Properties

Label 336.4.bl.j.271.2
Level $336$
Weight $4$
Character 336.271
Analytic conductor $19.825$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(31,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.31"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 336.bl (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,12,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8246417619\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 23x^{6} + 48x^{5} + 422x^{4} + 384x^{3} + 1247x^{2} - 637x + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 271.2
Root \(-1.54953 + 2.68386i\) of defining polynomial
Character \(\chi\) \(=\) 336.271
Dual form 336.4.bl.j.31.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 + 2.59808i) q^{3} +(-9.43293 - 5.44610i) q^{5} +(4.29373 - 18.0157i) q^{7} +(-4.50000 + 7.79423i) q^{9} +(-22.0517 + 12.7316i) q^{11} +79.4730i q^{13} -32.6766i q^{15} +(84.2226 - 48.6259i) q^{17} +(-36.5404 + 63.2898i) q^{19} +(53.2466 - 15.8681i) q^{21} +(128.326 + 74.0891i) q^{23} +(-3.17995 - 5.50784i) q^{25} -27.0000 q^{27} +265.419 q^{29} +(84.1099 + 145.683i) q^{31} +(-66.1552 - 38.1948i) q^{33} +(-138.617 + 146.556i) q^{35} +(-24.5880 + 42.5877i) q^{37} +(-206.477 + 119.210i) q^{39} +179.225i q^{41} +430.737i q^{43} +(84.8963 - 49.0149i) q^{45} +(-155.813 + 269.876i) q^{47} +(-306.128 - 154.709i) q^{49} +(252.668 + 145.878i) q^{51} +(-74.5436 - 129.113i) q^{53} +277.350 q^{55} -219.242 q^{57} +(-369.223 - 639.514i) q^{59} +(759.047 + 438.236i) q^{61} +(121.096 + 114.537i) q^{63} +(432.818 - 749.663i) q^{65} +(-669.575 + 386.579i) q^{67} +444.534i q^{69} +322.302i q^{71} +(361.044 - 208.449i) q^{73} +(9.53985 - 16.5235i) q^{75} +(134.684 + 451.943i) q^{77} +(-414.770 - 239.468i) q^{79} +(-40.5000 - 70.1481i) q^{81} -108.903 q^{83} -1059.29 q^{85} +(398.128 + 689.578i) q^{87} +(759.402 + 438.441i) q^{89} +(1431.76 + 341.235i) q^{91} +(-252.330 + 437.048i) q^{93} +(689.365 - 398.005i) q^{95} -286.024i q^{97} -229.169i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{3} + 18 q^{5} + 12 q^{7} - 36 q^{9} - 150 q^{11} + 192 q^{17} + 66 q^{19} + 90 q^{21} + 492 q^{23} + 322 q^{25} - 216 q^{27} - 372 q^{29} - 156 q^{31} - 450 q^{33} - 36 q^{35} + 554 q^{37} + 198 q^{39}+ \cdots - 108 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.50000 + 2.59808i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) −9.43293 5.44610i −0.843706 0.487114i 0.0148159 0.999890i \(-0.495284\pi\)
−0.858522 + 0.512776i \(0.828617\pi\)
\(6\) 0 0
\(7\) 4.29373 18.0157i 0.231839 0.972754i
\(8\) 0 0
\(9\) −4.50000 + 7.79423i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) −22.0517 + 12.7316i −0.604441 + 0.348974i −0.770787 0.637093i \(-0.780137\pi\)
0.166346 + 0.986068i \(0.446803\pi\)
\(12\) 0 0
\(13\) 79.4730i 1.69553i 0.530374 + 0.847764i \(0.322051\pi\)
−0.530374 + 0.847764i \(0.677949\pi\)
\(14\) 0 0
\(15\) 32.6766i 0.562471i
\(16\) 0 0
\(17\) 84.2226 48.6259i 1.20159 0.693736i 0.240679 0.970605i \(-0.422630\pi\)
0.960908 + 0.276869i \(0.0892967\pi\)
\(18\) 0 0
\(19\) −36.5404 + 63.2898i −0.441207 + 0.764193i −0.997779 0.0666061i \(-0.978783\pi\)
0.556572 + 0.830799i \(0.312116\pi\)
\(20\) 0 0
\(21\) 53.2466 15.8681i 0.553303 0.164890i
\(22\) 0 0
\(23\) 128.326 + 74.0891i 1.16338 + 0.671680i 0.952113 0.305747i \(-0.0989063\pi\)
0.211271 + 0.977427i \(0.432240\pi\)
\(24\) 0 0
\(25\) −3.17995 5.50784i −0.0254396 0.0440627i
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 265.419 1.69955 0.849776 0.527145i \(-0.176737\pi\)
0.849776 + 0.527145i \(0.176737\pi\)
\(30\) 0 0
\(31\) 84.1099 + 145.683i 0.487309 + 0.844044i 0.999894 0.0145929i \(-0.00464522\pi\)
−0.512585 + 0.858637i \(0.671312\pi\)
\(32\) 0 0
\(33\) −66.1552 38.1948i −0.348974 0.201480i
\(34\) 0 0
\(35\) −138.617 + 146.556i −0.669447 + 0.707787i
\(36\) 0 0
\(37\) −24.5880 + 42.5877i −0.109250 + 0.189226i −0.915467 0.402394i \(-0.868178\pi\)
0.806217 + 0.591620i \(0.201512\pi\)
\(38\) 0 0
\(39\) −206.477 + 119.210i −0.847764 + 0.489457i
\(40\) 0 0
\(41\) 179.225i 0.682689i 0.939938 + 0.341344i \(0.110882\pi\)
−0.939938 + 0.341344i \(0.889118\pi\)
\(42\) 0 0
\(43\) 430.737i 1.52760i 0.645453 + 0.763800i \(0.276668\pi\)
−0.645453 + 0.763800i \(0.723332\pi\)
\(44\) 0 0
\(45\) 84.8963 49.0149i 0.281235 0.162371i
\(46\) 0 0
\(47\) −155.813 + 269.876i −0.483567 + 0.837563i −0.999822 0.0188723i \(-0.993992\pi\)
0.516255 + 0.856435i \(0.327326\pi\)
\(48\) 0 0
\(49\) −306.128 154.709i −0.892501 0.451045i
\(50\) 0 0
\(51\) 252.668 + 145.878i 0.693736 + 0.400529i
\(52\) 0 0
\(53\) −74.5436 129.113i −0.193195 0.334624i 0.753112 0.657892i \(-0.228552\pi\)
−0.946307 + 0.323268i \(0.895218\pi\)
\(54\) 0 0
\(55\) 277.350 0.679961
\(56\) 0 0
\(57\) −219.242 −0.509462
\(58\) 0 0
\(59\) −369.223 639.514i −0.814725 1.41115i −0.909525 0.415649i \(-0.863554\pi\)
0.0947994 0.995496i \(-0.469779\pi\)
\(60\) 0 0
\(61\) 759.047 + 438.236i 1.59321 + 0.919842i 0.992751 + 0.120189i \(0.0383502\pi\)
0.600463 + 0.799653i \(0.294983\pi\)
\(62\) 0 0
\(63\) 121.096 + 114.537i 0.242170 + 0.229052i
\(64\) 0 0
\(65\) 432.818 749.663i 0.825915 1.43053i
\(66\) 0 0
\(67\) −669.575 + 386.579i −1.22092 + 0.704898i −0.965114 0.261830i \(-0.915674\pi\)
−0.255806 + 0.966728i \(0.582341\pi\)
\(68\) 0 0
\(69\) 444.534i 0.775589i
\(70\) 0 0
\(71\) 322.302i 0.538736i 0.963037 + 0.269368i \(0.0868148\pi\)
−0.963037 + 0.269368i \(0.913185\pi\)
\(72\) 0 0
\(73\) 361.044 208.449i 0.578864 0.334207i −0.181818 0.983332i \(-0.558198\pi\)
0.760682 + 0.649125i \(0.224865\pi\)
\(74\) 0 0
\(75\) 9.53985 16.5235i 0.0146876 0.0254396i
\(76\) 0 0
\(77\) 134.684 + 451.943i 0.199333 + 0.668879i
\(78\) 0 0
\(79\) −414.770 239.468i −0.590700 0.341041i 0.174674 0.984626i \(-0.444113\pi\)
−0.765374 + 0.643585i \(0.777446\pi\)
\(80\) 0 0
\(81\) −40.5000 70.1481i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) −108.903 −0.144020 −0.0720099 0.997404i \(-0.522941\pi\)
−0.0720099 + 0.997404i \(0.522941\pi\)
\(84\) 0 0
\(85\) −1059.29 −1.35172
\(86\) 0 0
\(87\) 398.128 + 689.578i 0.490618 + 0.849776i
\(88\) 0 0
\(89\) 759.402 + 438.441i 0.904454 + 0.522187i 0.878643 0.477480i \(-0.158450\pi\)
0.0258117 + 0.999667i \(0.491783\pi\)
\(90\) 0 0
\(91\) 1431.76 + 341.235i 1.64933 + 0.393090i
\(92\) 0 0
\(93\) −252.330 + 437.048i −0.281348 + 0.487309i
\(94\) 0 0
\(95\) 689.365 398.005i 0.744499 0.429836i
\(96\) 0 0
\(97\) 286.024i 0.299396i −0.988732 0.149698i \(-0.952170\pi\)
0.988732 0.149698i \(-0.0478301\pi\)
\(98\) 0 0
\(99\) 229.169i 0.232650i
\(100\) 0 0
\(101\) 888.772 513.132i 0.875605 0.505531i 0.00639800 0.999980i \(-0.497963\pi\)
0.869207 + 0.494449i \(0.164630\pi\)
\(102\) 0 0
\(103\) −463.844 + 803.402i −0.443727 + 0.768559i −0.997963 0.0638016i \(-0.979678\pi\)
0.554235 + 0.832360i \(0.313011\pi\)
\(104\) 0 0
\(105\) −588.691 140.304i −0.547146 0.130403i
\(106\) 0 0
\(107\) 352.842 + 203.713i 0.318790 + 0.184053i 0.650853 0.759204i \(-0.274411\pi\)
−0.332063 + 0.943257i \(0.607745\pi\)
\(108\) 0 0
\(109\) −309.065 535.315i −0.271587 0.470403i 0.697681 0.716408i \(-0.254215\pi\)
−0.969268 + 0.246005i \(0.920882\pi\)
\(110\) 0 0
\(111\) −147.528 −0.126151
\(112\) 0 0
\(113\) 853.435 0.710482 0.355241 0.934775i \(-0.384399\pi\)
0.355241 + 0.934775i \(0.384399\pi\)
\(114\) 0 0
\(115\) −806.993 1397.75i −0.654370 1.13340i
\(116\) 0 0
\(117\) −619.431 357.629i −0.489457 0.282588i
\(118\) 0 0
\(119\) −514.399 1726.11i −0.396260 1.32968i
\(120\) 0 0
\(121\) −341.314 + 591.172i −0.256434 + 0.444157i
\(122\) 0 0
\(123\) −465.640 + 268.837i −0.341344 + 0.197075i
\(124\) 0 0
\(125\) 1430.80i 1.02380i
\(126\) 0 0
\(127\) 1392.04i 0.972630i −0.873784 0.486315i \(-0.838341\pi\)
0.873784 0.486315i \(-0.161659\pi\)
\(128\) 0 0
\(129\) −1119.09 + 646.105i −0.763800 + 0.440980i
\(130\) 0 0
\(131\) 386.357 669.189i 0.257680 0.446316i −0.707940 0.706273i \(-0.750375\pi\)
0.965620 + 0.259957i \(0.0837085\pi\)
\(132\) 0 0
\(133\) 983.313 + 930.048i 0.641083 + 0.606356i
\(134\) 0 0
\(135\) 254.689 + 147.045i 0.162371 + 0.0937452i
\(136\) 0 0
\(137\) −1030.87 1785.52i −0.642868 1.11348i −0.984789 0.173752i \(-0.944411\pi\)
0.341921 0.939729i \(-0.388922\pi\)
\(138\) 0 0
\(139\) 434.251 0.264983 0.132492 0.991184i \(-0.457702\pi\)
0.132492 + 0.991184i \(0.457702\pi\)
\(140\) 0 0
\(141\) −934.878 −0.558375
\(142\) 0 0
\(143\) −1011.82 1752.52i −0.591695 1.02485i
\(144\) 0 0
\(145\) −2503.67 1445.50i −1.43392 0.827875i
\(146\) 0 0
\(147\) −57.2471 1027.41i −0.0321202 0.576456i
\(148\) 0 0
\(149\) 1393.52 2413.65i 0.766187 1.32707i −0.173430 0.984846i \(-0.555485\pi\)
0.939617 0.342229i \(-0.111182\pi\)
\(150\) 0 0
\(151\) 1904.02 1099.29i 1.02614 0.592442i 0.110263 0.993902i \(-0.464831\pi\)
0.915876 + 0.401460i \(0.131497\pi\)
\(152\) 0 0
\(153\) 875.266i 0.462491i
\(154\) 0 0
\(155\) 1832.28i 0.949500i
\(156\) 0 0
\(157\) −2589.70 + 1495.17i −1.31644 + 0.760046i −0.983154 0.182780i \(-0.941490\pi\)
−0.333285 + 0.942826i \(0.608157\pi\)
\(158\) 0 0
\(159\) 223.631 387.340i 0.111541 0.193195i
\(160\) 0 0
\(161\) 1885.76 1993.76i 0.923098 0.975965i
\(162\) 0 0
\(163\) 510.329 + 294.639i 0.245227 + 0.141582i 0.617577 0.786510i \(-0.288114\pi\)
−0.372350 + 0.928093i \(0.621448\pi\)
\(164\) 0 0
\(165\) 416.025 + 720.576i 0.196288 + 0.339981i
\(166\) 0 0
\(167\) 762.386 0.353265 0.176632 0.984277i \(-0.443480\pi\)
0.176632 + 0.984277i \(0.443480\pi\)
\(168\) 0 0
\(169\) −4118.96 −1.87481
\(170\) 0 0
\(171\) −328.863 569.608i −0.147069 0.254731i
\(172\) 0 0
\(173\) 56.7491 + 32.7641i 0.0249396 + 0.0143989i 0.512418 0.858736i \(-0.328750\pi\)
−0.487478 + 0.873135i \(0.662083\pi\)
\(174\) 0 0
\(175\) −112.881 + 33.6398i −0.0487601 + 0.0145310i
\(176\) 0 0
\(177\) 1107.67 1918.54i 0.470382 0.814725i
\(178\) 0 0
\(179\) −2143.29 + 1237.43i −0.894955 + 0.516703i −0.875560 0.483109i \(-0.839507\pi\)
−0.0193950 + 0.999812i \(0.506174\pi\)
\(180\) 0 0
\(181\) 3991.94i 1.63933i 0.572843 + 0.819665i \(0.305840\pi\)
−0.572843 + 0.819665i \(0.694160\pi\)
\(182\) 0 0
\(183\) 2629.42i 1.06214i
\(184\) 0 0
\(185\) 463.874 267.818i 0.184350 0.106434i
\(186\) 0 0
\(187\) −1238.17 + 2144.57i −0.484192 + 0.838646i
\(188\) 0 0
\(189\) −115.931 + 486.423i −0.0446175 + 0.187207i
\(190\) 0 0
\(191\) −2882.28 1664.08i −1.09191 0.630413i −0.157823 0.987467i \(-0.550448\pi\)
−0.934083 + 0.357055i \(0.883781\pi\)
\(192\) 0 0
\(193\) −665.967 1153.49i −0.248380 0.430207i 0.714696 0.699435i \(-0.246565\pi\)
−0.963077 + 0.269228i \(0.913232\pi\)
\(194\) 0 0
\(195\) 2596.91 0.953685
\(196\) 0 0
\(197\) −970.738 −0.351077 −0.175539 0.984473i \(-0.556167\pi\)
−0.175539 + 0.984473i \(0.556167\pi\)
\(198\) 0 0
\(199\) 976.072 + 1690.61i 0.347698 + 0.602231i 0.985840 0.167688i \(-0.0536301\pi\)
−0.638142 + 0.769919i \(0.720297\pi\)
\(200\) 0 0
\(201\) −2008.73 1159.74i −0.704898 0.406973i
\(202\) 0 0
\(203\) 1139.63 4781.69i 0.394023 1.65325i
\(204\) 0 0
\(205\) 976.078 1690.62i 0.332547 0.575989i
\(206\) 0 0
\(207\) −1154.93 + 666.802i −0.387795 + 0.223893i
\(208\) 0 0
\(209\) 1860.87i 0.615880i
\(210\) 0 0
\(211\) 1405.77i 0.458660i 0.973349 + 0.229330i \(0.0736536\pi\)
−0.973349 + 0.229330i \(0.926346\pi\)
\(212\) 0 0
\(213\) −837.366 + 483.454i −0.269368 + 0.155520i
\(214\) 0 0
\(215\) 2345.84 4063.11i 0.744115 1.28885i
\(216\) 0 0
\(217\) 2985.71 889.774i 0.934025 0.278349i
\(218\) 0 0
\(219\) 1083.13 + 625.347i 0.334207 + 0.192955i
\(220\) 0 0
\(221\) 3864.45 + 6693.42i 1.17625 + 2.03732i
\(222\) 0 0
\(223\) 1116.97 0.335415 0.167708 0.985837i \(-0.446364\pi\)
0.167708 + 0.985837i \(0.446364\pi\)
\(224\) 0 0
\(225\) 57.2391 0.0169597
\(226\) 0 0
\(227\) 2137.24 + 3701.80i 0.624904 + 1.08237i 0.988559 + 0.150832i \(0.0481954\pi\)
−0.363655 + 0.931534i \(0.618471\pi\)
\(228\) 0 0
\(229\) 3468.05 + 2002.28i 1.00077 + 0.577792i 0.908475 0.417940i \(-0.137248\pi\)
0.0922906 + 0.995732i \(0.470581\pi\)
\(230\) 0 0
\(231\) −972.156 + 1027.83i −0.276897 + 0.292755i
\(232\) 0 0
\(233\) 1058.98 1834.21i 0.297752 0.515722i −0.677869 0.735183i \(-0.737096\pi\)
0.975621 + 0.219461i \(0.0704297\pi\)
\(234\) 0 0
\(235\) 2939.54 1697.15i 0.815977 0.471105i
\(236\) 0 0
\(237\) 1436.81i 0.393800i
\(238\) 0 0
\(239\) 3845.74i 1.04084i 0.853911 + 0.520419i \(0.174224\pi\)
−0.853911 + 0.520419i \(0.825776\pi\)
\(240\) 0 0
\(241\) 1048.94 605.606i 0.280366 0.161869i −0.353223 0.935539i \(-0.614914\pi\)
0.633589 + 0.773670i \(0.281581\pi\)
\(242\) 0 0
\(243\) 121.500 210.444i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 2045.12 + 3126.56i 0.533298 + 0.815300i
\(246\) 0 0
\(247\) −5029.83 2903.97i −1.29571 0.748079i
\(248\) 0 0
\(249\) −163.354 282.938i −0.0415750 0.0720099i
\(250\) 0 0
\(251\) −4071.69 −1.02392 −0.511958 0.859010i \(-0.671080\pi\)
−0.511958 + 0.859010i \(0.671080\pi\)
\(252\) 0 0
\(253\) −3773.09 −0.937596
\(254\) 0 0
\(255\) −1588.93 2752.11i −0.390207 0.675858i
\(256\) 0 0
\(257\) −1202.04 694.000i −0.291757 0.168446i 0.346977 0.937874i \(-0.387208\pi\)
−0.638734 + 0.769428i \(0.720541\pi\)
\(258\) 0 0
\(259\) 661.671 + 625.829i 0.158742 + 0.150143i
\(260\) 0 0
\(261\) −1194.38 + 2068.73i −0.283259 + 0.490618i
\(262\) 0 0
\(263\) −576.693 + 332.954i −0.135211 + 0.0780639i −0.566079 0.824351i \(-0.691540\pi\)
0.430869 + 0.902415i \(0.358207\pi\)
\(264\) 0 0
\(265\) 1623.89i 0.376433i
\(266\) 0 0
\(267\) 2630.65i 0.602970i
\(268\) 0 0
\(269\) 7380.73 4261.26i 1.67290 0.965851i 0.706902 0.707312i \(-0.250092\pi\)
0.966001 0.258539i \(-0.0832411\pi\)
\(270\) 0 0
\(271\) −2135.11 + 3698.12i −0.478593 + 0.828948i −0.999699 0.0245443i \(-0.992187\pi\)
0.521105 + 0.853492i \(0.325520\pi\)
\(272\) 0 0
\(273\) 1261.08 + 4231.67i 0.279576 + 0.938141i
\(274\) 0 0
\(275\) 140.247 + 80.9716i 0.0307535 + 0.0177555i
\(276\) 0 0
\(277\) −1561.52 2704.64i −0.338710 0.586664i 0.645480 0.763777i \(-0.276657\pi\)
−0.984190 + 0.177114i \(0.943324\pi\)
\(278\) 0 0
\(279\) −1513.98 −0.324873
\(280\) 0 0
\(281\) −7317.30 −1.55343 −0.776714 0.629853i \(-0.783115\pi\)
−0.776714 + 0.629853i \(0.783115\pi\)
\(282\) 0 0
\(283\) −1273.25 2205.34i −0.267446 0.463229i 0.700756 0.713401i \(-0.252846\pi\)
−0.968201 + 0.250172i \(0.919513\pi\)
\(284\) 0 0
\(285\) 2068.10 + 1194.02i 0.429836 + 0.248166i
\(286\) 0 0
\(287\) 3228.86 + 769.543i 0.664088 + 0.158274i
\(288\) 0 0
\(289\) 2272.46 3936.01i 0.462540 0.801143i
\(290\) 0 0
\(291\) 743.113 429.037i 0.149698 0.0864281i
\(292\) 0 0
\(293\) 7570.74i 1.50951i 0.656005 + 0.754757i \(0.272245\pi\)
−0.656005 + 0.754757i \(0.727755\pi\)
\(294\) 0 0
\(295\) 8043.31i 1.58746i
\(296\) 0 0
\(297\) 595.397 343.753i 0.116325 0.0671601i
\(298\) 0 0
\(299\) −5888.08 + 10198.5i −1.13885 + 1.97255i
\(300\) 0 0
\(301\) 7760.01 + 1849.47i 1.48598 + 0.354158i
\(302\) 0 0
\(303\) 2666.31 + 1539.40i 0.505531 + 0.291868i
\(304\) 0 0
\(305\) −4773.36 8267.70i −0.896136 1.55215i
\(306\) 0 0
\(307\) 7774.87 1.44539 0.722696 0.691167i \(-0.242903\pi\)
0.722696 + 0.691167i \(0.242903\pi\)
\(308\) 0 0
\(309\) −2783.07 −0.512372
\(310\) 0 0
\(311\) 3474.91 + 6018.72i 0.633582 + 1.09740i 0.986814 + 0.161860i \(0.0517493\pi\)
−0.353232 + 0.935536i \(0.614917\pi\)
\(312\) 0 0
\(313\) −1815.98 1048.46i −0.327940 0.189336i 0.326986 0.945029i \(-0.393967\pi\)
−0.654926 + 0.755693i \(0.727300\pi\)
\(314\) 0 0
\(315\) −518.514 1739.92i −0.0927460 0.311217i
\(316\) 0 0
\(317\) 1268.93 2197.85i 0.224827 0.389412i −0.731440 0.681905i \(-0.761152\pi\)
0.956268 + 0.292493i \(0.0944849\pi\)
\(318\) 0 0
\(319\) −5852.94 + 3379.20i −1.02728 + 0.593100i
\(320\) 0 0
\(321\) 1222.28i 0.212527i
\(322\) 0 0
\(323\) 7107.23i 1.22433i
\(324\) 0 0
\(325\) 437.724 252.720i 0.0747095 0.0431335i
\(326\) 0 0
\(327\) 927.194 1605.95i 0.156801 0.271587i
\(328\) 0 0
\(329\) 4192.97 + 3965.85i 0.702633 + 0.664572i
\(330\) 0 0
\(331\) −5243.13 3027.12i −0.870659 0.502675i −0.00309202 0.999995i \(-0.500984\pi\)
−0.867567 + 0.497320i \(0.834318\pi\)
\(332\) 0 0
\(333\) −221.292 383.289i −0.0364166 0.0630754i
\(334\) 0 0
\(335\) 8421.40 1.37346
\(336\) 0 0
\(337\) 6968.11 1.12634 0.563171 0.826340i \(-0.309581\pi\)
0.563171 + 0.826340i \(0.309581\pi\)
\(338\) 0 0
\(339\) 1280.15 + 2217.29i 0.205098 + 0.355241i
\(340\) 0 0
\(341\) −3709.54 2141.70i −0.589099 0.340117i
\(342\) 0 0
\(343\) −4101.61 + 4850.82i −0.645673 + 0.763614i
\(344\) 0 0
\(345\) 2420.98 4193.26i 0.377801 0.654370i
\(346\) 0 0
\(347\) −1075.12 + 620.718i −0.166326 + 0.0960285i −0.580852 0.814009i \(-0.697281\pi\)
0.414526 + 0.910037i \(0.363947\pi\)
\(348\) 0 0
\(349\) 485.911i 0.0745279i 0.999305 + 0.0372639i \(0.0118642\pi\)
−0.999305 + 0.0372639i \(0.988136\pi\)
\(350\) 0 0
\(351\) 2145.77i 0.326304i
\(352\) 0 0
\(353\) 1925.08 1111.44i 0.290259 0.167581i −0.347800 0.937569i \(-0.613071\pi\)
0.638059 + 0.769988i \(0.279738\pi\)
\(354\) 0 0
\(355\) 1755.29 3040.25i 0.262426 0.454535i
\(356\) 0 0
\(357\) 3712.97 3925.62i 0.550451 0.581976i
\(358\) 0 0
\(359\) −5131.15 2962.47i −0.754350 0.435524i 0.0729136 0.997338i \(-0.476770\pi\)
−0.827263 + 0.561814i \(0.810104\pi\)
\(360\) 0 0
\(361\) 759.104 + 1314.81i 0.110673 + 0.191691i
\(362\) 0 0
\(363\) −2047.88 −0.296104
\(364\) 0 0
\(365\) −4540.94 −0.651188
\(366\) 0 0
\(367\) −2516.61 4358.89i −0.357945 0.619979i 0.629673 0.776861i \(-0.283189\pi\)
−0.987617 + 0.156882i \(0.949856\pi\)
\(368\) 0 0
\(369\) −1396.92 806.512i −0.197075 0.113781i
\(370\) 0 0
\(371\) −2646.13 + 788.575i −0.370297 + 0.110352i
\(372\) 0 0
\(373\) −1103.31 + 1910.99i −0.153156 + 0.265274i −0.932386 0.361464i \(-0.882277\pi\)
0.779230 + 0.626738i \(0.215610\pi\)
\(374\) 0 0
\(375\) −3717.32 + 2146.20i −0.511898 + 0.295545i
\(376\) 0 0
\(377\) 21093.6i 2.88164i
\(378\) 0 0
\(379\) 6545.89i 0.887176i −0.896231 0.443588i \(-0.853705\pi\)
0.896231 0.443588i \(-0.146295\pi\)
\(380\) 0 0
\(381\) 3616.64 2088.07i 0.486315 0.280774i
\(382\) 0 0
\(383\) 4887.35 8465.14i 0.652042 1.12937i −0.330585 0.943776i \(-0.607246\pi\)
0.982627 0.185593i \(-0.0594206\pi\)
\(384\) 0 0
\(385\) 1190.86 4996.64i 0.157642 0.661435i
\(386\) 0 0
\(387\) −3357.26 1938.32i −0.440980 0.254600i
\(388\) 0 0
\(389\) −4893.17 8475.22i −0.637773 1.10465i −0.985920 0.167215i \(-0.946523\pi\)
0.348148 0.937440i \(-0.386811\pi\)
\(390\) 0 0
\(391\) 14410.6 1.86388
\(392\) 0 0
\(393\) 2318.14 0.297544
\(394\) 0 0
\(395\) 2608.33 + 4517.76i 0.332252 + 0.575477i
\(396\) 0 0
\(397\) −1955.05 1128.75i −0.247157 0.142696i 0.371305 0.928511i \(-0.378911\pi\)
−0.618462 + 0.785815i \(0.712244\pi\)
\(398\) 0 0
\(399\) −941.366 + 3949.79i −0.118113 + 0.495581i
\(400\) 0 0
\(401\) 46.2874 80.1720i 0.00576429 0.00998404i −0.863129 0.504984i \(-0.831498\pi\)
0.868893 + 0.495000i \(0.164832\pi\)
\(402\) 0 0
\(403\) −11577.8 + 6684.47i −1.43110 + 0.826246i
\(404\) 0 0
\(405\) 882.268i 0.108248i
\(406\) 0 0
\(407\) 1252.18i 0.152502i
\(408\) 0 0
\(409\) 2269.62 1310.37i 0.274390 0.158419i −0.356491 0.934299i \(-0.616027\pi\)
0.630881 + 0.775879i \(0.282694\pi\)
\(410\) 0 0
\(411\) 3092.60 5356.55i 0.371160 0.642868i
\(412\) 0 0
\(413\) −13106.6 + 3905.91i −1.56158 + 0.465368i
\(414\) 0 0
\(415\) 1027.27 + 593.096i 0.121510 + 0.0701541i
\(416\) 0 0
\(417\) 651.376 + 1128.22i 0.0764941 + 0.132492i
\(418\) 0 0
\(419\) −5213.75 −0.607896 −0.303948 0.952689i \(-0.598305\pi\)
−0.303948 + 0.952689i \(0.598305\pi\)
\(420\) 0 0
\(421\) −8214.13 −0.950908 −0.475454 0.879740i \(-0.657716\pi\)
−0.475454 + 0.879740i \(0.657716\pi\)
\(422\) 0 0
\(423\) −1402.32 2428.88i −0.161189 0.279188i
\(424\) 0 0
\(425\) −535.647 309.256i −0.0611358 0.0352967i
\(426\) 0 0
\(427\) 11154.3 11793.1i 1.26415 1.33655i
\(428\) 0 0
\(429\) 3035.45 5257.56i 0.341615 0.591695i
\(430\) 0 0
\(431\) 12724.4 7346.43i 1.42207 0.821032i 0.425594 0.904914i \(-0.360065\pi\)
0.996476 + 0.0838817i \(0.0267318\pi\)
\(432\) 0 0
\(433\) 15413.6i 1.71069i 0.518060 + 0.855344i \(0.326654\pi\)
−0.518060 + 0.855344i \(0.673346\pi\)
\(434\) 0 0
\(435\) 8672.98i 0.955948i
\(436\) 0 0
\(437\) −9378.16 + 5414.48i −1.02659 + 0.592700i
\(438\) 0 0
\(439\) 3683.14 6379.39i 0.400426 0.693557i −0.593352 0.804943i \(-0.702196\pi\)
0.993777 + 0.111386i \(0.0355290\pi\)
\(440\) 0 0
\(441\) 2583.41 1689.84i 0.278956 0.182469i
\(442\) 0 0
\(443\) −3155.93 1822.08i −0.338471 0.195416i 0.321125 0.947037i \(-0.395939\pi\)
−0.659596 + 0.751621i \(0.729273\pi\)
\(444\) 0 0
\(445\) −4775.59 8271.56i −0.508729 0.881145i
\(446\) 0 0
\(447\) 8361.14 0.884717
\(448\) 0 0
\(449\) −8345.46 −0.877164 −0.438582 0.898691i \(-0.644519\pi\)
−0.438582 + 0.898691i \(0.644519\pi\)
\(450\) 0 0
\(451\) −2281.82 3952.22i −0.238241 0.412645i
\(452\) 0 0
\(453\) 5712.07 + 3297.86i 0.592442 + 0.342047i
\(454\) 0 0
\(455\) −11647.3 11016.4i −1.20007 1.13507i
\(456\) 0 0
\(457\) 1489.03 2579.07i 0.152415 0.263991i −0.779700 0.626154i \(-0.784628\pi\)
0.932115 + 0.362163i \(0.117962\pi\)
\(458\) 0 0
\(459\) −2274.01 + 1312.90i −0.231245 + 0.133510i
\(460\) 0 0
\(461\) 5112.61i 0.516525i −0.966075 0.258262i \(-0.916850\pi\)
0.966075 0.258262i \(-0.0831499\pi\)
\(462\) 0 0
\(463\) 9641.97i 0.967819i 0.875118 + 0.483910i \(0.160784\pi\)
−0.875118 + 0.483910i \(0.839216\pi\)
\(464\) 0 0
\(465\) 4760.41 2748.43i 0.474750 0.274097i
\(466\) 0 0
\(467\) −2236.56 + 3873.83i −0.221618 + 0.383853i −0.955299 0.295640i \(-0.904467\pi\)
0.733682 + 0.679493i \(0.237800\pi\)
\(468\) 0 0
\(469\) 4089.51 + 13722.7i 0.402635 + 1.35108i
\(470\) 0 0
\(471\) −7769.11 4485.50i −0.760046 0.438813i
\(472\) 0 0
\(473\) −5483.96 9498.50i −0.533093 0.923344i
\(474\) 0 0
\(475\) 464.786 0.0448965
\(476\) 0 0
\(477\) 1341.78 0.128797
\(478\) 0 0
\(479\) −6167.17 10681.9i −0.588278 1.01893i −0.994458 0.105135i \(-0.966473\pi\)
0.406180 0.913793i \(-0.366861\pi\)
\(480\) 0 0
\(481\) −3384.57 1954.08i −0.320838 0.185236i
\(482\) 0 0
\(483\) 8008.58 + 1908.71i 0.754458 + 0.179812i
\(484\) 0 0
\(485\) −1557.72 + 2698.05i −0.145840 + 0.252602i
\(486\) 0 0
\(487\) 5019.55 2898.04i 0.467059 0.269657i −0.247949 0.968773i \(-0.579756\pi\)
0.715008 + 0.699117i \(0.246423\pi\)
\(488\) 0 0
\(489\) 1767.83i 0.163485i
\(490\) 0 0
\(491\) 20606.3i 1.89399i 0.321249 + 0.946995i \(0.395897\pi\)
−0.321249 + 0.946995i \(0.604103\pi\)
\(492\) 0 0
\(493\) 22354.2 12906.2i 2.04216 1.17904i
\(494\) 0 0
\(495\) −1248.08 + 2161.73i −0.113327 + 0.196288i
\(496\) 0 0
\(497\) 5806.49 + 1383.88i 0.524058 + 0.124900i
\(498\) 0 0
\(499\) −3322.27 1918.11i −0.298047 0.172077i 0.343518 0.939146i \(-0.388381\pi\)
−0.641565 + 0.767069i \(0.721715\pi\)
\(500\) 0 0
\(501\) 1143.58 + 1980.74i 0.101979 + 0.176632i
\(502\) 0 0
\(503\) 8841.62 0.783754 0.391877 0.920018i \(-0.371826\pi\)
0.391877 + 0.920018i \(0.371826\pi\)
\(504\) 0 0
\(505\) −11178.3 −0.985004
\(506\) 0 0
\(507\) −6178.45 10701.4i −0.541212 0.937406i
\(508\) 0 0
\(509\) −4806.90 2775.27i −0.418590 0.241673i 0.275884 0.961191i \(-0.411029\pi\)
−0.694474 + 0.719518i \(0.744363\pi\)
\(510\) 0 0
\(511\) −2205.12 7399.47i −0.190898 0.640574i
\(512\) 0 0
\(513\) 986.590 1708.82i 0.0849103 0.147069i
\(514\) 0 0
\(515\) 8750.82 5052.29i 0.748751 0.432292i
\(516\) 0 0
\(517\) 7934.98i 0.675010i
\(518\) 0 0
\(519\) 196.585i 0.0166264i
\(520\) 0 0
\(521\) −5733.95 + 3310.50i −0.482167 + 0.278379i −0.721319 0.692603i \(-0.756464\pi\)
0.239152 + 0.970982i \(0.423130\pi\)
\(522\) 0 0
\(523\) 9893.41 17135.9i 0.827168 1.43270i −0.0730834 0.997326i \(-0.523284\pi\)
0.900251 0.435371i \(-0.143383\pi\)
\(524\) 0 0
\(525\) −256.720 242.814i −0.0213413 0.0201853i
\(526\) 0 0
\(527\) 14167.9 + 8179.84i 1.17109 + 0.676128i
\(528\) 0 0
\(529\) 4894.88 + 8478.19i 0.402308 + 0.696818i
\(530\) 0 0
\(531\) 6646.02 0.543150
\(532\) 0 0
\(533\) −14243.6 −1.15752
\(534\) 0 0
\(535\) −2218.89 3843.23i −0.179310 0.310574i
\(536\) 0 0
\(537\) −6429.87 3712.29i −0.516703 0.298318i
\(538\) 0 0
\(539\) 8720.34 485.898i 0.696868 0.0388295i
\(540\) 0 0
\(541\) 10024.3 17362.7i 0.796636 1.37981i −0.125159 0.992137i \(-0.539944\pi\)
0.921795 0.387678i \(-0.126723\pi\)
\(542\) 0 0
\(543\) −10371.4 + 5987.91i −0.819665 + 0.473234i
\(544\) 0 0
\(545\) 6732.79i 0.529176i
\(546\) 0 0
\(547\) 17711.1i 1.38441i −0.721703 0.692203i \(-0.756640\pi\)
0.721703 0.692203i \(-0.243360\pi\)
\(548\) 0 0
\(549\) −6831.42 + 3944.12i −0.531071 + 0.306614i
\(550\) 0 0
\(551\) −9698.49 + 16798.3i −0.749854 + 1.29879i
\(552\) 0 0
\(553\) −6095.08 + 6444.15i −0.468696 + 0.495539i
\(554\) 0 0
\(555\) 1391.62 + 803.453i 0.106434 + 0.0614499i
\(556\) 0 0
\(557\) −7318.17 12675.4i −0.556698 0.964230i −0.997769 0.0667574i \(-0.978735\pi\)
0.441071 0.897472i \(-0.354599\pi\)
\(558\) 0 0
\(559\) −34232.0 −2.59009
\(560\) 0 0
\(561\) −7429.02 −0.559097
\(562\) 0 0
\(563\) 5753.21 + 9964.85i 0.430673 + 0.745948i 0.996931 0.0782802i \(-0.0249429\pi\)
−0.566258 + 0.824228i \(0.691610\pi\)
\(564\) 0 0
\(565\) −8050.39 4647.89i −0.599438 0.346086i
\(566\) 0 0
\(567\) −1437.66 + 428.438i −0.106483 + 0.0317331i
\(568\) 0 0
\(569\) −11575.8 + 20049.9i −0.852872 + 1.47722i 0.0257334 + 0.999669i \(0.491808\pi\)
−0.878605 + 0.477549i \(0.841525\pi\)
\(570\) 0 0
\(571\) −8344.39 + 4817.63i −0.611562 + 0.353085i −0.773576 0.633703i \(-0.781534\pi\)
0.162015 + 0.986788i \(0.448201\pi\)
\(572\) 0 0
\(573\) 9984.50i 0.727938i
\(574\) 0 0
\(575\) 942.398i 0.0683491i
\(576\) 0 0
\(577\) −7479.16 + 4318.09i −0.539621 + 0.311550i −0.744925 0.667148i \(-0.767515\pi\)
0.205304 + 0.978698i \(0.434182\pi\)
\(578\) 0 0
\(579\) 1997.90 3460.47i 0.143402 0.248380i
\(580\) 0 0
\(581\) −467.599 + 1961.96i −0.0333895 + 0.140096i
\(582\) 0 0
\(583\) 3287.63 + 1898.12i 0.233550 + 0.134840i
\(584\) 0 0
\(585\) 3895.36 + 6746.97i 0.275305 + 0.476842i
\(586\) 0 0
\(587\) −4919.56 −0.345915 −0.172958 0.984929i \(-0.555332\pi\)
−0.172958 + 0.984929i \(0.555332\pi\)
\(588\) 0 0
\(589\) −12293.6 −0.860017
\(590\) 0 0
\(591\) −1456.11 2522.05i −0.101347 0.175539i
\(592\) 0 0
\(593\) 14041.6 + 8106.92i 0.972377 + 0.561402i 0.899960 0.435972i \(-0.143595\pi\)
0.0724169 + 0.997374i \(0.476929\pi\)
\(594\) 0 0
\(595\) −4548.29 + 19083.7i −0.313381 + 1.31489i
\(596\) 0 0
\(597\) −2928.22 + 5071.82i −0.200744 + 0.347698i
\(598\) 0 0
\(599\) 18592.9 10734.6i 1.26825 0.732226i 0.293595 0.955930i \(-0.405148\pi\)
0.974657 + 0.223704i \(0.0718148\pi\)
\(600\) 0 0
\(601\) 14575.2i 0.989246i −0.869108 0.494623i \(-0.835306\pi\)
0.869108 0.494623i \(-0.164694\pi\)
\(602\) 0 0
\(603\) 6958.43i 0.469932i
\(604\) 0 0
\(605\) 6439.17 3717.66i 0.432710 0.249825i
\(606\) 0 0
\(607\) −1896.41 + 3284.68i −0.126809 + 0.219639i −0.922438 0.386144i \(-0.873807\pi\)
0.795630 + 0.605783i \(0.207140\pi\)
\(608\) 0 0
\(609\) 14132.6 4211.68i 0.940367 0.280239i
\(610\) 0 0
\(611\) −21447.9 12382.9i −1.42011 0.819901i
\(612\) 0 0
\(613\) 10096.0 + 17486.8i 0.665211 + 1.15218i 0.979228 + 0.202761i \(0.0649916\pi\)
−0.314018 + 0.949417i \(0.601675\pi\)
\(614\) 0 0
\(615\) 5856.47 0.383993
\(616\) 0 0
\(617\) 3228.67 0.210667 0.105333 0.994437i \(-0.466409\pi\)
0.105333 + 0.994437i \(0.466409\pi\)
\(618\) 0 0
\(619\) −1250.06 2165.17i −0.0811698 0.140590i 0.822583 0.568645i \(-0.192532\pi\)
−0.903753 + 0.428055i \(0.859199\pi\)
\(620\) 0 0
\(621\) −3464.80 2000.41i −0.223893 0.129265i
\(622\) 0 0
\(623\) 11159.5 11798.6i 0.717648 0.758748i
\(624\) 0 0
\(625\) 7394.78 12808.1i 0.473266 0.819721i
\(626\) 0 0
\(627\) 4834.67 2791.30i 0.307940 0.177789i
\(628\) 0 0
\(629\) 4782.46i 0.303162i
\(630\) 0 0
\(631\) 1558.07i 0.0982977i 0.998791 + 0.0491489i \(0.0156509\pi\)
−0.998791 + 0.0491489i \(0.984349\pi\)
\(632\) 0 0
\(633\) −3652.30 + 2108.66i −0.229330 + 0.132404i
\(634\) 0 0
\(635\) −7581.22 + 13131.1i −0.473782 + 0.820614i
\(636\) 0 0
\(637\) 12295.2 24328.9i 0.764760 1.51326i
\(638\) 0 0
\(639\) −2512.10 1450.36i −0.155520 0.0897893i
\(640\) 0 0
\(641\) 3524.57 + 6104.73i 0.217179 + 0.376166i 0.953945 0.299983i \(-0.0969810\pi\)
−0.736765 + 0.676149i \(0.763648\pi\)
\(642\) 0 0
\(643\) 22807.0 1.39879 0.699393 0.714738i \(-0.253454\pi\)
0.699393 + 0.714738i \(0.253454\pi\)
\(644\) 0 0
\(645\) 14075.0 0.859230
\(646\) 0 0
\(647\) 10129.7 + 17545.1i 0.615515 + 1.06610i 0.990294 + 0.138989i \(0.0443853\pi\)
−0.374779 + 0.927114i \(0.622281\pi\)
\(648\) 0 0
\(649\) 16284.0 + 9401.60i 0.984907 + 0.568636i
\(650\) 0 0
\(651\) 6790.27 + 6422.45i 0.408804 + 0.386660i
\(652\) 0 0
\(653\) 6363.37 11021.7i 0.381344 0.660508i −0.609910 0.792470i \(-0.708795\pi\)
0.991255 + 0.131963i \(0.0421279\pi\)
\(654\) 0 0
\(655\) −7288.95 + 4208.28i −0.434813 + 0.251040i
\(656\) 0 0
\(657\) 3752.08i 0.222805i
\(658\) 0 0
\(659\) 2518.75i 0.148887i −0.997225 0.0744436i \(-0.976282\pi\)
0.997225 0.0744436i \(-0.0237181\pi\)
\(660\) 0 0
\(661\) −26593.8 + 15353.9i −1.56487 + 0.903479i −0.568119 + 0.822947i \(0.692329\pi\)
−0.996752 + 0.0805321i \(0.974338\pi\)
\(662\) 0 0
\(663\) −11593.3 + 20080.3i −0.679108 + 1.17625i
\(664\) 0 0
\(665\) −4210.38 14128.3i −0.245521 0.823867i
\(666\) 0 0
\(667\) 34060.1 + 19664.6i 1.97723 + 1.14155i
\(668\) 0 0
\(669\) 1675.45 + 2901.96i 0.0968261 + 0.167708i
\(670\) 0 0
\(671\) −22317.8 −1.28401
\(672\) 0 0
\(673\) 32957.8 1.88771 0.943856 0.330356i \(-0.107169\pi\)
0.943856 + 0.330356i \(0.107169\pi\)
\(674\) 0 0
\(675\) 85.8587 + 148.712i 0.00489585 + 0.00847987i
\(676\) 0 0
\(677\) 3400.40 + 1963.22i 0.193040 + 0.111452i 0.593405 0.804904i \(-0.297783\pi\)
−0.400365 + 0.916356i \(0.631117\pi\)
\(678\) 0 0
\(679\) −5152.92 1228.11i −0.291238 0.0694117i
\(680\) 0 0
\(681\) −6411.71 + 11105.4i −0.360789 + 0.624904i
\(682\) 0 0
\(683\) −21748.6 + 12556.6i −1.21843 + 0.703460i −0.964582 0.263784i \(-0.915029\pi\)
−0.253847 + 0.967244i \(0.581696\pi\)
\(684\) 0 0
\(685\) 22456.8i 1.25260i
\(686\) 0 0
\(687\) 12013.7i 0.667177i
\(688\) 0 0
\(689\) 10261.0 5924.21i 0.567364 0.327568i
\(690\) 0 0
\(691\) −3078.21 + 5331.61i −0.169465 + 0.293522i −0.938232 0.346007i \(-0.887537\pi\)
0.768767 + 0.639529i \(0.220871\pi\)
\(692\) 0 0
\(693\) −4128.62 983.987i −0.226311 0.0539373i
\(694\) 0 0
\(695\) −4096.26 2364.97i −0.223568 0.129077i
\(696\) 0 0
\(697\) 8714.98 + 15094.8i 0.473606 + 0.820310i
\(698\) 0 0
\(699\) 6353.90 0.343815
\(700\) 0 0
\(701\) 20064.7 1.08107 0.540537 0.841320i \(-0.318221\pi\)
0.540537 + 0.841320i \(0.318221\pi\)
\(702\) 0 0
\(703\) −1796.91 3112.34i −0.0964036 0.166976i
\(704\) 0 0
\(705\) 8818.63 + 5091.44i 0.471105 + 0.271992i
\(706\) 0 0
\(707\) −5428.28 18215.1i −0.288757 0.968950i
\(708\) 0 0
\(709\) 14957.7 25907.4i 0.792309 1.37232i −0.132225 0.991220i \(-0.542212\pi\)
0.924534 0.381099i \(-0.124454\pi\)
\(710\) 0 0
\(711\) 3732.93 2155.21i 0.196900 0.113680i
\(712\) 0 0
\(713\) 24926.5i 1.30926i
\(714\) 0 0
\(715\) 22041.8i 1.15289i
\(716\) 0 0
\(717\) −9991.53 + 5768.61i −0.520419 + 0.300464i
\(718\) 0 0
\(719\) −10091.2 + 17478.4i −0.523417 + 0.906585i 0.476211 + 0.879331i \(0.342010\pi\)
−0.999629 + 0.0272541i \(0.991324\pi\)
\(720\) 0 0
\(721\) 12482.2 + 11806.0i 0.644745 + 0.609820i
\(722\) 0 0
\(723\) 3146.82 + 1816.82i 0.161869 + 0.0934554i
\(724\) 0 0
\(725\) −844.018 1461.88i −0.0432359 0.0748868i
\(726\) 0 0
\(727\) 9294.28 0.474148 0.237074 0.971492i \(-0.423812\pi\)
0.237074 + 0.971492i \(0.423812\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 20945.0 + 36277.8i 1.05975 + 1.83554i
\(732\) 0 0
\(733\) −67.5292 38.9880i −0.00340279 0.00196460i 0.498298 0.867006i \(-0.333959\pi\)
−0.501700 + 0.865041i \(0.667292\pi\)
\(734\) 0 0
\(735\) −5055.35 + 10003.2i −0.253700 + 0.502006i
\(736\) 0 0
\(737\) 9843.54 17049.5i 0.491983 0.852139i
\(738\) 0 0
\(739\) −15262.9 + 8812.06i −0.759751 + 0.438643i −0.829206 0.558943i \(-0.811207\pi\)
0.0694552 + 0.997585i \(0.477874\pi\)
\(740\) 0 0
\(741\) 17423.8i 0.863807i
\(742\) 0 0
\(743\) 9692.27i 0.478566i −0.970950 0.239283i \(-0.923088\pi\)
0.970950 0.239283i \(-0.0769124\pi\)
\(744\) 0 0
\(745\) −26290.0 + 15178.5i −1.29287 + 0.746441i
\(746\) 0 0
\(747\) 490.063 848.814i 0.0240033 0.0415750i
\(748\) 0 0
\(749\) 5185.04 5481.99i 0.252947 0.267433i
\(750\) 0 0
\(751\) 15574.9 + 8992.16i 0.756772 + 0.436922i 0.828135 0.560528i \(-0.189402\pi\)
−0.0713639 + 0.997450i \(0.522735\pi\)
\(752\) 0 0
\(753\) −6107.54 10578.6i −0.295579 0.511958i
\(754\) 0 0
\(755\) −23947.3 −1.15435
\(756\) 0 0
\(757\) −25068.7 −1.20362 −0.601809 0.798640i \(-0.705553\pi\)
−0.601809 + 0.798640i \(0.705553\pi\)
\(758\) 0 0
\(759\) −5659.63 9802.76i −0.270661 0.468798i
\(760\) 0 0
\(761\) −8091.89 4671.86i −0.385454 0.222542i 0.294734 0.955579i \(-0.404769\pi\)
−0.680189 + 0.733037i \(0.738102\pi\)
\(762\) 0 0
\(763\) −10971.1 + 3269.50i −0.520551 + 0.155130i
\(764\) 0 0
\(765\) 4766.79 8256.32i 0.225286 0.390207i
\(766\) 0 0
\(767\) 50824.1 29343.3i 2.39264 1.38139i
\(768\) 0 0
\(769\) 27967.9i 1.31150i −0.754976 0.655752i \(-0.772352\pi\)
0.754976 0.655752i \(-0.227648\pi\)
\(770\) 0 0
\(771\) 4164.00i 0.194504i
\(772\) 0 0
\(773\) 22080.8 12748.4i 1.02742 0.593179i 0.111172 0.993801i \(-0.464539\pi\)
0.916243 + 0.400622i \(0.131206\pi\)
\(774\) 0 0
\(775\) 534.930 926.527i 0.0247939 0.0429443i
\(776\) 0 0
\(777\) −633.445 + 2657.82i −0.0292467 + 0.122714i
\(778\) 0 0
\(779\) −11343.1 6548.95i −0.521706 0.301207i
\(780\) 0 0
\(781\) −4103.42 7107.33i −0.188005 0.325634i
\(782\) 0 0
\(783\) −7166.30 −0.327079
\(784\) 0 0
\(785\) 32571.3 1.48092
\(786\) 0 0
\(787\) 5753.43 + 9965.24i 0.260594 + 0.451363i 0.966400 0.257043i \(-0.0827481\pi\)
−0.705806 + 0.708406i \(0.749415\pi\)
\(788\) 0 0
\(789\) −1730.08 998.861i −0.0780639 0.0450702i
\(790\) 0 0
\(791\) 3664.42 15375.2i 0.164718 0.691124i
\(792\) 0 0
\(793\) −34828.0 + 60323.8i −1.55962 + 2.70134i
\(794\) 0 0
\(795\) −4218.98 + 2435.83i −0.188216 + 0.108667i
\(796\) 0 0
\(797\) 39596.3i 1.75982i −0.475144 0.879908i \(-0.657604\pi\)
0.475144 0.879908i \(-0.342396\pi\)
\(798\) 0 0
\(799\) 30306.2i 1.34187i
\(800\) 0 0
\(801\) −6834.62 + 3945.97i −0.301485 + 0.174062i
\(802\) 0 0
\(803\) −5307.77 + 9193.33i −0.233259 + 0.404017i
\(804\) 0 0
\(805\) −28646.5 + 8536.95i −1.25423 + 0.373774i
\(806\) 0 0
\(807\) 22142.2 + 12783.8i 0.965851 + 0.557634i
\(808\) 0 0
\(809\) 16562.7 + 28687.4i 0.719794 + 1.24672i 0.961081 + 0.276267i \(0.0890972\pi\)
−0.241287 + 0.970454i \(0.577569\pi\)
\(810\) 0 0
\(811\) −9495.37 −0.411132 −0.205566 0.978643i \(-0.565903\pi\)
−0.205566 + 0.978643i \(0.565903\pi\)
\(812\) 0 0
\(813\) −12810.7 −0.552632
\(814\) 0 0
\(815\) −3209.26 5558.61i −0.137933 0.238907i
\(816\) 0 0
\(817\) −27261.2 15739.3i −1.16738 0.673988i
\(818\) 0 0
\(819\) −9102.58 + 9623.90i −0.388364 + 0.410606i
\(820\) 0 0
\(821\) −15216.5 + 26355.7i −0.646844 + 1.12037i 0.337028 + 0.941494i \(0.390578\pi\)
−0.983872 + 0.178872i \(0.942755\pi\)
\(822\) 0 0
\(823\) −20430.7 + 11795.7i −0.865335 + 0.499602i −0.865795 0.500398i \(-0.833187\pi\)
0.000460017 1.00000i \(0.499854\pi\)
\(824\) 0 0
\(825\) 485.830i 0.0205023i
\(826\) 0 0
\(827\) 38107.9i 1.60235i −0.598432 0.801174i \(-0.704209\pi\)
0.598432 0.801174i \(-0.295791\pi\)
\(828\) 0 0
\(829\) 1509.16 871.312i 0.0632270 0.0365041i −0.468053 0.883700i \(-0.655044\pi\)
0.531280 + 0.847196i \(0.321711\pi\)
\(830\) 0 0
\(831\) 4684.57 8113.91i 0.195555 0.338710i
\(832\) 0 0
\(833\) −33305.7 + 1855.80i −1.38532 + 0.0771903i
\(834\) 0 0
\(835\) −7191.53 4152.03i −0.298052 0.172080i
\(836\) 0 0
\(837\) −2270.97 3933.43i −0.0937827 0.162436i
\(838\) 0 0
\(839\) −45398.9 −1.86811 −0.934054 0.357131i \(-0.883755\pi\)
−0.934054 + 0.357131i \(0.883755\pi\)
\(840\) 0 0
\(841\) 46058.0 1.88847
\(842\) 0 0
\(843\) −10976.0 19010.9i −0.448436 0.776714i
\(844\) 0 0
\(845\) 38853.9 + 22432.3i 1.58179 + 0.913248i
\(846\) 0 0
\(847\) 9184.85 + 8687.32i 0.372604 + 0.352420i
\(848\) 0 0
\(849\) 3819.76 6616.02i 0.154410 0.267446i
\(850\) 0 0
\(851\) −6310.57 + 3643.41i −0.254199 + 0.146762i
\(852\) 0 0
\(853\) 24139.3i 0.968948i −0.874806 0.484474i \(-0.839011\pi\)
0.874806 0.484474i \(-0.160989\pi\)
\(854\) 0 0
\(855\) 7164.09i 0.286558i
\(856\) 0 0
\(857\) 31092.8 17951.4i 1.23934 0.715530i 0.270377 0.962755i \(-0.412852\pi\)
0.968958 + 0.247224i \(0.0795184\pi\)
\(858\) 0 0
\(859\) 10546.8 18267.7i 0.418922 0.725594i −0.576910 0.816808i \(-0.695742\pi\)
0.995831 + 0.0912144i \(0.0290749\pi\)
\(860\) 0 0
\(861\) 2843.95 + 9543.13i 0.112569 + 0.377734i
\(862\) 0 0
\(863\) 4036.20 + 2330.30i 0.159205 + 0.0919169i 0.577486 0.816401i \(-0.304034\pi\)
−0.418281 + 0.908318i \(0.637367\pi\)
\(864\) 0 0
\(865\) −356.873 618.122i −0.0140278 0.0242969i
\(866\) 0 0
\(867\) 13634.8 0.534095
\(868\) 0 0
\(869\) 12195.2 0.476058
\(870\) 0 0
\(871\) −30722.6 53213.2i −1.19517 2.07010i
\(872\) 0 0
\(873\) 2229.34 + 1287.11i 0.0864281 + 0.0498993i
\(874\) 0 0
\(875\) 25776.8 + 6143.46i 0.995902 + 0.237356i
\(876\) 0 0
\(877\) −11572.7 + 20044.5i −0.445590 + 0.771784i −0.998093 0.0617268i \(-0.980339\pi\)
0.552504 + 0.833511i \(0.313673\pi\)
\(878\) 0 0
\(879\) −19669.4 + 11356.1i −0.754757 + 0.435759i
\(880\) 0 0
\(881\) 30585.1i 1.16962i −0.811169 0.584812i \(-0.801168\pi\)
0.811169 0.584812i \(-0.198832\pi\)
\(882\) 0 0
\(883\) 45382.8i 1.72962i −0.502101 0.864809i \(-0.667439\pi\)
0.502101 0.864809i \(-0.332561\pi\)
\(884\) 0 0
\(885\) −20897.1 + 12065.0i −0.793729 + 0.458259i
\(886\) 0 0
\(887\) 13800.5 23903.2i 0.522408 0.904838i −0.477252 0.878767i \(-0.658367\pi\)
0.999660 0.0260713i \(-0.00829971\pi\)
\(888\) 0 0
\(889\) −25078.6 5977.06i −0.946130 0.225494i
\(890\) 0 0
\(891\) 1786.19 + 1031.26i 0.0671601 + 0.0387749i
\(892\) 0 0
\(893\) −11386.9 19722.7i −0.426706 0.739077i
\(894\) 0 0
\(895\) 26956.6 1.00677
\(896\) 0 0
\(897\) −35328.5 −1.31503
\(898\) 0 0
\(899\) 22324.3 + 38666.9i 0.828207 + 1.43450i
\(900\) 0 0
\(901\) −12556.5 7249.50i −0.464282 0.268053i
\(902\) 0 0
\(903\) 6834.96 + 22935.3i 0.251886 + 0.845226i
\(904\) 0 0
\(905\) 21740.5 37655.7i 0.798541 1.38311i
\(906\) 0 0
\(907\) −2383.18 + 1375.93i −0.0872462 + 0.0503716i −0.542988 0.839740i \(-0.682707\pi\)
0.455742 + 0.890112i \(0.349374\pi\)
\(908\) 0 0
\(909\) 9236.38i 0.337020i
\(910\) 0 0
\(911\) 3191.31i 0.116062i −0.998315 0.0580312i \(-0.981518\pi\)
0.998315 0.0580312i \(-0.0184823\pi\)
\(912\) 0 0
\(913\) 2401.50 1386.51i 0.0870515 0.0502592i
\(914\) 0 0
\(915\) 14320.1 24803.1i 0.517385 0.896136i
\(916\) 0 0
\(917\) −10397.0 9833.78i −0.374415 0.354133i
\(918\) 0 0
\(919\) 42436.7 + 24500.8i 1.52324 + 0.879443i 0.999622 + 0.0274893i \(0.00875122\pi\)
0.523617 + 0.851953i \(0.324582\pi\)
\(920\) 0 0
\(921\) 11662.3 + 20199.7i 0.417248 + 0.722696i
\(922\) 0 0
\(923\) −25614.3 −0.913441
\(924\) 0 0
\(925\) 312.755 0.0111171
\(926\) 0 0
\(927\) −4174.60 7230.62i −0.147909 0.256186i
\(928\) 0 0
\(929\) 15173.9 + 8760.67i 0.535888 + 0.309395i 0.743411 0.668835i \(-0.233207\pi\)
−0.207523 + 0.978230i \(0.566540\pi\)
\(930\) 0 0
\(931\) 20977.5 13721.7i 0.738464 0.483039i
\(932\) 0 0
\(933\) −10424.7 + 18056.1i −0.365799 + 0.633582i
\(934\) 0 0
\(935\) 23359.1 13486.4i 0.817032 0.471714i
\(936\) 0 0
\(937\) 12407.7i 0.432596i −0.976327 0.216298i \(-0.930602\pi\)
0.976327 0.216298i \(-0.0693983\pi\)
\(938\) 0 0
\(939\) 6290.74i 0.218627i
\(940\) 0 0
\(941\) 19937.6 11511.0i 0.690697 0.398774i −0.113176 0.993575i \(-0.536102\pi\)
0.803873 + 0.594801i \(0.202769\pi\)
\(942\) 0 0
\(943\) −13278.6 + 22999.2i −0.458548 + 0.794229i
\(944\) 0 0
\(945\) 3742.67 3957.02i 0.128835 0.136214i
\(946\) 0 0
\(947\) −8945.69 5164.79i −0.306965 0.177226i 0.338603 0.940929i \(-0.390046\pi\)
−0.645567 + 0.763703i \(0.723379\pi\)
\(948\) 0 0
\(949\) 16566.1 + 28693.3i 0.566657 + 0.981479i
\(950\) 0 0
\(951\) 7613.58 0.259608
\(952\) 0 0
\(953\) −27371.6 −0.930380 −0.465190 0.885211i \(-0.654014\pi\)
−0.465190 + 0.885211i \(0.654014\pi\)
\(954\) 0 0
\(955\) 18125.5 + 31394.3i 0.614166 + 1.06377i
\(956\) 0 0
\(957\) −17558.8 10137.6i −0.593100 0.342426i
\(958\) 0 0
\(959\) −36593.5 + 10905.2i −1.23219 + 0.367204i
\(960\) 0 0
\(961\) 746.562 1293.08i 0.0250600 0.0434052i
\(962\) 0 0
\(963\) −3175.58 + 1833.42i −0.106263 + 0.0613512i
\(964\) 0 0
\(965\) 14507.7i 0.483958i
\(966\) 0 0
\(967\) 23099.9i 0.768193i −0.923293 0.384097i \(-0.874513\pi\)
0.923293 0.384097i \(-0.125487\pi\)
\(968\) 0 0
\(969\) −18465.1 + 10660.9i −0.612163 + 0.353432i
\(970\) 0 0
\(971\) 25707.4 44526.5i 0.849629 1.47160i −0.0319114 0.999491i \(-0.510159\pi\)
0.881540 0.472109i \(-0.156507\pi\)
\(972\) 0 0
\(973\) 1864.55 7823.31i 0.0614335 0.257764i
\(974\) 0 0
\(975\) 1313.17 + 758.161i 0.0431335 + 0.0249032i
\(976\) 0 0
\(977\) −21156.5 36644.2i −0.692792 1.19995i −0.970919 0.239406i \(-0.923047\pi\)
0.278128 0.960544i \(-0.410286\pi\)
\(978\) 0 0
\(979\) −22328.2 −0.728919
\(980\) 0 0
\(981\) 5563.16 0.181058
\(982\) 0 0
\(983\) −26206.9 45391.7i −0.850326 1.47281i −0.880915 0.473275i \(-0.843072\pi\)
0.0305888 0.999532i \(-0.490262\pi\)
\(984\) 0 0
\(985\) 9156.90 + 5286.74i 0.296206 + 0.171015i
\(986\) 0 0
\(987\) −4014.11 + 16842.4i −0.129453 + 0.543162i
\(988\) 0 0
\(989\) −31912.9 + 55274.8i −1.02606 + 1.77718i
\(990\) 0 0
\(991\) 39255.1 22663.9i 1.25830 0.726482i 0.285558 0.958361i \(-0.407821\pi\)
0.972744 + 0.231880i \(0.0744876\pi\)
\(992\) 0 0
\(993\) 18162.7i 0.580440i
\(994\) 0 0
\(995\) 21263.1i 0.677475i
\(996\) 0 0
\(997\) 5149.95 2973.33i 0.163591 0.0944495i −0.415969 0.909379i \(-0.636558\pi\)
0.579561 + 0.814929i \(0.303224\pi\)
\(998\) 0 0
\(999\) 663.877 1149.87i 0.0210251 0.0364166i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.4.bl.j.271.2 yes 8
4.3 odd 2 336.4.bl.i.271.2 yes 8
7.3 odd 6 336.4.bl.i.31.2 8
28.3 even 6 inner 336.4.bl.j.31.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.4.bl.i.31.2 8 7.3 odd 6
336.4.bl.i.271.2 yes 8 4.3 odd 2
336.4.bl.j.31.2 yes 8 28.3 even 6 inner
336.4.bl.j.271.2 yes 8 1.1 even 1 trivial