Properties

Label 336.4.bl.j
Level 336336
Weight 44
Character orbit 336.bl
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(31,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.31"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.bl (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,12,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q[x]/(x8)\mathbb{Q}[x]/(x^{8} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x8x7+23x6+48x5+422x4+384x3+1247x2637x+2401 x^{8} - x^{7} + 23x^{6} + 48x^{5} + 422x^{4} + 384x^{3} + 1247x^{2} - 637x + 2401 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2633 2^{6}\cdot 3^{3}
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3β1q3+(β6+β4+2β1+1)q5+(β7β54β1+4)q7+(9β19)q9+(2β7+β6+23)q11+(β7+3β53β4++8)q13++(9β79β5+9β4++99)q99+O(q100) q + 3 \beta_1 q^{3} + (\beta_{6} + \beta_{4} + 2 \beta_1 + 1) q^{5} + ( - \beta_{7} - \beta_{5} - 4 \beta_1 + 4) q^{7} + (9 \beta_1 - 9) q^{9} + ( - 2 \beta_{7} + \beta_{6} + \cdots - 23) q^{11} + (\beta_{7} + 3 \beta_{5} - 3 \beta_{4} + \cdots + 8) q^{13}+ \cdots + (9 \beta_{7} - 9 \beta_{5} + 9 \beta_{4} + \cdots + 99) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+12q3+18q5+12q736q9150q11+192q17+66q19+90q21+492q23+322q25216q27372q29156q31450q3336q35+554q37+198q39+108q95+O(q100) 8 q + 12 q^{3} + 18 q^{5} + 12 q^{7} - 36 q^{9} - 150 q^{11} + 192 q^{17} + 66 q^{19} + 90 q^{21} + 492 q^{23} + 322 q^{25} - 216 q^{27} - 372 q^{29} - 156 q^{31} - 450 q^{33} - 36 q^{35} + 554 q^{37} + 198 q^{39}+ \cdots - 108 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8x7+23x6+48x5+422x4+384x3+1247x2637x+2401 x^{8} - x^{7} + 23x^{6} + 48x^{5} + 422x^{4} + 384x^{3} + 1247x^{2} - 637x + 2401 : Copy content Toggle raw display

β1\beta_{1}== (7171ν718162ν6126125ν5885413ν43954271ν3++2536681)/29185380 ( - 7171 \nu^{7} - 18162 \nu^{6} - 126125 \nu^{5} - 885413 \nu^{4} - 3954271 \nu^{3} + \cdots + 2536681 ) / 29185380 Copy content Toggle raw display
β2\beta_{2}== (39196ν7+110736ν61663115ν5+2963467ν431828957ν3++349753327)/14592690 ( - 39196 \nu^{7} + 110736 \nu^{6} - 1663115 \nu^{5} + 2963467 \nu^{4} - 31828957 \nu^{3} + \cdots + 349753327 ) / 14592690 Copy content Toggle raw display
β3\beta_{3}== (12521ν7+133236ν6348715ν5+1409357ν4+3876583ν3+4518283)/4169340 ( - 12521 \nu^{7} + 133236 \nu^{6} - 348715 \nu^{5} + 1409357 \nu^{4} + 3876583 \nu^{3} + \cdots - 4518283 ) / 4169340 Copy content Toggle raw display
β4\beta_{4}== (1735ν711388ν6+88205ν5186115ν4+904951ν3875405ν2+3416371)/463260 ( 1735 \nu^{7} - 11388 \nu^{6} + 88205 \nu^{5} - 186115 \nu^{4} + 904951 \nu^{3} - 875405 \nu^{2} + \cdots - 3416371 ) / 463260 Copy content Toggle raw display
β5\beta_{5}== (55366ν7352845ν6+2008565ν52371057ν4+11139295ν3++182322140)/14592690 ( 55366 \nu^{7} - 352845 \nu^{6} + 2008565 \nu^{5} - 2371057 \nu^{4} + 11139295 \nu^{3} + \cdots + 182322140 ) / 14592690 Copy content Toggle raw display
β6\beta_{6}== (382289ν7575496ν6+6542665ν5+22181917ν4+87917147ν3+36139607)/29185380 ( 382289 \nu^{7} - 575496 \nu^{6} + 6542665 \nu^{5} + 22181917 \nu^{4} + 87917147 \nu^{3} + \cdots - 36139607 ) / 29185380 Copy content Toggle raw display
β7\beta_{7}== (403145ν7+220086ν6+6392605ν5+36645265ν4+159794903ν3+51618413)/29185380 ( 403145 \nu^{7} + 220086 \nu^{6} + 6392605 \nu^{5} + 36645265 \nu^{4} + 159794903 \nu^{3} + \cdots - 51618413 ) / 29185380 Copy content Toggle raw display
ν\nu== (β7+β6+β5β4+β3β24β1+5)/12 ( -\beta_{7} + \beta_{6} + \beta_{5} - \beta_{4} + \beta_{3} - \beta_{2} - 4\beta _1 + 5 ) / 12 Copy content Toggle raw display
ν2\nu^{2}== (β73β6+4β56β45β34β2141β1+3)/12 ( -\beta_{7} - 3\beta_{6} + 4\beta_{5} - 6\beta_{4} - 5\beta_{3} - 4\beta_{2} - 141\beta _1 + 3 ) / 12 Copy content Toggle raw display
ν3\nu^{3}== (19β726β6+14β513β419β35β213β1169)/6 ( 19\beta_{7} - 26\beta_{6} + 14\beta_{5} - 13\beta_{4} - 19\beta_{3} - 5\beta_{2} - 13\beta _1 - 169 ) / 6 Copy content Toggle raw display
ν4\nu^{4}== (151β7105β6β5+105β4β3+151β2+2838β12943)/12 ( 151\beta_{7} - 105\beta_{6} - \beta_{5} + 105\beta_{4} - \beta_{3} + 151\beta_{2} + 2838\beta _1 - 2943 ) / 12 Copy content Toggle raw display
ν5\nu^{5}== (159β7+667β6942β5+1334β4+783β3+942β2+12539β1667)/12 ( -159\beta_{7} + 667\beta_{6} - 942\beta_{5} + 1334\beta_{4} + 783\beta_{3} + 942\beta_{2} + 12539\beta _1 - 667 ) / 12 Copy content Toggle raw display
ν6\nu^{6}== 382β7+528β6352β5+264β4+382β3+30β2+264β1+5995 -382\beta_{7} + 528\beta_{6} - 352\beta_{5} + 264\beta_{4} + 382\beta_{3} + 30\beta_{2} + 264\beta _1 + 5995 Copy content Toggle raw display
ν7\nu^{7}== (22041β7+17933β6+3381β517933β4+3381β3++371389)/12 ( - 22041 \beta_{7} + 17933 \beta_{6} + 3381 \beta_{5} - 17933 \beta_{4} + 3381 \beta_{3} + \cdots + 371389 ) / 12 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 11 1-1 1β11 - \beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
31.1
0.616200 + 1.06729i
−1.54953 2.68386i
2.64566 + 4.58242i
−1.21233 2.09982i
0.616200 1.06729i
−1.54953 + 2.68386i
2.64566 4.58242i
−1.21233 + 2.09982i
0 1.50000 2.59808i 0 −10.0588 + 5.80743i 0 0.957054 18.4955i 0 −4.50000 7.79423i 0
31.2 0 1.50000 2.59808i 0 −9.43293 + 5.44610i 0 4.29373 + 18.0157i 0 −4.50000 7.79423i 0
31.3 0 1.50000 2.59808i 0 11.0480 6.37855i 0 17.4241 + 6.27712i 0 −4.50000 7.79423i 0
31.4 0 1.50000 2.59808i 0 17.4437 10.0711i 0 −16.6748 + 8.05914i 0 −4.50000 7.79423i 0
271.1 0 1.50000 + 2.59808i 0 −10.0588 5.80743i 0 0.957054 + 18.4955i 0 −4.50000 + 7.79423i 0
271.2 0 1.50000 + 2.59808i 0 −9.43293 5.44610i 0 4.29373 18.0157i 0 −4.50000 + 7.79423i 0
271.3 0 1.50000 + 2.59808i 0 11.0480 + 6.37855i 0 17.4241 6.27712i 0 −4.50000 + 7.79423i 0
271.4 0 1.50000 + 2.59808i 0 17.4437 + 10.0711i 0 −16.6748 8.05914i 0 −4.50000 + 7.79423i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 31.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.bl.j yes 8
4.b odd 2 1 336.4.bl.i 8
7.d odd 6 1 336.4.bl.i 8
28.f even 6 1 inner 336.4.bl.j yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.4.bl.i 8 4.b odd 2 1
336.4.bl.i 8 7.d odd 6 1
336.4.bl.j yes 8 1.a even 1 1 trivial
336.4.bl.j yes 8 28.f even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]):

T5818T57249T56+6426T55+78093T541002456T53++1056770064 T_{5}^{8} - 18 T_{5}^{7} - 249 T_{5}^{6} + 6426 T_{5}^{5} + 78093 T_{5}^{4} - 1002456 T_{5}^{3} + \cdots + 1056770064 Copy content Toggle raw display
T118+150T117+7011T11673350T11511031003T114++7923526895376 T_{11}^{8} + 150 T_{11}^{7} + 7011 T_{11}^{6} - 73350 T_{11}^{5} - 11031003 T_{11}^{4} + \cdots + 7923526895376 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 (T23T+9)4 (T^{2} - 3 T + 9)^{4} Copy content Toggle raw display
55 T8++1056770064 T^{8} + \cdots + 1056770064 Copy content Toggle raw display
77 T8++13841287201 T^{8} + \cdots + 13841287201 Copy content Toggle raw display
1111 T8++7923526895376 T^{8} + \cdots + 7923526895376 Copy content Toggle raw display
1313 T8++45692841083904 T^{8} + \cdots + 45692841083904 Copy content Toggle raw display
1717 T8++17 ⁣ ⁣24 T^{8} + \cdots + 17\!\cdots\!24 Copy content Toggle raw display
1919 T8++39 ⁣ ⁣36 T^{8} + \cdots + 39\!\cdots\!36 Copy content Toggle raw display
2323 T8++2498119335936 T^{8} + \cdots + 2498119335936 Copy content Toggle raw display
2929 (T4+186T3+387846144)2 (T^{4} + 186 T^{3} + \cdots - 387846144)^{2} Copy content Toggle raw display
3131 T8++463634646359329 T^{8} + \cdots + 463634646359329 Copy content Toggle raw display
3737 T8++64 ⁣ ⁣96 T^{8} + \cdots + 64\!\cdots\!96 Copy content Toggle raw display
4141 T8++60 ⁣ ⁣04 T^{8} + \cdots + 60\!\cdots\!04 Copy content Toggle raw display
4343 T8++21 ⁣ ⁣76 T^{8} + \cdots + 21\!\cdots\!76 Copy content Toggle raw display
4747 T8++12 ⁣ ⁣64 T^{8} + \cdots + 12\!\cdots\!64 Copy content Toggle raw display
5353 T8++59 ⁣ ⁣64 T^{8} + \cdots + 59\!\cdots\!64 Copy content Toggle raw display
5959 T8++22 ⁣ ⁣00 T^{8} + \cdots + 22\!\cdots\!00 Copy content Toggle raw display
6161 T8++36 ⁣ ⁣24 T^{8} + \cdots + 36\!\cdots\!24 Copy content Toggle raw display
6767 T8++66 ⁣ ⁣44 T^{8} + \cdots + 66\!\cdots\!44 Copy content Toggle raw display
7171 T8++18 ⁣ ⁣56 T^{8} + \cdots + 18\!\cdots\!56 Copy content Toggle raw display
7373 T8++44 ⁣ ⁣16 T^{8} + \cdots + 44\!\cdots\!16 Copy content Toggle raw display
7979 T8++28 ⁣ ⁣01 T^{8} + \cdots + 28\!\cdots\!01 Copy content Toggle raw display
8383 (T4+378T3++11575564524)2 (T^{4} + 378 T^{3} + \cdots + 11575564524)^{2} Copy content Toggle raw display
8989 T8++15 ⁣ ⁣04 T^{8} + \cdots + 15\!\cdots\!04 Copy content Toggle raw display
9797 T8++18 ⁣ ⁣36 T^{8} + \cdots + 18\!\cdots\!36 Copy content Toggle raw display
show more
show less