Properties

Label 336.4.bl.e.31.3
Level $336$
Weight $4$
Character 336.31
Analytic conductor $19.825$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(31,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.31"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 336.bl (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-9,0,-21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8246417619\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: 6.0.419349987.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 17x^{4} - 24x^{3} + 289x^{2} - 204x + 144 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.3
Root \(0.364319 - 0.631019i\) of defining polynomial
Character \(\chi\) \(=\) 336.31
Dual form 336.4.bl.e.271.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 + 2.59808i) q^{3} +(10.5177 - 6.07241i) q^{5} +(-16.1550 + 9.05627i) q^{7} +(-4.50000 - 7.79423i) q^{9} +(-0.668197 - 0.385784i) q^{11} -61.4752i q^{13} +36.4344i q^{15} +(16.0704 + 9.27827i) q^{17} +(-40.2122 - 69.6496i) q^{19} +(0.703630 - 55.5563i) q^{21} +(-4.96500 + 2.86654i) q^{23} +(11.2482 - 19.4825i) q^{25} +27.0000 q^{27} -28.8053 q^{29} +(55.7304 - 96.5279i) q^{31} +(2.00459 - 1.15735i) q^{33} +(-114.920 + 193.351i) q^{35} +(-116.169 - 201.211i) q^{37} +(159.717 + 92.2128i) q^{39} -227.929i q^{41} -40.4244i q^{43} +(-94.6595 - 54.6517i) q^{45} +(-74.8596 - 129.661i) q^{47} +(178.968 - 292.608i) q^{49} +(-48.2113 + 27.8348i) q^{51} +(340.032 - 588.953i) q^{53} -9.37054 q^{55} +241.273 q^{57} +(171.650 - 297.307i) q^{59} +(292.887 - 169.098i) q^{61} +(143.284 + 85.1626i) q^{63} +(-373.302 - 646.578i) q^{65} +(730.648 + 421.840i) q^{67} -17.1993i q^{69} -912.430i q^{71} +(-256.835 - 148.284i) q^{73} +(33.7447 + 58.4476i) q^{75} +(14.2885 + 0.180966i) q^{77} +(-415.056 + 239.633i) q^{79} +(-40.5000 + 70.1481i) q^{81} -1210.95 q^{83} +225.366 q^{85} +(43.2080 - 74.8385i) q^{87} +(-866.187 + 500.093i) q^{89} +(556.736 + 993.131i) q^{91} +(167.191 + 289.584i) q^{93} +(-845.882 - 488.370i) q^{95} +258.680i q^{97} +6.94410i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 9 q^{3} - 21 q^{5} - 19 q^{7} - 27 q^{9} - 75 q^{11} + 162 q^{17} - 80 q^{19} - 93 q^{21} + 204 q^{23} + 228 q^{25} + 162 q^{27} + 642 q^{29} - 313 q^{31} + 225 q^{33} - 198 q^{35} + 36 q^{37} + 162 q^{39}+ \cdots - 4854 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 + 2.59808i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) 10.5177 6.07241i 0.940733 0.543133i 0.0505431 0.998722i \(-0.483905\pi\)
0.890190 + 0.455589i \(0.150571\pi\)
\(6\) 0 0
\(7\) −16.1550 + 9.05627i −0.872288 + 0.488992i
\(8\) 0 0
\(9\) −4.50000 7.79423i −0.166667 0.288675i
\(10\) 0 0
\(11\) −0.668197 0.385784i −0.0183154 0.0105744i 0.490814 0.871264i \(-0.336699\pi\)
−0.509130 + 0.860690i \(0.670033\pi\)
\(12\) 0 0
\(13\) 61.4752i 1.31155i −0.754957 0.655775i \(-0.772342\pi\)
0.754957 0.655775i \(-0.227658\pi\)
\(14\) 0 0
\(15\) 36.4344i 0.627155i
\(16\) 0 0
\(17\) 16.0704 + 9.27827i 0.229274 + 0.132371i 0.610237 0.792219i \(-0.291074\pi\)
−0.380963 + 0.924590i \(0.624408\pi\)
\(18\) 0 0
\(19\) −40.2122 69.6496i −0.485543 0.840985i 0.514319 0.857599i \(-0.328045\pi\)
−0.999862 + 0.0166137i \(0.994711\pi\)
\(20\) 0 0
\(21\) 0.703630 55.5563i 0.00731165 0.577304i
\(22\) 0 0
\(23\) −4.96500 + 2.86654i −0.0450119 + 0.0259876i −0.522337 0.852739i \(-0.674940\pi\)
0.477325 + 0.878727i \(0.341606\pi\)
\(24\) 0 0
\(25\) 11.2482 19.4825i 0.0899860 0.155860i
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −28.8053 −0.184449 −0.0922244 0.995738i \(-0.529398\pi\)
−0.0922244 + 0.995738i \(0.529398\pi\)
\(30\) 0 0
\(31\) 55.7304 96.5279i 0.322886 0.559255i −0.658196 0.752847i \(-0.728680\pi\)
0.981082 + 0.193591i \(0.0620135\pi\)
\(32\) 0 0
\(33\) 2.00459 1.15735i 0.0105744 0.00610512i
\(34\) 0 0
\(35\) −114.920 + 193.351i −0.555003 + 0.933779i
\(36\) 0 0
\(37\) −116.169 201.211i −0.516164 0.894023i −0.999824 0.0187665i \(-0.994026\pi\)
0.483660 0.875256i \(-0.339307\pi\)
\(38\) 0 0
\(39\) 159.717 + 92.2128i 0.655775 + 0.378612i
\(40\) 0 0
\(41\) 227.929i 0.868206i −0.900863 0.434103i \(-0.857065\pi\)
0.900863 0.434103i \(-0.142935\pi\)
\(42\) 0 0
\(43\) 40.4244i 0.143364i −0.997428 0.0716821i \(-0.977163\pi\)
0.997428 0.0716821i \(-0.0228367\pi\)
\(44\) 0 0
\(45\) −94.6595 54.6517i −0.313578 0.181044i
\(46\) 0 0
\(47\) −74.8596 129.661i −0.232327 0.402403i 0.726165 0.687520i \(-0.241301\pi\)
−0.958493 + 0.285117i \(0.907967\pi\)
\(48\) 0 0
\(49\) 178.968 292.608i 0.521773 0.853084i
\(50\) 0 0
\(51\) −48.2113 + 27.8348i −0.132371 + 0.0764246i
\(52\) 0 0
\(53\) 340.032 588.953i 0.881264 1.52639i 0.0313279 0.999509i \(-0.490026\pi\)
0.849936 0.526885i \(-0.176640\pi\)
\(54\) 0 0
\(55\) −9.37054 −0.0229731
\(56\) 0 0
\(57\) 241.273 0.560657
\(58\) 0 0
\(59\) 171.650 297.307i 0.378762 0.656035i −0.612120 0.790765i \(-0.709683\pi\)
0.990882 + 0.134729i \(0.0430165\pi\)
\(60\) 0 0
\(61\) 292.887 169.098i 0.614760 0.354932i −0.160066 0.987106i \(-0.551171\pi\)
0.774826 + 0.632174i \(0.217837\pi\)
\(62\) 0 0
\(63\) 143.284 + 85.1626i 0.286541 + 0.170309i
\(64\) 0 0
\(65\) −373.302 646.578i −0.712345 1.23382i
\(66\) 0 0
\(67\) 730.648 + 421.840i 1.33228 + 0.769193i 0.985649 0.168808i \(-0.0539917\pi\)
0.346633 + 0.938001i \(0.387325\pi\)
\(68\) 0 0
\(69\) 17.1993i 0.0300080i
\(70\) 0 0
\(71\) 912.430i 1.52515i −0.646901 0.762574i \(-0.723935\pi\)
0.646901 0.762574i \(-0.276065\pi\)
\(72\) 0 0
\(73\) −256.835 148.284i −0.411785 0.237744i 0.279771 0.960067i \(-0.409741\pi\)
−0.691556 + 0.722323i \(0.743075\pi\)
\(74\) 0 0
\(75\) 33.7447 + 58.4476i 0.0519534 + 0.0899860i
\(76\) 0 0
\(77\) 14.2885 + 0.180966i 0.0211471 + 0.000267831i
\(78\) 0 0
\(79\) −415.056 + 239.633i −0.591108 + 0.341276i −0.765535 0.643394i \(-0.777526\pi\)
0.174428 + 0.984670i \(0.444192\pi\)
\(80\) 0 0
\(81\) −40.5000 + 70.1481i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −1210.95 −1.60144 −0.800720 0.599038i \(-0.795550\pi\)
−0.800720 + 0.599038i \(0.795550\pi\)
\(84\) 0 0
\(85\) 225.366 0.287580
\(86\) 0 0
\(87\) 43.2080 74.8385i 0.0532458 0.0922244i
\(88\) 0 0
\(89\) −866.187 + 500.093i −1.03164 + 0.595615i −0.917453 0.397844i \(-0.869758\pi\)
−0.114183 + 0.993460i \(0.536425\pi\)
\(90\) 0 0
\(91\) 556.736 + 993.131i 0.641338 + 1.14405i
\(92\) 0 0
\(93\) 167.191 + 289.584i 0.186418 + 0.322886i
\(94\) 0 0
\(95\) −845.882 488.370i −0.913533 0.527429i
\(96\) 0 0
\(97\) 258.680i 0.270773i 0.990793 + 0.135386i \(0.0432276\pi\)
−0.990793 + 0.135386i \(0.956772\pi\)
\(98\) 0 0
\(99\) 6.94410i 0.00704958i
\(100\) 0 0
\(101\) 1398.23 + 807.271i 1.37752 + 0.795311i 0.991860 0.127330i \(-0.0406407\pi\)
0.385659 + 0.922641i \(0.373974\pi\)
\(102\) 0 0
\(103\) 346.878 + 600.810i 0.331834 + 0.574753i 0.982871 0.184293i \(-0.0589994\pi\)
−0.651038 + 0.759045i \(0.725666\pi\)
\(104\) 0 0
\(105\) −329.960 588.598i −0.306674 0.547060i
\(106\) 0 0
\(107\) −1007.34 + 581.587i −0.910123 + 0.525459i −0.880471 0.474101i \(-0.842773\pi\)
−0.0296520 + 0.999560i \(0.509440\pi\)
\(108\) 0 0
\(109\) −853.188 + 1477.76i −0.749730 + 1.29857i 0.198222 + 0.980157i \(0.436483\pi\)
−0.947952 + 0.318413i \(0.896850\pi\)
\(110\) 0 0
\(111\) 697.014 0.596015
\(112\) 0 0
\(113\) −359.545 −0.299320 −0.149660 0.988738i \(-0.547818\pi\)
−0.149660 + 0.988738i \(0.547818\pi\)
\(114\) 0 0
\(115\) −34.8137 + 60.2990i −0.0282295 + 0.0488949i
\(116\) 0 0
\(117\) −479.152 + 276.638i −0.378612 + 0.218592i
\(118\) 0 0
\(119\) −343.644 4.35231i −0.264721 0.00335274i
\(120\) 0 0
\(121\) −665.202 1152.16i −0.499776 0.865638i
\(122\) 0 0
\(123\) 592.176 + 341.893i 0.434103 + 0.250630i
\(124\) 0 0
\(125\) 1244.89i 0.890768i
\(126\) 0 0
\(127\) 185.775i 0.129802i −0.997892 0.0649009i \(-0.979327\pi\)
0.997892 0.0649009i \(-0.0206731\pi\)
\(128\) 0 0
\(129\) 105.026 + 60.6366i 0.0716821 + 0.0413857i
\(130\) 0 0
\(131\) −1468.22 2543.03i −0.979230 1.69608i −0.665204 0.746661i \(-0.731656\pi\)
−0.314025 0.949415i \(-0.601678\pi\)
\(132\) 0 0
\(133\) 1280.39 + 761.017i 0.834769 + 0.496155i
\(134\) 0 0
\(135\) 283.978 163.955i 0.181044 0.104526i
\(136\) 0 0
\(137\) −190.339 + 329.678i −0.118699 + 0.205593i −0.919252 0.393669i \(-0.871206\pi\)
0.800553 + 0.599262i \(0.204539\pi\)
\(138\) 0 0
\(139\) 2618.74 1.59797 0.798987 0.601349i \(-0.205370\pi\)
0.798987 + 0.601349i \(0.205370\pi\)
\(140\) 0 0
\(141\) 449.157 0.268269
\(142\) 0 0
\(143\) −23.7161 + 41.0775i −0.0138688 + 0.0240215i
\(144\) 0 0
\(145\) −302.966 + 174.918i −0.173517 + 0.100180i
\(146\) 0 0
\(147\) 491.766 + 903.885i 0.275919 + 0.507151i
\(148\) 0 0
\(149\) 1387.26 + 2402.80i 0.762742 + 1.32111i 0.941432 + 0.337202i \(0.109481\pi\)
−0.178691 + 0.983905i \(0.557186\pi\)
\(150\) 0 0
\(151\) −1142.90 659.854i −0.615947 0.355617i 0.159343 0.987223i \(-0.449063\pi\)
−0.775289 + 0.631606i \(0.782396\pi\)
\(152\) 0 0
\(153\) 167.009i 0.0882475i
\(154\) 0 0
\(155\) 1353.67i 0.701480i
\(156\) 0 0
\(157\) 1527.08 + 881.658i 0.776268 + 0.448178i 0.835106 0.550089i \(-0.185406\pi\)
−0.0588383 + 0.998268i \(0.518740\pi\)
\(158\) 0 0
\(159\) 1020.10 + 1766.86i 0.508798 + 0.881264i
\(160\) 0 0
\(161\) 54.2494 91.2734i 0.0265556 0.0446792i
\(162\) 0 0
\(163\) 661.673 382.017i 0.317952 0.183570i −0.332527 0.943094i \(-0.607901\pi\)
0.650480 + 0.759524i \(0.274568\pi\)
\(164\) 0 0
\(165\) 14.0558 24.3454i 0.00663178 0.0114866i
\(166\) 0 0
\(167\) 3031.09 1.40451 0.702253 0.711928i \(-0.252178\pi\)
0.702253 + 0.711928i \(0.252178\pi\)
\(168\) 0 0
\(169\) −1582.20 −0.720163
\(170\) 0 0
\(171\) −361.910 + 626.847i −0.161848 + 0.280328i
\(172\) 0 0
\(173\) −2130.08 + 1229.80i −0.936110 + 0.540463i −0.888739 0.458414i \(-0.848418\pi\)
−0.0473709 + 0.998877i \(0.515084\pi\)
\(174\) 0 0
\(175\) −5.27640 + 416.607i −0.00227919 + 0.179957i
\(176\) 0 0
\(177\) 514.951 + 891.921i 0.218678 + 0.378762i
\(178\) 0 0
\(179\) −3578.02 2065.77i −1.49405 0.862587i −0.494069 0.869423i \(-0.664491\pi\)
−0.999977 + 0.00683552i \(0.997824\pi\)
\(180\) 0 0
\(181\) 3837.51i 1.57591i 0.615734 + 0.787954i \(0.288860\pi\)
−0.615734 + 0.787954i \(0.711140\pi\)
\(182\) 0 0
\(183\) 1014.59i 0.409840i
\(184\) 0 0
\(185\) −2443.67 1410.85i −0.971146 0.560691i
\(186\) 0 0
\(187\) −7.15881 12.3994i −0.00279949 0.00484885i
\(188\) 0 0
\(189\) −436.185 + 244.519i −0.167872 + 0.0941066i
\(190\) 0 0
\(191\) −3453.28 + 1993.75i −1.30822 + 0.755304i −0.981800 0.189920i \(-0.939177\pi\)
−0.326424 + 0.945223i \(0.605844\pi\)
\(192\) 0 0
\(193\) −1093.49 + 1893.98i −0.407829 + 0.706381i −0.994646 0.103339i \(-0.967048\pi\)
0.586817 + 0.809720i \(0.300381\pi\)
\(194\) 0 0
\(195\) 2239.81 0.822546
\(196\) 0 0
\(197\) 2046.43 0.740111 0.370056 0.929010i \(-0.379339\pi\)
0.370056 + 0.929010i \(0.379339\pi\)
\(198\) 0 0
\(199\) −981.826 + 1700.57i −0.349748 + 0.605781i −0.986205 0.165531i \(-0.947066\pi\)
0.636457 + 0.771312i \(0.280399\pi\)
\(200\) 0 0
\(201\) −2191.94 + 1265.52i −0.769193 + 0.444094i
\(202\) 0 0
\(203\) 465.350 260.869i 0.160893 0.0901941i
\(204\) 0 0
\(205\) −1384.07 2397.29i −0.471551 0.816751i
\(206\) 0 0
\(207\) 44.6850 + 25.7989i 0.0150040 + 0.00866255i
\(208\) 0 0
\(209\) 62.0529i 0.0205373i
\(210\) 0 0
\(211\) 3146.54i 1.02662i −0.858203 0.513310i \(-0.828419\pi\)
0.858203 0.513310i \(-0.171581\pi\)
\(212\) 0 0
\(213\) 2370.56 + 1368.65i 0.762574 + 0.440272i
\(214\) 0 0
\(215\) −245.473 425.172i −0.0778658 0.134867i
\(216\) 0 0
\(217\) −26.1424 + 2064.12i −0.00817816 + 0.645721i
\(218\) 0 0
\(219\) 770.506 444.852i 0.237744 0.137262i
\(220\) 0 0
\(221\) 570.383 987.933i 0.173611 0.300704i
\(222\) 0 0
\(223\) 4563.97 1.37052 0.685261 0.728298i \(-0.259688\pi\)
0.685261 + 0.728298i \(0.259688\pi\)
\(224\) 0 0
\(225\) −202.468 −0.0599906
\(226\) 0 0
\(227\) −3077.57 + 5330.51i −0.899848 + 1.55858i −0.0721605 + 0.997393i \(0.522989\pi\)
−0.827687 + 0.561189i \(0.810344\pi\)
\(228\) 0 0
\(229\) 5214.27 3010.46i 1.50467 0.868720i 0.504681 0.863306i \(-0.331610\pi\)
0.999985 0.00541399i \(-0.00172334\pi\)
\(230\) 0 0
\(231\) −21.9029 + 36.8511i −0.00623854 + 0.0104962i
\(232\) 0 0
\(233\) −423.782 734.012i −0.119154 0.206381i 0.800279 0.599628i \(-0.204685\pi\)
−0.919433 + 0.393247i \(0.871352\pi\)
\(234\) 0 0
\(235\) −1574.70 909.156i −0.437116 0.252369i
\(236\) 0 0
\(237\) 1437.80i 0.394072i
\(238\) 0 0
\(239\) 7194.59i 1.94719i −0.228276 0.973597i \(-0.573309\pi\)
0.228276 0.973597i \(-0.426691\pi\)
\(240\) 0 0
\(241\) −1014.72 585.848i −0.271219 0.156588i 0.358222 0.933636i \(-0.383383\pi\)
−0.629441 + 0.777048i \(0.716716\pi\)
\(242\) 0 0
\(243\) −121.500 210.444i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) 105.501 4164.33i 0.0275111 1.08592i
\(246\) 0 0
\(247\) −4281.72 + 2472.05i −1.10299 + 0.636814i
\(248\) 0 0
\(249\) 1816.43 3146.15i 0.462296 0.800720i
\(250\) 0 0
\(251\) 1267.79 0.318813 0.159406 0.987213i \(-0.449042\pi\)
0.159406 + 0.987213i \(0.449042\pi\)
\(252\) 0 0
\(253\) 4.42346 0.00109921
\(254\) 0 0
\(255\) −338.049 + 585.517i −0.0830173 + 0.143790i
\(256\) 0 0
\(257\) 1595.73 921.292i 0.387310 0.223613i −0.293684 0.955903i \(-0.594881\pi\)
0.680994 + 0.732289i \(0.261548\pi\)
\(258\) 0 0
\(259\) 3698.93 + 2198.50i 0.887414 + 0.527445i
\(260\) 0 0
\(261\) 129.624 + 224.515i 0.0307415 + 0.0532458i
\(262\) 0 0
\(263\) −2960.32 1709.14i −0.694073 0.400723i 0.111063 0.993813i \(-0.464574\pi\)
−0.805136 + 0.593090i \(0.797908\pi\)
\(264\) 0 0
\(265\) 8259.25i 1.91457i
\(266\) 0 0
\(267\) 3000.56i 0.687757i
\(268\) 0 0
\(269\) −2646.61 1528.02i −0.599876 0.346338i 0.169117 0.985596i \(-0.445908\pi\)
−0.768993 + 0.639258i \(0.779242\pi\)
\(270\) 0 0
\(271\) 1699.72 + 2944.01i 0.381000 + 0.659911i 0.991205 0.132332i \(-0.0422465\pi\)
−0.610206 + 0.792243i \(0.708913\pi\)
\(272\) 0 0
\(273\) −3415.33 43.2558i −0.757163 0.00958960i
\(274\) 0 0
\(275\) −15.0321 + 8.67878i −0.00329625 + 0.00190309i
\(276\) 0 0
\(277\) 579.502 1003.73i 0.125700 0.217719i −0.796306 0.604894i \(-0.793216\pi\)
0.922006 + 0.387175i \(0.126549\pi\)
\(278\) 0 0
\(279\) −1003.15 −0.215257
\(280\) 0 0
\(281\) 1887.34 0.400673 0.200336 0.979727i \(-0.435797\pi\)
0.200336 + 0.979727i \(0.435797\pi\)
\(282\) 0 0
\(283\) −3275.98 + 5674.16i −0.688115 + 1.19185i 0.284331 + 0.958726i \(0.408228\pi\)
−0.972447 + 0.233125i \(0.925105\pi\)
\(284\) 0 0
\(285\) 2537.65 1465.11i 0.527429 0.304511i
\(286\) 0 0
\(287\) 2064.18 + 3682.19i 0.424546 + 0.757326i
\(288\) 0 0
\(289\) −2284.33 3956.57i −0.464956 0.805327i
\(290\) 0 0
\(291\) −672.070 388.020i −0.135386 0.0781654i
\(292\) 0 0
\(293\) 1482.10i 0.295513i −0.989024 0.147757i \(-0.952795\pi\)
0.989024 0.147757i \(-0.0472052\pi\)
\(294\) 0 0
\(295\) 4169.32i 0.822872i
\(296\) 0 0
\(297\) −18.0413 10.4162i −0.00352479 0.00203504i
\(298\) 0 0
\(299\) 176.221 + 305.224i 0.0340841 + 0.0590354i
\(300\) 0 0
\(301\) 366.094 + 653.056i 0.0701040 + 0.125055i
\(302\) 0 0
\(303\) −4194.70 + 2421.81i −0.795311 + 0.459173i
\(304\) 0 0
\(305\) 2053.67 3557.06i 0.385550 0.667792i
\(306\) 0 0
\(307\) 5600.51 1.04117 0.520583 0.853811i \(-0.325715\pi\)
0.520583 + 0.853811i \(0.325715\pi\)
\(308\) 0 0
\(309\) −2081.27 −0.383168
\(310\) 0 0
\(311\) 3244.84 5620.22i 0.591633 1.02474i −0.402380 0.915473i \(-0.631817\pi\)
0.994013 0.109266i \(-0.0348499\pi\)
\(312\) 0 0
\(313\) 2424.16 1399.59i 0.437768 0.252745i −0.264882 0.964281i \(-0.585333\pi\)
0.702650 + 0.711535i \(0.252000\pi\)
\(314\) 0 0
\(315\) 2024.16 + 25.6364i 0.362059 + 0.00458554i
\(316\) 0 0
\(317\) 3320.90 + 5751.97i 0.588393 + 1.01913i 0.994443 + 0.105275i \(0.0335724\pi\)
−0.406050 + 0.913851i \(0.633094\pi\)
\(318\) 0 0
\(319\) 19.2476 + 11.1126i 0.00337825 + 0.00195043i
\(320\) 0 0
\(321\) 3489.52i 0.606748i
\(322\) 0 0
\(323\) 1492.40i 0.257088i
\(324\) 0 0
\(325\) −1197.69 691.488i −0.204418 0.118021i
\(326\) 0 0
\(327\) −2559.56 4433.29i −0.432857 0.749730i
\(328\) 0 0
\(329\) 2383.60 + 1416.72i 0.399428 + 0.237405i
\(330\) 0 0
\(331\) −2946.79 + 1701.33i −0.489336 + 0.282518i −0.724299 0.689486i \(-0.757836\pi\)
0.234963 + 0.972004i \(0.424503\pi\)
\(332\) 0 0
\(333\) −1045.52 + 1810.90i −0.172055 + 0.298008i
\(334\) 0 0
\(335\) 10246.3 1.67110
\(336\) 0 0
\(337\) −4730.94 −0.764721 −0.382360 0.924013i \(-0.624889\pi\)
−0.382360 + 0.924013i \(0.624889\pi\)
\(338\) 0 0
\(339\) 539.318 934.125i 0.0864062 0.149660i
\(340\) 0 0
\(341\) −74.4777 + 42.9997i −0.0118276 + 0.00682864i
\(342\) 0 0
\(343\) −241.294 + 6347.86i −0.0379843 + 0.999278i
\(344\) 0 0
\(345\) −104.441 180.897i −0.0162983 0.0282295i
\(346\) 0 0
\(347\) 2085.14 + 1203.85i 0.322582 + 0.186243i 0.652543 0.757752i \(-0.273702\pi\)
−0.329961 + 0.943995i \(0.607036\pi\)
\(348\) 0 0
\(349\) 208.381i 0.0319609i 0.999872 + 0.0159805i \(0.00508695\pi\)
−0.999872 + 0.0159805i \(0.994913\pi\)
\(350\) 0 0
\(351\) 1659.83i 0.252408i
\(352\) 0 0
\(353\) −7738.53 4467.84i −1.16680 0.673652i −0.213876 0.976861i \(-0.568609\pi\)
−0.952924 + 0.303208i \(0.901942\pi\)
\(354\) 0 0
\(355\) −5540.65 9596.68i −0.828358 1.43476i
\(356\) 0 0
\(357\) 526.774 886.286i 0.0780948 0.131393i
\(358\) 0 0
\(359\) −1743.42 + 1006.57i −0.256307 + 0.147979i −0.622649 0.782501i \(-0.713943\pi\)
0.366342 + 0.930480i \(0.380610\pi\)
\(360\) 0 0
\(361\) 195.452 338.533i 0.0284957 0.0493560i
\(362\) 0 0
\(363\) 3991.21 0.577092
\(364\) 0 0
\(365\) −3601.76 −0.516506
\(366\) 0 0
\(367\) 5463.42 9462.92i 0.777080 1.34594i −0.156539 0.987672i \(-0.550034\pi\)
0.933618 0.358270i \(-0.116633\pi\)
\(368\) 0 0
\(369\) −1776.53 + 1025.68i −0.250630 + 0.144701i
\(370\) 0 0
\(371\) −159.505 + 12594.0i −0.0223209 + 1.76239i
\(372\) 0 0
\(373\) 1569.77 + 2718.92i 0.217907 + 0.377427i 0.954168 0.299271i \(-0.0967436\pi\)
−0.736261 + 0.676698i \(0.763410\pi\)
\(374\) 0 0
\(375\) −3234.31 1867.33i −0.445384 0.257143i
\(376\) 0 0
\(377\) 1770.81i 0.241914i
\(378\) 0 0
\(379\) 7646.63i 1.03636i −0.855271 0.518181i \(-0.826609\pi\)
0.855271 0.518181i \(-0.173391\pi\)
\(380\) 0 0
\(381\) 482.656 + 278.662i 0.0649009 + 0.0374705i
\(382\) 0 0
\(383\) 3396.30 + 5882.56i 0.453114 + 0.784817i 0.998578 0.0533178i \(-0.0169796\pi\)
−0.545463 + 0.838135i \(0.683646\pi\)
\(384\) 0 0
\(385\) 151.381 84.8621i 0.0200392 0.0112337i
\(386\) 0 0
\(387\) −315.077 + 181.910i −0.0413857 + 0.0238940i
\(388\) 0 0
\(389\) 5239.75 9075.51i 0.682945 1.18290i −0.291133 0.956683i \(-0.594032\pi\)
0.974078 0.226213i \(-0.0726345\pi\)
\(390\) 0 0
\(391\) −106.386 −0.0137601
\(392\) 0 0
\(393\) 8809.33 1.13072
\(394\) 0 0
\(395\) −2910.30 + 5040.78i −0.370716 + 0.642100i
\(396\) 0 0
\(397\) 4592.61 2651.54i 0.580595 0.335207i −0.180775 0.983525i \(-0.557860\pi\)
0.761370 + 0.648318i \(0.224527\pi\)
\(398\) 0 0
\(399\) −3897.77 + 2185.04i −0.489054 + 0.274157i
\(400\) 0 0
\(401\) −612.410 1060.72i −0.0762650 0.132095i 0.825371 0.564591i \(-0.190966\pi\)
−0.901636 + 0.432496i \(0.857633\pi\)
\(402\) 0 0
\(403\) −5934.07 3426.04i −0.733491 0.423481i
\(404\) 0 0
\(405\) 983.730i 0.120696i
\(406\) 0 0
\(407\) 179.264i 0.0218325i
\(408\) 0 0
\(409\) 3918.04 + 2262.08i 0.473678 + 0.273478i 0.717778 0.696272i \(-0.245159\pi\)
−0.244100 + 0.969750i \(0.578492\pi\)
\(410\) 0 0
\(411\) −571.018 989.033i −0.0685310 0.118699i
\(412\) 0 0
\(413\) −80.5189 + 6357.51i −0.00959340 + 0.757463i
\(414\) 0 0
\(415\) −12736.5 + 7353.41i −1.50653 + 0.869795i
\(416\) 0 0
\(417\) −3928.10 + 6803.67i −0.461295 + 0.798987i
\(418\) 0 0
\(419\) 6684.96 0.779432 0.389716 0.920935i \(-0.372573\pi\)
0.389716 + 0.920935i \(0.372573\pi\)
\(420\) 0 0
\(421\) 1872.23 0.216739 0.108369 0.994111i \(-0.465437\pi\)
0.108369 + 0.994111i \(0.465437\pi\)
\(422\) 0 0
\(423\) −673.736 + 1166.95i −0.0774425 + 0.134134i
\(424\) 0 0
\(425\) 361.528 208.728i 0.0412628 0.0238231i
\(426\) 0 0
\(427\) −3200.19 + 5384.25i −0.362689 + 0.610216i
\(428\) 0 0
\(429\) −71.1483 123.233i −0.00800717 0.0138688i
\(430\) 0 0
\(431\) 10940.4 + 6316.43i 1.22269 + 0.705920i 0.965491 0.260438i \(-0.0838670\pi\)
0.257199 + 0.966358i \(0.417200\pi\)
\(432\) 0 0
\(433\) 1619.99i 0.179796i 0.995951 + 0.0898982i \(0.0286542\pi\)
−0.995951 + 0.0898982i \(0.971346\pi\)
\(434\) 0 0
\(435\) 1049.51i 0.115678i
\(436\) 0 0
\(437\) 399.308 + 230.540i 0.0437105 + 0.0252362i
\(438\) 0 0
\(439\) −5281.36 9147.59i −0.574181 0.994511i −0.996130 0.0878917i \(-0.971987\pi\)
0.421949 0.906620i \(-0.361346\pi\)
\(440\) 0 0
\(441\) −3086.01 78.1822i −0.333226 0.00844209i
\(442\) 0 0
\(443\) −7688.07 + 4438.71i −0.824540 + 0.476048i −0.851979 0.523575i \(-0.824598\pi\)
0.0274398 + 0.999623i \(0.491265\pi\)
\(444\) 0 0
\(445\) −6073.54 + 10519.7i −0.646996 + 1.12063i
\(446\) 0 0
\(447\) −8323.54 −0.880738
\(448\) 0 0
\(449\) −6745.07 −0.708952 −0.354476 0.935065i \(-0.615341\pi\)
−0.354476 + 0.935065i \(0.615341\pi\)
\(450\) 0 0
\(451\) −87.9311 + 152.301i −0.00918074 + 0.0159015i
\(452\) 0 0
\(453\) 3428.70 1979.56i 0.355617 0.205316i
\(454\) 0 0
\(455\) 11886.3 + 7064.75i 1.22470 + 0.727913i
\(456\) 0 0
\(457\) 8541.47 + 14794.3i 0.874295 + 1.51432i 0.857512 + 0.514465i \(0.172009\pi\)
0.0167836 + 0.999859i \(0.494657\pi\)
\(458\) 0 0
\(459\) 433.902 + 250.513i 0.0441237 + 0.0254749i
\(460\) 0 0
\(461\) 11025.8i 1.11394i 0.830534 + 0.556968i \(0.188036\pi\)
−0.830534 + 0.556968i \(0.811964\pi\)
\(462\) 0 0
\(463\) 10494.7i 1.05341i −0.850048 0.526705i \(-0.823427\pi\)
0.850048 0.526705i \(-0.176573\pi\)
\(464\) 0 0
\(465\) 3516.94 + 2030.51i 0.350740 + 0.202500i
\(466\) 0 0
\(467\) 222.099 + 384.687i 0.0220075 + 0.0381181i 0.876819 0.480820i \(-0.159661\pi\)
−0.854812 + 0.518938i \(0.826328\pi\)
\(468\) 0 0
\(469\) −15623.9 197.880i −1.53826 0.0194824i
\(470\) 0 0
\(471\) −4581.23 + 2644.97i −0.448178 + 0.258756i
\(472\) 0 0
\(473\) −15.5951 + 27.0114i −0.00151599 + 0.00262577i
\(474\) 0 0
\(475\) −1809.27 −0.174768
\(476\) 0 0
\(477\) −6120.58 −0.587510
\(478\) 0 0
\(479\) 3577.53 6196.46i 0.341256 0.591072i −0.643411 0.765521i \(-0.722481\pi\)
0.984666 + 0.174449i \(0.0558145\pi\)
\(480\) 0 0
\(481\) −12369.5 + 7141.51i −1.17256 + 0.676975i
\(482\) 0 0
\(483\) 155.761 + 277.854i 0.0146737 + 0.0261756i
\(484\) 0 0
\(485\) 1570.81 + 2720.72i 0.147066 + 0.254725i
\(486\) 0 0
\(487\) −6789.38 3919.85i −0.631737 0.364734i 0.149687 0.988733i \(-0.452173\pi\)
−0.781425 + 0.624000i \(0.785507\pi\)
\(488\) 0 0
\(489\) 2292.10i 0.211968i
\(490\) 0 0
\(491\) 5561.90i 0.511211i −0.966781 0.255606i \(-0.917725\pi\)
0.966781 0.255606i \(-0.0822749\pi\)
\(492\) 0 0
\(493\) −462.914 267.264i −0.0422893 0.0244157i
\(494\) 0 0
\(495\) 42.1674 + 73.0361i 0.00382886 + 0.00663178i
\(496\) 0 0
\(497\) 8263.21 + 14740.3i 0.745786 + 1.33037i
\(498\) 0 0
\(499\) 4928.49 2845.47i 0.442143 0.255272i −0.262363 0.964969i \(-0.584502\pi\)
0.704506 + 0.709698i \(0.251168\pi\)
\(500\) 0 0
\(501\) −4546.63 + 7874.99i −0.405446 + 0.702253i
\(502\) 0 0
\(503\) 16635.5 1.47463 0.737314 0.675550i \(-0.236094\pi\)
0.737314 + 0.675550i \(0.236094\pi\)
\(504\) 0 0
\(505\) 19608.3 1.72784
\(506\) 0 0
\(507\) 2373.30 4110.67i 0.207893 0.360081i
\(508\) 0 0
\(509\) −9535.07 + 5505.08i −0.830323 + 0.479387i −0.853963 0.520333i \(-0.825808\pi\)
0.0236400 + 0.999721i \(0.492474\pi\)
\(510\) 0 0
\(511\) 5492.07 + 69.5580i 0.475450 + 0.00602166i
\(512\) 0 0
\(513\) −1085.73 1880.54i −0.0934428 0.161848i
\(514\) 0 0
\(515\) 7296.72 + 4212.76i 0.624334 + 0.360459i
\(516\) 0 0
\(517\) 115.518i 0.00982687i
\(518\) 0 0
\(519\) 7378.81i 0.624073i
\(520\) 0 0
\(521\) 6052.88 + 3494.63i 0.508985 + 0.293863i 0.732416 0.680857i \(-0.238392\pi\)
−0.223431 + 0.974720i \(0.571726\pi\)
\(522\) 0 0
\(523\) 5071.85 + 8784.70i 0.424047 + 0.734471i 0.996331 0.0855846i \(-0.0272758\pi\)
−0.572284 + 0.820056i \(0.693942\pi\)
\(524\) 0 0
\(525\) −1074.46 638.620i −0.0893208 0.0530888i
\(526\) 0 0
\(527\) 1791.22 1034.16i 0.148059 0.0854817i
\(528\) 0 0
\(529\) −6067.07 + 10508.5i −0.498649 + 0.863686i
\(530\) 0 0
\(531\) −3089.70 −0.252508
\(532\) 0 0
\(533\) −14011.9 −1.13870
\(534\) 0 0
\(535\) −7063.27 + 12233.9i −0.570788 + 0.988634i
\(536\) 0 0
\(537\) 10734.1 6197.32i 0.862587 0.498015i
\(538\) 0 0
\(539\) −232.469 + 126.477i −0.0185773 + 0.0101071i
\(540\) 0 0
\(541\) −5267.98 9124.42i −0.418648 0.725119i 0.577156 0.816634i \(-0.304162\pi\)
−0.995804 + 0.0915149i \(0.970829\pi\)
\(542\) 0 0
\(543\) −9970.13 5756.26i −0.787954 0.454926i
\(544\) 0 0
\(545\) 20723.6i 1.62881i
\(546\) 0 0
\(547\) 15181.0i 1.18664i −0.804966 0.593321i \(-0.797816\pi\)
0.804966 0.593321i \(-0.202184\pi\)
\(548\) 0 0
\(549\) −2635.98 1521.89i −0.204920 0.118311i
\(550\) 0 0
\(551\) 1158.33 + 2006.28i 0.0895579 + 0.155119i
\(552\) 0 0
\(553\) 4535.06 7630.13i 0.348735 0.586738i
\(554\) 0 0
\(555\) 7331.00 4232.55i 0.560691 0.323715i
\(556\) 0 0
\(557\) 5980.73 10358.9i 0.454958 0.788011i −0.543727 0.839262i \(-0.682987\pi\)
0.998686 + 0.0512509i \(0.0163208\pi\)
\(558\) 0 0
\(559\) −2485.10 −0.188029
\(560\) 0 0
\(561\) 42.9528 0.00323257
\(562\) 0 0
\(563\) −10321.5 + 17877.3i −0.772645 + 1.33826i 0.163464 + 0.986549i \(0.447733\pi\)
−0.936109 + 0.351711i \(0.885600\pi\)
\(564\) 0 0
\(565\) −3781.59 + 2183.30i −0.281580 + 0.162570i
\(566\) 0 0
\(567\) 18.9980 1500.02i 0.00140713 0.111102i
\(568\) 0 0
\(569\) 335.607 + 581.289i 0.0247265 + 0.0428276i 0.878124 0.478433i \(-0.158795\pi\)
−0.853397 + 0.521261i \(0.825462\pi\)
\(570\) 0 0
\(571\) 12166.9 + 7024.54i 0.891711 + 0.514830i 0.874502 0.485022i \(-0.161188\pi\)
0.0172093 + 0.999852i \(0.494522\pi\)
\(572\) 0 0
\(573\) 11962.5i 0.872149i
\(574\) 0 0
\(575\) 128.974i 0.00935409i
\(576\) 0 0
\(577\) 9665.49 + 5580.37i 0.697365 + 0.402624i 0.806365 0.591418i \(-0.201432\pi\)
−0.109000 + 0.994042i \(0.534765\pi\)
\(578\) 0 0
\(579\) −3280.47 5681.94i −0.235460 0.407829i
\(580\) 0 0
\(581\) 19563.0 10966.7i 1.39692 0.783092i
\(582\) 0 0
\(583\) −454.417 + 262.358i −0.0322813 + 0.0186376i
\(584\) 0 0
\(585\) −3359.72 + 5819.21i −0.237448 + 0.411273i
\(586\) 0 0
\(587\) −337.441 −0.0237269 −0.0118635 0.999930i \(-0.503776\pi\)
−0.0118635 + 0.999930i \(0.503776\pi\)
\(588\) 0 0
\(589\) −8964.17 −0.627101
\(590\) 0 0
\(591\) −3069.64 + 5316.78i −0.213652 + 0.370056i
\(592\) 0 0
\(593\) −7282.42 + 4204.51i −0.504306 + 0.291161i −0.730490 0.682923i \(-0.760708\pi\)
0.226184 + 0.974085i \(0.427375\pi\)
\(594\) 0 0
\(595\) −3640.78 + 2040.97i −0.250853 + 0.140625i
\(596\) 0 0
\(597\) −2945.48 5101.72i −0.201927 0.349748i
\(598\) 0 0
\(599\) −4933.96 2848.62i −0.336554 0.194310i 0.322193 0.946674i \(-0.395580\pi\)
−0.658747 + 0.752364i \(0.728913\pi\)
\(600\) 0 0
\(601\) 17264.3i 1.17176i −0.810398 0.585880i \(-0.800749\pi\)
0.810398 0.585880i \(-0.199251\pi\)
\(602\) 0 0
\(603\) 7593.12i 0.512795i
\(604\) 0 0
\(605\) −13992.8 8078.76i −0.940312 0.542890i
\(606\) 0 0
\(607\) 4217.42 + 7304.79i 0.282010 + 0.488455i 0.971880 0.235478i \(-0.0756656\pi\)
−0.689870 + 0.723933i \(0.742332\pi\)
\(608\) 0 0
\(609\) −20.2683 + 1600.32i −0.00134863 + 0.106483i
\(610\) 0 0
\(611\) −7970.91 + 4602.01i −0.527771 + 0.304709i
\(612\) 0 0
\(613\) 12924.6 22386.0i 0.851579 1.47498i −0.0282034 0.999602i \(-0.508979\pi\)
0.879783 0.475376i \(-0.157688\pi\)
\(614\) 0 0
\(615\) 8304.45 0.544500
\(616\) 0 0
\(617\) 18654.5 1.21718 0.608591 0.793484i \(-0.291735\pi\)
0.608591 + 0.793484i \(0.291735\pi\)
\(618\) 0 0
\(619\) 4075.65 7059.23i 0.264643 0.458376i −0.702827 0.711361i \(-0.748079\pi\)
0.967470 + 0.252985i \(0.0814125\pi\)
\(620\) 0 0
\(621\) −134.055 + 77.3967i −0.00866255 + 0.00500133i
\(622\) 0 0
\(623\) 9464.27 15923.4i 0.608632 1.02401i
\(624\) 0 0
\(625\) 8965.48 + 15528.7i 0.573791 + 0.993835i
\(626\) 0 0
\(627\) −161.218 93.0793i −0.0102686 0.00592860i
\(628\) 0 0
\(629\) 4311.39i 0.273301i
\(630\) 0 0
\(631\) 29638.3i 1.86986i 0.354833 + 0.934930i \(0.384538\pi\)
−0.354833 + 0.934930i \(0.615462\pi\)
\(632\) 0 0
\(633\) 8174.95 + 4719.81i 0.513310 + 0.296360i
\(634\) 0 0
\(635\) −1128.10 1953.92i −0.0704996 0.122109i
\(636\) 0 0
\(637\) −17988.1 11002.1i −1.11886 0.684331i
\(638\) 0 0
\(639\) −7111.69 + 4105.94i −0.440272 + 0.254191i
\(640\) 0 0
\(641\) 6414.94 11111.0i 0.395281 0.684646i −0.597856 0.801603i \(-0.703981\pi\)
0.993137 + 0.116957i \(0.0373140\pi\)
\(642\) 0 0
\(643\) 22280.4 1.36649 0.683245 0.730189i \(-0.260568\pi\)
0.683245 + 0.730189i \(0.260568\pi\)
\(644\) 0 0
\(645\) 1472.84 0.0899116
\(646\) 0 0
\(647\) 3349.69 5801.84i 0.203540 0.352541i −0.746127 0.665804i \(-0.768089\pi\)
0.949666 + 0.313263i \(0.101422\pi\)
\(648\) 0 0
\(649\) −229.392 + 132.440i −0.0138743 + 0.00801034i
\(650\) 0 0
\(651\) −5323.52 3164.10i −0.320500 0.190493i
\(652\) 0 0
\(653\) −10547.7 18269.2i −0.632104 1.09484i −0.987121 0.159977i \(-0.948858\pi\)
0.355017 0.934860i \(-0.384475\pi\)
\(654\) 0 0
\(655\) −30884.7 17831.3i −1.84239 1.06370i
\(656\) 0 0
\(657\) 2669.11i 0.158496i
\(658\) 0 0
\(659\) 435.480i 0.0257418i 0.999917 + 0.0128709i \(0.00409705\pi\)
−0.999917 + 0.0128709i \(0.995903\pi\)
\(660\) 0 0
\(661\) 9260.55 + 5346.58i 0.544922 + 0.314611i 0.747071 0.664744i \(-0.231459\pi\)
−0.202149 + 0.979355i \(0.564793\pi\)
\(662\) 0 0
\(663\) 1711.15 + 2963.80i 0.100235 + 0.173611i
\(664\) 0 0
\(665\) 18088.0 + 229.088i 1.05477 + 0.0133589i
\(666\) 0 0
\(667\) 143.019 82.5718i 0.00830240 0.00479339i
\(668\) 0 0
\(669\) −6845.96 + 11857.6i −0.395635 + 0.685261i
\(670\) 0 0
\(671\) −260.942 −0.0150127
\(672\) 0 0
\(673\) −2981.24 −0.170755 −0.0853777 0.996349i \(-0.527210\pi\)
−0.0853777 + 0.996349i \(0.527210\pi\)
\(674\) 0 0
\(675\) 303.703 526.028i 0.0173178 0.0299953i
\(676\) 0 0
\(677\) 6443.27 3720.03i 0.365783 0.211185i −0.305832 0.952086i \(-0.598934\pi\)
0.671615 + 0.740901i \(0.265601\pi\)
\(678\) 0 0
\(679\) −2342.67 4178.97i −0.132406 0.236192i
\(680\) 0 0
\(681\) −9232.71 15991.5i −0.519527 0.899848i
\(682\) 0 0
\(683\) −16424.1 9482.49i −0.920135 0.531240i −0.0364572 0.999335i \(-0.511607\pi\)
−0.883678 + 0.468095i \(0.844941\pi\)
\(684\) 0 0
\(685\) 4623.27i 0.257878i
\(686\) 0 0
\(687\) 18062.8i 1.00311i
\(688\) 0 0
\(689\) −36206.0 20903.5i −2.00194 1.15582i
\(690\) 0 0
\(691\) −5065.46 8773.63i −0.278870 0.483017i 0.692234 0.721673i \(-0.256626\pi\)
−0.971104 + 0.238656i \(0.923293\pi\)
\(692\) 0 0
\(693\) −62.8877 112.182i −0.00344719 0.00614927i
\(694\) 0 0
\(695\) 27543.1 15902.0i 1.50327 0.867911i
\(696\) 0 0
\(697\) 2114.78 3662.91i 0.114926 0.199057i
\(698\) 0 0
\(699\) 2542.69 0.137587
\(700\) 0 0
\(701\) −19406.6 −1.04562 −0.522808 0.852450i \(-0.675116\pi\)
−0.522808 + 0.852450i \(0.675116\pi\)
\(702\) 0 0
\(703\) −9342.84 + 16182.3i −0.501240 + 0.868173i
\(704\) 0 0
\(705\) 4724.11 2727.47i 0.252369 0.145705i
\(706\) 0 0
\(707\) −29899.3 378.680i −1.59050 0.0201439i
\(708\) 0 0
\(709\) −12317.6 21334.8i −0.652466 1.13010i −0.982523 0.186143i \(-0.940401\pi\)
0.330057 0.943961i \(-0.392932\pi\)
\(710\) 0 0
\(711\) 3735.51 + 2156.70i 0.197036 + 0.113759i
\(712\) 0 0
\(713\) 639.015i 0.0335642i
\(714\) 0 0
\(715\) 576.056i 0.0301304i
\(716\) 0 0
\(717\) 18692.1 + 10791.9i 0.973597 + 0.562106i
\(718\) 0 0
\(719\) 1156.13 + 2002.48i 0.0599672 + 0.103866i 0.894450 0.447167i \(-0.147567\pi\)
−0.834483 + 0.551033i \(0.814234\pi\)
\(720\) 0 0
\(721\) −11044.9 6564.66i −0.570504 0.339086i
\(722\) 0 0
\(723\) 3044.16 1757.54i 0.156588 0.0904063i
\(724\) 0 0
\(725\) −324.010 + 561.201i −0.0165978 + 0.0287482i
\(726\) 0 0
\(727\) 125.782 0.00641675 0.00320838 0.999995i \(-0.498979\pi\)
0.00320838 + 0.999995i \(0.498979\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 375.068 649.637i 0.0189773 0.0328696i
\(732\) 0 0
\(733\) −15549.8 + 8977.69i −0.783554 + 0.452385i −0.837688 0.546148i \(-0.816093\pi\)
0.0541342 + 0.998534i \(0.482760\pi\)
\(734\) 0 0
\(735\) 10661.0 + 6520.60i 0.535017 + 0.327233i
\(736\) 0 0
\(737\) −325.478 563.744i −0.0162675 0.0281761i
\(738\) 0 0
\(739\) 21422.9 + 12368.5i 1.06638 + 0.615673i 0.927189 0.374593i \(-0.122217\pi\)
0.139188 + 0.990266i \(0.455551\pi\)
\(740\) 0 0
\(741\) 14832.3i 0.735329i
\(742\) 0 0
\(743\) 30155.3i 1.48895i 0.667650 + 0.744475i \(0.267300\pi\)
−0.667650 + 0.744475i \(0.732700\pi\)
\(744\) 0 0
\(745\) 29181.5 + 16848.0i 1.43507 + 0.828540i
\(746\) 0 0
\(747\) 5449.30 + 9438.46i 0.266907 + 0.462296i
\(748\) 0 0
\(749\) 11006.5 18518.3i 0.536943 0.903395i
\(750\) 0 0
\(751\) 776.708 448.433i 0.0377397 0.0217890i −0.481011 0.876714i \(-0.659730\pi\)
0.518751 + 0.854925i \(0.326397\pi\)
\(752\) 0 0
\(753\) −1901.68 + 3293.81i −0.0920333 + 0.159406i
\(754\) 0 0
\(755\) −16027.6 −0.772588
\(756\) 0 0
\(757\) 37636.5 1.80703 0.903514 0.428559i \(-0.140978\pi\)
0.903514 + 0.428559i \(0.140978\pi\)
\(758\) 0 0
\(759\) −6.63520 + 11.4925i −0.000317315 + 0.000549606i
\(760\) 0 0
\(761\) 12562.6 7253.04i 0.598417 0.345496i −0.170002 0.985444i \(-0.554377\pi\)
0.768418 + 0.639948i \(0.221044\pi\)
\(762\) 0 0
\(763\) 400.219 31600.0i 0.0189894 1.49934i
\(764\) 0 0
\(765\) −1014.15 1756.55i −0.0479301 0.0830173i
\(766\) 0 0
\(767\) −18277.0 10552.2i −0.860423 0.496765i
\(768\) 0 0
\(769\) 38539.5i 1.80724i −0.428331 0.903622i \(-0.640898\pi\)
0.428331 0.903622i \(-0.359102\pi\)
\(770\) 0 0
\(771\) 5527.75i 0.258207i
\(772\) 0 0
\(773\) −17334.9 10008.3i −0.806590 0.465685i 0.0391804 0.999232i \(-0.487525\pi\)
−0.845770 + 0.533547i \(0.820859\pi\)
\(774\) 0 0
\(775\) −1253.74 2171.54i −0.0581105 0.100650i
\(776\) 0 0
\(777\) −11260.3 + 6312.35i −0.519897 + 0.291447i
\(778\) 0 0
\(779\) −15875.1 + 9165.52i −0.730149 + 0.421552i
\(780\) 0 0
\(781\) −352.001 + 609.683i −0.0161275 + 0.0279336i
\(782\) 0 0
\(783\) −777.744 −0.0354972
\(784\) 0 0
\(785\) 21415.1 0.973681
\(786\) 0 0
\(787\) 2826.82 4896.20i 0.128037 0.221767i −0.794879 0.606768i \(-0.792466\pi\)
0.922916 + 0.385001i \(0.125799\pi\)
\(788\) 0 0
\(789\) 8880.96 5127.42i 0.400723 0.231358i
\(790\) 0 0
\(791\) 5808.45 3256.14i 0.261093 0.146365i
\(792\) 0 0
\(793\) −10395.4 18005.3i −0.465511 0.806288i
\(794\) 0 0
\(795\) 21458.2 + 12388.9i 0.957287 + 0.552690i
\(796\) 0 0
\(797\) 31124.0i 1.38327i 0.722246 + 0.691636i \(0.243110\pi\)
−0.722246 + 0.691636i \(0.756890\pi\)
\(798\) 0 0
\(799\) 2778.27i 0.123014i
\(800\) 0 0
\(801\) 7795.68 + 4500.84i 0.343879 + 0.198538i
\(802\) 0 0
\(803\) 114.411 + 198.166i 0.00502799 + 0.00870874i
\(804\) 0 0
\(805\) 16.3306 1289.41i 0.000715005 0.0564544i
\(806\) 0 0
\(807\) 7939.83 4584.06i 0.346338 0.199959i
\(808\) 0 0
\(809\) 19799.6 34294.0i 0.860468 1.49037i −0.0110106 0.999939i \(-0.503505\pi\)
0.871478 0.490434i \(-0.163162\pi\)
\(810\) 0 0
\(811\) −13128.8 −0.568453 −0.284226 0.958757i \(-0.591737\pi\)
−0.284226 + 0.958757i \(0.591737\pi\)
\(812\) 0 0
\(813\) −10198.3 −0.439941
\(814\) 0 0
\(815\) 4639.53 8035.90i 0.199406 0.345381i
\(816\) 0 0
\(817\) −2815.54 + 1625.55i −0.120567 + 0.0696095i
\(818\) 0 0
\(819\) 5235.38 8808.42i 0.223369 0.375813i
\(820\) 0 0
\(821\) 3713.99 + 6432.82i 0.157880 + 0.273455i 0.934104 0.357001i \(-0.116201\pi\)
−0.776224 + 0.630457i \(0.782868\pi\)
\(822\) 0 0
\(823\) 3281.61 + 1894.64i 0.138991 + 0.0802465i 0.567883 0.823109i \(-0.307763\pi\)
−0.428892 + 0.903356i \(0.641096\pi\)
\(824\) 0 0
\(825\) 52.0727i 0.00219750i
\(826\) 0 0
\(827\) 24254.8i 1.01986i −0.860216 0.509930i \(-0.829671\pi\)
0.860216 0.509930i \(-0.170329\pi\)
\(828\) 0 0
\(829\) −3719.17 2147.26i −0.155817 0.0899608i 0.420064 0.907494i \(-0.362008\pi\)
−0.575881 + 0.817534i \(0.695341\pi\)
\(830\) 0 0
\(831\) 1738.51 + 3011.18i 0.0725729 + 0.125700i
\(832\) 0 0
\(833\) 5590.99 3041.82i 0.232553 0.126522i
\(834\) 0 0
\(835\) 31880.1 18406.0i 1.32127 0.762833i
\(836\) 0 0
\(837\) 1504.72 2606.25i 0.0621395 0.107629i
\(838\) 0 0
\(839\) −30994.8 −1.27540 −0.637699 0.770285i \(-0.720114\pi\)
−0.637699 + 0.770285i \(0.720114\pi\)
\(840\) 0 0
\(841\) −23559.3 −0.965979
\(842\) 0 0
\(843\) −2831.00 + 4903.44i −0.115664 + 0.200336i
\(844\) 0 0
\(845\) −16641.1 + 9607.74i −0.677481 + 0.391144i
\(846\) 0 0
\(847\) 21180.7 + 12589.0i 0.859239 + 0.510699i
\(848\) 0 0
\(849\) −9827.93 17022.5i −0.397284 0.688115i
\(850\) 0 0
\(851\) 1153.56 + 666.008i 0.0464671 + 0.0268278i
\(852\) 0 0
\(853\) 5644.76i 0.226580i −0.993562 0.113290i \(-0.963861\pi\)
0.993562 0.113290i \(-0.0361390\pi\)
\(854\) 0 0
\(855\) 8790.66i 0.351619i
\(856\) 0 0
\(857\) −8690.47 5017.45i −0.346395 0.199991i 0.316701 0.948525i \(-0.397425\pi\)
−0.663096 + 0.748534i \(0.730758\pi\)
\(858\) 0 0
\(859\) 14845.4 + 25713.0i 0.589662 + 1.02132i 0.994277 + 0.106837i \(0.0340723\pi\)
−0.404615 + 0.914487i \(0.632594\pi\)
\(860\) 0 0
\(861\) −12662.9 160.377i −0.501219 0.00634802i
\(862\) 0 0
\(863\) 20415.6 11786.9i 0.805278 0.464927i −0.0400357 0.999198i \(-0.512747\pi\)
0.845313 + 0.534271i \(0.179414\pi\)
\(864\) 0 0
\(865\) −14935.7 + 25869.4i −0.587086 + 1.01686i
\(866\) 0 0
\(867\) 13706.0 0.536885
\(868\) 0 0
\(869\) 369.786 0.0144351
\(870\) 0 0
\(871\) 25932.7 44916.7i 1.00884 1.74735i
\(872\) 0 0
\(873\) 2016.21 1164.06i 0.0781654 0.0451288i
\(874\) 0 0
\(875\) −11274.0 20111.1i −0.435579 0.777006i
\(876\) 0 0
\(877\) 15462.2 + 26781.3i 0.595350 + 1.03118i 0.993497 + 0.113855i \(0.0363198\pi\)
−0.398148 + 0.917321i \(0.630347\pi\)
\(878\) 0 0
\(879\) 3850.62 + 2223.15i 0.147757 + 0.0853073i
\(880\) 0 0
\(881\) 44143.8i 1.68813i 0.536241 + 0.844065i \(0.319844\pi\)
−0.536241 + 0.844065i \(0.680156\pi\)
\(882\) 0 0
\(883\) 36026.0i 1.37301i 0.727123 + 0.686507i \(0.240857\pi\)
−0.727123 + 0.686507i \(0.759143\pi\)
\(884\) 0 0
\(885\) 10832.2 + 6253.98i 0.411436 + 0.237543i
\(886\) 0 0
\(887\) −7688.11 13316.2i −0.291028 0.504075i 0.683025 0.730395i \(-0.260664\pi\)
−0.974053 + 0.226320i \(0.927330\pi\)
\(888\) 0 0
\(889\) 1682.42 + 3001.19i 0.0634721 + 0.113225i
\(890\) 0 0
\(891\) 54.1239 31.2485i 0.00203504 0.00117493i
\(892\) 0 0
\(893\) −6020.54 + 10427.9i −0.225610 + 0.390768i
\(894\) 0 0
\(895\) −50176.9 −1.87400
\(896\) 0 0
\(897\) −1057.33 −0.0393569
\(898\) 0 0
\(899\) −1605.33 + 2780.52i −0.0595560 + 0.103154i
\(900\) 0 0
\(901\) 10928.9 6309.82i 0.404101 0.233308i
\(902\) 0 0
\(903\) −2245.83 28.4438i −0.0827647 0.00104823i
\(904\) 0 0
\(905\) 23302.9 + 40361.8i 0.855927 + 1.48251i
\(906\) 0 0
\(907\) 41406.8 + 23906.2i 1.51587 + 0.875186i 0.999827 + 0.0186205i \(0.00592743\pi\)
0.516039 + 0.856565i \(0.327406\pi\)
\(908\) 0 0
\(909\) 14530.9i 0.530208i
\(910\) 0 0
\(911\) 23686.8i 0.861446i −0.902484 0.430723i \(-0.858259\pi\)
0.902484 0.430723i \(-0.141741\pi\)
\(912\) 0 0
\(913\) 809.156 + 467.167i 0.0293310 + 0.0169342i
\(914\) 0 0
\(915\) 6161.01 + 10671.2i 0.222597 + 0.385550i
\(916\) 0 0
\(917\) 46749.5 + 27786.1i 1.68354 + 1.00063i
\(918\) 0 0
\(919\) −1741.06 + 1005.20i −0.0624943 + 0.0360811i −0.530922 0.847421i \(-0.678154\pi\)
0.468427 + 0.883502i \(0.344821\pi\)
\(920\) 0 0
\(921\) −8400.77 + 14550.6i −0.300559 + 0.520583i
\(922\) 0 0
\(923\) −56091.8 −2.00031
\(924\) 0 0
\(925\) −5226.79 −0.185790
\(926\) 0 0
\(927\) 3121.90 5407.29i 0.110611 0.191584i
\(928\) 0 0
\(929\) −43408.4 + 25061.9i −1.53303 + 0.885095i −0.533810 + 0.845605i \(0.679240\pi\)
−0.999220 + 0.0394904i \(0.987427\pi\)
\(930\) 0 0
\(931\) −27576.7 698.640i −0.970775 0.0245940i
\(932\) 0 0
\(933\) 9734.51 + 16860.7i 0.341580 + 0.591633i
\(934\) 0 0
\(935\) −150.589 86.9424i −0.00526714 0.00304098i
\(936\) 0 0
\(937\) 24059.4i 0.838833i 0.907794 + 0.419416i \(0.137765\pi\)
−0.907794 + 0.419416i \(0.862235\pi\)
\(938\) 0 0
\(939\) 8397.52i 0.291845i
\(940\) 0 0
\(941\) −28425.4 16411.4i −0.984740 0.568540i −0.0810424 0.996711i \(-0.525825\pi\)
−0.903698 + 0.428171i \(0.859158\pi\)
\(942\) 0 0
\(943\) 653.367 + 1131.67i 0.0225626 + 0.0390796i
\(944\) 0 0
\(945\) −3102.85 + 5220.48i −0.106810 + 0.179706i
\(946\) 0 0
\(947\) −7552.82 + 4360.62i −0.259170 + 0.149632i −0.623956 0.781460i \(-0.714475\pi\)
0.364786 + 0.931091i \(0.381142\pi\)
\(948\) 0 0
\(949\) −9115.78 + 15789.0i −0.311813 + 0.540076i
\(950\) 0 0
\(951\) −19925.4 −0.679417
\(952\) 0 0
\(953\) −31310.6 −1.06427 −0.532136 0.846659i \(-0.678610\pi\)
−0.532136 + 0.846659i \(0.678610\pi\)
\(954\) 0 0
\(955\) −24213.8 + 41939.5i −0.820460 + 1.42108i
\(956\) 0 0
\(957\) −57.7429 + 33.3379i −0.00195043 + 0.00112608i
\(958\) 0 0
\(959\) 89.2857 7049.71i 0.00300645 0.237379i
\(960\) 0 0
\(961\) 8683.75 + 15040.7i 0.291489 + 0.504874i
\(962\) 0 0
\(963\) 9066.05 + 5234.29i 0.303374 + 0.175153i
\(964\) 0 0
\(965\) 26560.4i 0.886022i
\(966\) 0 0
\(967\) 48965.2i 1.62835i 0.580620 + 0.814175i \(0.302810\pi\)
−0.580620 + 0.814175i \(0.697190\pi\)
\(968\) 0 0
\(969\) 3877.37 + 2238.60i 0.128544 + 0.0742148i
\(970\) 0 0
\(971\) −13889.1 24056.5i −0.459033 0.795068i 0.539877 0.841744i \(-0.318471\pi\)
−0.998910 + 0.0466754i \(0.985137\pi\)
\(972\) 0 0
\(973\) −42305.7 + 23716.0i −1.39389 + 0.781397i
\(974\) 0 0
\(975\) 3593.08 2074.46i 0.118021 0.0681395i
\(976\) 0 0
\(977\) 10030.4 17373.1i 0.328454 0.568899i −0.653751 0.756709i \(-0.726806\pi\)
0.982205 + 0.187810i \(0.0601391\pi\)
\(978\) 0 0
\(979\) 771.711 0.0251930
\(980\) 0 0
\(981\) 15357.4 0.499820
\(982\) 0 0
\(983\) 23717.3 41079.6i 0.769548 1.33290i −0.168260 0.985743i \(-0.553815\pi\)
0.937808 0.347154i \(-0.112852\pi\)
\(984\) 0 0
\(985\) 21523.7 12426.7i 0.696247 0.401979i
\(986\) 0 0
\(987\) −7256.14 + 4067.69i −0.234008 + 0.131181i
\(988\) 0 0
\(989\) 115.878 + 200.707i 0.00372570 + 0.00645310i
\(990\) 0 0
\(991\) 35138.6 + 20287.3i 1.12635 + 0.650300i 0.943015 0.332750i \(-0.107976\pi\)
0.183338 + 0.983050i \(0.441310\pi\)
\(992\) 0 0
\(993\) 10208.0i 0.326224i
\(994\) 0 0
\(995\) 23848.2i 0.759838i
\(996\) 0 0
\(997\) 30411.0 + 17557.8i 0.966024 + 0.557734i 0.898022 0.439951i \(-0.145004\pi\)
0.0680022 + 0.997685i \(0.478337\pi\)
\(998\) 0 0
\(999\) −3136.56 5432.69i −0.0993359 0.172055i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.4.bl.e.31.3 6
4.3 odd 2 336.4.bl.g.31.3 yes 6
7.5 odd 6 336.4.bl.g.271.3 yes 6
28.19 even 6 inner 336.4.bl.e.271.3 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.4.bl.e.31.3 6 1.1 even 1 trivial
336.4.bl.e.271.3 yes 6 28.19 even 6 inner
336.4.bl.g.31.3 yes 6 4.3 odd 2
336.4.bl.g.271.3 yes 6 7.5 odd 6