gp: [N,k,chi] = [336,4,Mod(31,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.31");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 0, 0, 1]))
N = Newforms(chi, 4, names="a")
Newform invariants
sage: traces = [6,0,-9,0,-21]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 5 1,\beta_1,\ldots,\beta_{5} 1 , β 1 , … , β 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 6 + 17 x 4 − 24 x 3 + 289 x 2 − 204 x + 144 x^{6} + 17x^{4} - 24x^{3} + 289x^{2} - 204x + 144 x 6 + 1 7 x 4 − 2 4 x 3 + 2 8 9 x 2 − 2 0 4 x + 1 4 4
x^6 + 17*x^4 - 24*x^3 + 289*x^2 - 204*x + 144
:
β 1 \beta_{1} β 1 = = =
( ν 5 + 17 ν 3 − 12 ν 2 + 289 ν ) / 204 ( \nu^{5} + 17\nu^{3} - 12\nu^{2} + 289\nu ) / 204 ( ν 5 + 1 7 ν 3 − 1 2 ν 2 + 2 8 9 ν ) / 2 0 4
(v^5 + 17*v^3 - 12*v^2 + 289*v) / 204
β 2 \beta_{2} β 2 = = =
( 11 ν 5 + 12 ν 4 + 187 ν 3 − 132 ν 2 + 3035 ν ) / 204 ( 11\nu^{5} + 12\nu^{4} + 187\nu^{3} - 132\nu^{2} + 3035\nu ) / 204 ( 1 1 ν 5 + 1 2 ν 4 + 1 8 7 ν 3 − 1 3 2 ν 2 + 3 0 3 5 ν ) / 2 0 4
(11*v^5 + 12*v^4 + 187*v^3 - 132*v^2 + 3035*v) / 204
β 3 \beta_{3} β 3 = = =
( − 11 ν 5 − 163 ν 3 + 336 ν 2 − 2363 ν + 1956 ) / 204 ( -11\nu^{5} - 163\nu^{3} + 336\nu^{2} - 2363\nu + 1956 ) / 204 ( − 1 1 ν 5 − 1 6 3 ν 3 + 3 3 6 ν 2 − 2 3 6 3 ν + 1 9 5 6 ) / 2 0 4
(-11*v^5 - 163*v^3 + 336*v^2 - 2363*v + 1956) / 204
β 4 \beta_{4} β 4 = = =
( 11 ν 5 + 139 ν 3 − 336 ν 2 + 2771 ν − 1668 ) / 204 ( 11\nu^{5} + 139\nu^{3} - 336\nu^{2} + 2771\nu - 1668 ) / 204 ( 1 1 ν 5 + 1 3 9 ν 3 − 3 3 6 ν 2 + 2 7 7 1 ν − 1 6 6 8 ) / 2 0 4
(11*v^5 + 139*v^3 - 336*v^2 + 2771*v - 1668) / 204
β 5 \beta_{5} β 5 = = =
( − 11 ν 5 − 187 ν 3 + 336 ν 2 − 3179 ν + 2244 ) / 204 ( -11\nu^{5} - 187\nu^{3} + 336\nu^{2} - 3179\nu + 2244 ) / 204 ( − 1 1 ν 5 − 1 8 7 ν 3 + 3 3 6 ν 2 − 3 1 7 9 ν + 2 2 4 4 ) / 2 0 4
(-11*v^5 - 187*v^3 + 336*v^2 - 3179*v + 2244) / 204
ν \nu ν = = =
( − β 5 + β 4 + 2 β 3 ) / 6 ( -\beta_{5} + \beta_{4} + 2\beta_{3} ) / 6 ( − β 5 + β 4 + 2 β 3 ) / 6
(-b5 + b4 + 2*b3) / 6
ν 2 \nu^{2} ν 2 = = =
β 5 + 11 β 1 − 11 \beta_{5} + 11\beta _1 - 11 β 5 + 1 1 β 1 − 1 1
b5 + 11*b1 - 11
ν 3 \nu^{3} ν 3 = = =
( − 17 β 5 − 34 β 4 − 17 β 3 + 72 ) / 6 ( -17\beta_{5} - 34\beta_{4} - 17\beta_{3} + 72 ) / 6 ( − 1 7 β 5 − 3 4 β 4 − 1 7 β 3 + 7 2 ) / 6
(-17*b5 - 34*b4 - 17*b3 + 72) / 6
ν 4 \nu^{4} ν 4 = = =
− 2 β 5 + 2 β 4 + 4 β 3 + 17 β 2 − 187 β 1 -2\beta_{5} + 2\beta_{4} + 4\beta_{3} + 17\beta_{2} - 187\beta_1 − 2 β 5 + 2 β 4 + 4 β 3 + 1 7 β 2 − 1 8 7 β 1
-2*b5 + 2*b4 + 4*b3 + 17*b2 - 187*b1
ν 5 \nu^{5} ν 5 = = =
( 650 β 5 + 289 β 4 − 289 β 3 + 2016 β 1 − 2016 ) / 6 ( 650\beta_{5} + 289\beta_{4} - 289\beta_{3} + 2016\beta _1 - 2016 ) / 6 ( 6 5 0 β 5 + 2 8 9 β 4 − 2 8 9 β 3 + 2 0 1 6 β 1 − 2 0 1 6 ) / 6
(650*b5 + 289*b4 - 289*b3 + 2016*b1 - 2016) / 6
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
− 1 -1 − 1
1 − β 1 1 - \beta_{1} 1 − β 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) :
T 5 6 + 21 T 5 5 − 81 T 5 4 − 4788 T 5 3 + 42156 T 5 2 + 320112 T 5 + 657072 T_{5}^{6} + 21T_{5}^{5} - 81T_{5}^{4} - 4788T_{5}^{3} + 42156T_{5}^{2} + 320112T_{5} + 657072 T 5 6 + 2 1 T 5 5 − 8 1 T 5 4 − 4 7 8 8 T 5 3 + 4 2 1 5 6 T 5 2 + 3 2 0 1 1 2 T 5 + 6 5 7 0 7 2
T5^6 + 21*T5^5 - 81*T5^4 - 4788*T5^3 + 42156*T5^2 + 320112*T5 + 657072
T 11 6 + 75 T 11 5 + 1827 T 11 4 − 3600 T 11 3 − 396 T 11 2 + 5184 T 11 + 3888 T_{11}^{6} + 75T_{11}^{5} + 1827T_{11}^{4} - 3600T_{11}^{3} - 396T_{11}^{2} + 5184T_{11} + 3888 T 1 1 6 + 7 5 T 1 1 5 + 1 8 2 7 T 1 1 4 − 3 6 0 0 T 1 1 3 − 3 9 6 T 1 1 2 + 5 1 8 4 T 1 1 + 3 8 8 8
T11^6 + 75*T11^5 + 1827*T11^4 - 3600*T11^3 - 396*T11^2 + 5184*T11 + 3888
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 6 T^{6} T 6
T^6
3 3 3
( T 2 + 3 T + 9 ) 3 (T^{2} + 3 T + 9)^{3} ( T 2 + 3 T + 9 ) 3
(T^2 + 3*T + 9)^3
5 5 5
T 6 + 21 T 5 + ⋯ + 657072 T^{6} + 21 T^{5} + \cdots + 657072 T 6 + 2 1 T 5 + ⋯ + 6 5 7 0 7 2
T^6 + 21*T^5 - 81*T^4 - 4788*T^3 + 42156*T^2 + 320112*T + 657072
7 7 7
T 6 + 19 T 5 + ⋯ + 40353607 T^{6} + 19 T^{5} + \cdots + 40353607 T 6 + 1 9 T 5 + ⋯ + 4 0 3 5 3 6 0 7
T^6 + 19*T^5 - 280*T^4 - 15365*T^3 - 96040*T^2 + 2235331*T + 40353607
11 11 1 1
T 6 + 75 T 5 + ⋯ + 3888 T^{6} + 75 T^{5} + \cdots + 3888 T 6 + 7 5 T 5 + ⋯ + 3 8 8 8
T^6 + 75*T^5 + 1827*T^4 - 3600*T^3 - 396*T^2 + 5184*T + 3888
13 13 1 3
T 6 + 4566 T 4 + ⋯ + 16258752 T^{6} + 4566 T^{4} + \cdots + 16258752 T 6 + 4 5 6 6 T 4 + ⋯ + 1 6 2 5 8 7 5 2
T^6 + 4566*T^4 + 2977785*T^2 + 16258752
17 17 1 7
T 6 + ⋯ + 4401589248 T^{6} + \cdots + 4401589248 T 6 + ⋯ + 4 4 0 1 5 8 9 2 4 8
T^6 - 162*T^5 + 6564*T^4 + 353808*T^3 - 1435392*T^2 - 250967808*T + 4401589248
19 19 1 9
T 6 + ⋯ + 685249528804 T^{6} + \cdots + 685249528804 T 6 + ⋯ + 6 8 5 2 4 9 5 2 8 8 0 4
T^6 + 80*T^5 + 16727*T^4 + 829436*T^3 + 172870769*T^2 + 8548669946*T + 685249528804
23 23 2 3
T 6 − 204 T 5 + ⋯ + 35831808 T^{6} - 204 T^{5} + \cdots + 35831808 T 6 − 2 0 4 T 5 + ⋯ + 3 5 8 3 1 8 0 8
T^6 - 204*T^5 + 14208*T^4 - 68544*T^3 - 592128*T^2 + 3483648*T + 35831808
29 29 2 9
( T 3 − 321 T 2 + ⋯ + 580608 ) 2 (T^{3} - 321 T^{2} + \cdots + 580608)^{2} ( T 3 − 3 2 1 T 2 + ⋯ + 5 8 0 6 0 8 ) 2
(T^3 - 321*T^2 + 10080*T + 580608)^2
31 31 3 1
T 6 + ⋯ + 21708638518009 T^{6} + \cdots + 21708638518009 T 6 + ⋯ + 2 1 7 0 8 6 3 8 5 1 8 0 0 9
T^6 + 313*T^5 + 103478*T^4 + 7594189*T^3 + 1488695270*T^2 + 25667824777*T + 21708638518009
37 37 3 7
T 6 + ⋯ + 3152350536196 T^{6} + \cdots + 3152350536196 T 6 + ⋯ + 3 1 5 2 3 5 0 5 3 6 1 9 6
T^6 - 36*T^5 + 71283*T^4 + 6070504*T^3 + 4834262673*T^2 + 124260938682*T + 3152350536196
41 41 4 1
T 6 + ⋯ + 20 ⋯ 12 T^{6} + \cdots + 20\!\cdots\!12 T 6 + ⋯ + 2 0 ⋯ 1 2
T^6 + 446244*T^4 + 59347298736*T^2 + 2019000693880512
43 43 4 3
T 6 + ⋯ + 174888512748 T^{6} + \cdots + 174888512748 T 6 + ⋯ + 1 7 4 8 8 8 5 1 2 7 4 8
T^6 + 67962*T^4 + 215410761*T^2 + 174888512748
47 47 4 7
T 6 + ⋯ + 140222353768704 T^{6} + \cdots + 140222353768704 T 6 + ⋯ + 1 4 0 2 2 2 3 5 3 7 6 8 7 0 4
T^6 - 84*T^5 + 121140*T^4 + 33266160*T^3 + 12020468688*T^2 + 1350931618368*T + 140222353768704
53 53 5 3
T 6 + ⋯ + 67024218196224 T^{6} + \cdots + 67024218196224 T 6 + ⋯ + 6 7 0 2 4 2 1 8 1 9 6 2 2 4
T^6 - 453*T^5 + 347589*T^4 + 80871804*T^3 + 16563429504*T^2 + 1165641140160*T + 67024218196224
59 59 5 9
T 6 + ⋯ + 805339943334144 T^{6} + \cdots + 805339943334144 T 6 + ⋯ + 8 0 5 3 3 9 9 4 3 3 3 4 1 4 4
T^6 + 153*T^5 + 276453*T^4 - 95472756*T^3 + 59689353600*T^2 - 7181012190528*T + 805339943334144
61 61 6 1
T 6 + ⋯ + 10 ⋯ 72 T^{6} + \cdots + 10\!\cdots\!72 T 6 + ⋯ + 1 0 ⋯ 7 2
T^6 + 576*T^5 - 19008*T^4 - 74649600*T^3 + 5859053568*T^2 + 7382546841600*T + 1081636077699072
67 67 6 7
T 6 + ⋯ + 64 ⋯ 68 T^{6} + \cdots + 64\!\cdots\!68 T 6 + ⋯ + 6 4 ⋯ 6 8
T^6 + 762*T^5 - 587565*T^4 - 595208106*T^3 + 498099451761*T^2 + 344544845018976*T + 64854860080647168
71 71 7 1
T 6 + ⋯ + 25 ⋯ 72 T^{6} + \cdots + 25\!\cdots\!72 T 6 + ⋯ + 2 5 ⋯ 7 2
T^6 + 1274328*T^4 + 398147312016*T^2 + 25256186955574272
73 73 7 3
T 6 + ⋯ + 11 ⋯ 48 T^{6} + \cdots + 11\!\cdots\!48 T 6 + ⋯ + 1 1 ⋯ 4 8
T^6 - 1746*T^5 + 990063*T^4 + 45586314*T^3 - 107181667503*T^2 - 4838838723108*T + 11449342934937648
79 79 7 9
T 6 + ⋯ + 17 ⋯ 63 T^{6} + \cdots + 17\!\cdots\!63 T 6 + ⋯ + 1 7 ⋯ 6 3
T^6 + 579*T^5 - 233052*T^4 - 199638621*T^3 + 74777644620*T^2 + 78801231319083*T + 17410560692231763
83 83 8 3
( T 3 − 729 T 2 + ⋯ + 967816836 ) 2 (T^{3} - 729 T^{2} + \cdots + 967816836)^{2} ( T 3 − 7 2 9 T 2 + ⋯ + 9 6 7 8 1 6 8 3 6 ) 2
(T^3 - 729*T^2 - 1549980*T + 967816836)^2
89 89 8 9
T 6 + ⋯ + 17 ⋯ 52 T^{6} + \cdots + 17\!\cdots\!52 T 6 + ⋯ + 1 7 ⋯ 5 2
T^6 + 1302*T^5 + 184140*T^4 - 495968256*T^3 + 45557137728*T^2 + 87375582461952*T + 17537719511780352
97 97 9 7
T 6 + ⋯ + 22 ⋯ 88 T^{6} + \cdots + 22\!\cdots\!88 T 6 + ⋯ + 2 2 ⋯ 8 8
T^6 + 466635*T^4 + 60870332448*T^2 + 2283348849746688
show more
show less