 1056770064 T^{8} + \cdots + 1056770064 T 8 + ⋯ + 1 0 5 6 7 7 0 0 6 4
T^8 - 18*T^7 - 249*T^6 + 6426*T^5 + 78093*T^4 - 1002456*T^3 - 8977068*T^2 + 91282464*T + 1056770064
7 7 7
T 8 + ⋯ + 13841287201 T^{8} + \cdots + 13841287201 T 8 + ⋯ + 1 3 8 4 1 2 8 7 2 0 1
T^8 - 12*T^7 + 242*T^6 - 168*T^5 - 88389*T^4 - 57624*T^3 + 28471058*T^2 - 484243284*T + 13841287201
11 11 1 1
T 8 + ⋯ + 7923526895376 T^{8} + \cdots + 7923526895376 T 8 + ⋯ + 7 9 2 3 5 2 6 8 9 5 3 7 6
T^8 + 150*T^7 + 7011*T^6 - 73350*T^5 - 11031003*T^4 + 137751300*T^3 + 27828104364*T^2 + 792950569200*T + 7923526895376
13 13 1 3
T 8 + ⋯ + 45692841083904 T^{8} + \cdots + 45692841083904 T 8 + ⋯ + 4 5 6 9 2 8 4 1 0 8 3 9 0 4
T^8 + 16518*T^6 + 87717897*T^4 + 154284068736*T^2 + 45692841083904
17 17 1 7
T 8 + ⋯ + 17 ⋯ 24 T^{8} + \cdots + 17\!\cdots\!24 T 8 + ⋯ + 1 7 ⋯ 2 4
T^8 - 192*T^7 + 2652*T^6 + 1850112*T^5 - 31174704*T^4 - 25013976768*T^3 + 2651979916800*T^2 - 109311888393216*T + 1773221107175424
19 19 1 9
T 8 + ⋯ + 39 ⋯ 36 T^{8} + \cdots + 39\!\cdots\!36 T 8 + ⋯ + 3 9 ⋯ 3 6
T^8 - 66*T^7 + 20243*T^6 + 154278*T^5 + 218666037*T^4 + 1244284524*T^3 + 1204643846252*T^2 + 28277273338608*T + 3999480239205136
23 23 2 3
T 8 + ⋯ + 2498119335936 T^{8} + \cdots + 2498119335936 T 8 + ⋯ + 2 4 9 8 1 1 9 3 3 5 9 3 6
T^8 - 492*T^7 + 102528*T^6 - 10745280*T^5 + 547335936*T^4 - 9158123520*T^3 + 24092909568*T^2 + 662766354432*T + 2498119335936
29 29 2 9
( T 4 + 186 T 3 + ⋯ − 387846144 ) 2 (T^{4} + 186 T^{3} + \cdots - 387846144)^{2} ( T 4 + 1 8 6 T 3 + ⋯ − 3 8 7 8 4 6 1 4 4 ) 2
(T^4 + 186*T^3 - 67779*T^2 - 12350016*T - 387846144)^2
31 31 3 1
T 8 + ⋯ + 463634646359329 T^{8} + \cdots + 463634646359329 T 8 + ⋯ + 4 6 3 6 3 4 6 4 6 3 5 9 3 2 9
T^8 + 156*T^7 + 86186*T^6 - 11851920*T^5 + 3632031363*T^4 - 74855710224*T^3 + 2545419903050*T^2 + 23721138113820*T + 463634646359329
37 37 3 7
T 8 + ⋯ + 64 ⋯ 96 T^{8} + \cdots + 64\!\cdots\!96 T 8 + ⋯ + 6 4 ⋯ 9 6
T^8 - 554*T^7 + 228871*T^6 - 43531706*T^5 + 6425892541*T^4 - 269062164452*T^3 + 19784088004924*T^2 - 37321230322832*T + 64119134718094096
41 41 4 1
T 8 + ⋯ + 60 ⋯ 04 T^{8} + \cdots + 60\!\cdots\!04 T 8 + ⋯ + 6 0 ⋯ 0 4
T^8 + 190800*T^6 + 11333930976*T^4 + 202220904243456*T^2 + 60415697212418304
43 43 4 3
T 8 + ⋯ + 21 ⋯ 76 T^{8} + \cdots + 21\!\cdots\!76 T 8 + ⋯ + 2 1 ⋯ 7 6
T^8 + 358710*T^6 + 35220201201*T^4 + 584995521540600*T^2 + 2163881234979032976
47 47 4 7
T 8 + ⋯ + 12 ⋯ 64 T^{8} + \cdots + 12\!\cdots\!64 T 8 + ⋯ + 1 2 ⋯ 6 4
T^8 + 840*T^7 + 595908*T^6 + 199244448*T^5 + 68366225232*T^4 + 13194760125312*T^3 + 4112837755368192*T^2 + 607840457005135872*T + 128835207954984996864
53 53 5 3
T 8 + ⋯ + 59 ⋯ 64 T^{8} + \cdots + 59\!\cdots\!64 T 8 + ⋯ + 5 9 ⋯ 6 4
T^8 - 186*T^7 + 527463*T^6 - 102305754*T^5 + 236653486785*T^4 - 38761675641612*T^3 + 21385821777632928*T^2 + 2357275812824915136*T + 590705871377162897664
59 59 5 9
T 8 + ⋯ + 22 ⋯ 00 T^{8} + \cdots + 22\!\cdots\!00 T 8 + ⋯ + 2 2 ⋯ 0 0
T^8 - 126*T^7 + 559539*T^6 - 67238262*T^5 + 305634954969*T^4 - 37279853723700*T^3 + 3783277346940000*T^2 - 102747562911000000*T + 2291862932100000000
61 61 6 1
T 8 + ⋯ + 36 ⋯ 24 T^{8} + \cdots + 36\!\cdots\!24 T 8 + ⋯ + 3 6 ⋯ 2 4
T^8 - 1632*T^7 + 784320*T^6 + 168892416*T^5 - 120931872768*T^4 - 21430659317760*T^3 + 12329476826333184*T^2 + 3932144129424752640*T + 360551892360861057024
67 67 6 7
T 8 + ⋯ + 66 ⋯ 44 T^{8} + \cdots + 66\!\cdots\!44 T 8 + ⋯ + 6 6 ⋯ 4 4
T^8 + 582*T^7 - 230709*T^6 - 199985094*T^5 + 111992470353*T^4 - 3689762094936*T^3 - 2766629485394208*T^2 + 87658073452111104*T + 66640216087126508544
71 71 7 1
T 8 + ⋯ + 18 ⋯ 56 T^{8} + \cdots + 18\!\cdots\!56 T 8 + ⋯ + 1 8 ⋯ 5 6
T^8 + 611256*T^6 + 124036679952*T^4 + 9223082447560704*T^2 + 188364415025977491456
73 73 7 3
T 8 + ⋯ + 44 ⋯ 16 T^{8} + \cdots + 44\!\cdots\!16 T 8 + ⋯ + 4 4 ⋯ 1 6
T^8 + 1386*T^7 + 131511*T^6 - 705225906*T^5 + 64604625273*T^4 + 140510345199912*T^3 - 8525782069855056*T^2 - 18422831787667740288*T + 4450678527311862057216
79 79 7 9
T 8 + ⋯ + 28 ⋯ 01 T^{8} + \cdots + 28\!\cdots\!01 T 8 + ⋯ + 2 8 ⋯ 0 1
T^8 - 1260*T^7 - 412926*T^6 + 1187078760*T^5 + 591191811675*T^4 - 287890849623240*T^3 - 127215511892845326*T^2 + 51357435449465851740*T + 28246777800512086314801
83 83 8 3
( T 4 + 378 T 3 + ⋯ + 11575564524 ) 2 (T^{4} + 378 T^{3} + \cdots + 11575564524)^{2} ( T 4 + 3 7 8 T 3 + ⋯ + 1 1 5 7 5 5 6 4 5 2 4 ) 2
(T^4 + 378*T^3 - 534699*T^2 + 44870760*T + 11575564524)^2
89 89 8 9
T 8 + ⋯ + 15 ⋯ 04 T^{8} + \cdots + 15\!\cdots\!04 T 8 + ⋯ + 1 5 ⋯ 0 4
T^8 - 948*T^7 - 899748*T^6 + 1136951568*T^5 + 852369970896*T^4 - 718503537808512*T^3 - 356100695847855360*T^2 + 237645817631282497536*T + 157351100408023986376704
97 97 9 7
T 8 + ⋯ + 18 ⋯ 36 T^{8} + \cdots + 18\!\cdots\!36 T 8 + ⋯ + 1 8 ⋯ 3 6
T^8 + 6065910*T^6 + 10172120837049*T^4 + 3105734162590982880*T^2 + 189275812677450062919936
show more
show less