Properties

Label 336.4.bl.e
Level 336336
Weight 44
Character orbit 336.bl
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(31,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.31"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.bl (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-9,0,-21] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: 6.0.419349987.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x6+17x424x3+289x2204x+144 x^{6} + 17x^{4} - 24x^{3} + 289x^{2} - 204x + 144 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 243 2^{4}\cdot 3
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q3β1q3+(β5β4β3+2)q5+(β5β4β3++1)q7+(9β19)q9+(2β4+β2+16)q11++(9β518β3++72)q99+O(q100) q - 3 \beta_1 q^{3} + (\beta_{5} - \beta_{4} - \beta_{3} + \cdots - 2) q^{5} + ( - \beta_{5} - \beta_{4} - \beta_{3} + \cdots + 1) q^{7} + (9 \beta_1 - 9) q^{9} + ( - 2 \beta_{4} + \beta_{2} + \cdots - 16) q^{11}+ \cdots + (9 \beta_{5} - 18 \beta_{3} + \cdots + 72) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q9q321q519q727q975q11+162q1780q1993q21+204q23+228q25+162q27+642q29313q31+225q33198q35+36q37+162q39+4854q95+O(q100) 6 q - 9 q^{3} - 21 q^{5} - 19 q^{7} - 27 q^{9} - 75 q^{11} + 162 q^{17} - 80 q^{19} - 93 q^{21} + 204 q^{23} + 228 q^{25} + 162 q^{27} + 642 q^{29} - 313 q^{31} + 225 q^{33} - 198 q^{35} + 36 q^{37} + 162 q^{39}+ \cdots - 4854 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6+17x424x3+289x2204x+144 x^{6} + 17x^{4} - 24x^{3} + 289x^{2} - 204x + 144 : Copy content Toggle raw display

β1\beta_{1}== (ν5+17ν312ν2+289ν)/204 ( \nu^{5} + 17\nu^{3} - 12\nu^{2} + 289\nu ) / 204 Copy content Toggle raw display
β2\beta_{2}== (11ν5+12ν4+187ν3132ν2+3035ν)/204 ( 11\nu^{5} + 12\nu^{4} + 187\nu^{3} - 132\nu^{2} + 3035\nu ) / 204 Copy content Toggle raw display
β3\beta_{3}== (11ν5163ν3+336ν22363ν+1956)/204 ( -11\nu^{5} - 163\nu^{3} + 336\nu^{2} - 2363\nu + 1956 ) / 204 Copy content Toggle raw display
β4\beta_{4}== (11ν5+139ν3336ν2+2771ν1668)/204 ( 11\nu^{5} + 139\nu^{3} - 336\nu^{2} + 2771\nu - 1668 ) / 204 Copy content Toggle raw display
β5\beta_{5}== (11ν5187ν3+336ν23179ν+2244)/204 ( -11\nu^{5} - 187\nu^{3} + 336\nu^{2} - 3179\nu + 2244 ) / 204 Copy content Toggle raw display
ν\nu== (β5+β4+2β3)/6 ( -\beta_{5} + \beta_{4} + 2\beta_{3} ) / 6 Copy content Toggle raw display
ν2\nu^{2}== β5+11β111 \beta_{5} + 11\beta _1 - 11 Copy content Toggle raw display
ν3\nu^{3}== (17β534β417β3+72)/6 ( -17\beta_{5} - 34\beta_{4} - 17\beta_{3} + 72 ) / 6 Copy content Toggle raw display
ν4\nu^{4}== 2β5+2β4+4β3+17β2187β1 -2\beta_{5} + 2\beta_{4} + 4\beta_{3} + 17\beta_{2} - 187\beta_1 Copy content Toggle raw display
ν5\nu^{5}== (650β5+289β4289β3+2016β12016)/6 ( 650\beta_{5} + 289\beta_{4} - 289\beta_{3} + 2016\beta _1 - 2016 ) / 6 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 11 1-1 1β11 - \beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
31.1
1.85511 3.21314i
−2.21943 + 3.84416i
0.364319 0.631019i
1.85511 + 3.21314i
−2.21943 3.84416i
0.364319 + 0.631019i
0 −1.50000 + 2.59808i 0 −18.2792 + 10.5535i 0 −11.8650 + 14.2205i 0 −4.50000 7.79423i 0
31.2 0 −1.50000 + 2.59808i 0 −2.73855 + 1.58110i 0 18.5200 + 0.105912i 0 −4.50000 7.79423i 0
31.3 0 −1.50000 + 2.59808i 0 10.5177 6.07241i 0 −16.1550 + 9.05627i 0 −4.50000 7.79423i 0
271.1 0 −1.50000 2.59808i 0 −18.2792 10.5535i 0 −11.8650 14.2205i 0 −4.50000 + 7.79423i 0
271.2 0 −1.50000 2.59808i 0 −2.73855 1.58110i 0 18.5200 0.105912i 0 −4.50000 + 7.79423i 0
271.3 0 −1.50000 2.59808i 0 10.5177 + 6.07241i 0 −16.1550 9.05627i 0 −4.50000 + 7.79423i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 31.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.bl.e 6
4.b odd 2 1 336.4.bl.g yes 6
7.d odd 6 1 336.4.bl.g yes 6
28.f even 6 1 inner 336.4.bl.e 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.4.bl.e 6 1.a even 1 1 trivial
336.4.bl.e 6 28.f even 6 1 inner
336.4.bl.g yes 6 4.b odd 2 1
336.4.bl.g yes 6 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]):

T56+21T5581T544788T53+42156T52+320112T5+657072 T_{5}^{6} + 21T_{5}^{5} - 81T_{5}^{4} - 4788T_{5}^{3} + 42156T_{5}^{2} + 320112T_{5} + 657072 Copy content Toggle raw display
T116+75T115+1827T1143600T113396T112+5184T11+3888 T_{11}^{6} + 75T_{11}^{5} + 1827T_{11}^{4} - 3600T_{11}^{3} - 396T_{11}^{2} + 5184T_{11} + 3888 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 (T2+3T+9)3 (T^{2} + 3 T + 9)^{3} Copy content Toggle raw display
55 T6+21T5++657072 T^{6} + 21 T^{5} + \cdots + 657072 Copy content Toggle raw display
77 T6+19T5++40353607 T^{6} + 19 T^{5} + \cdots + 40353607 Copy content Toggle raw display
1111 T6+75T5++3888 T^{6} + 75 T^{5} + \cdots + 3888 Copy content Toggle raw display
1313 T6+4566T4++16258752 T^{6} + 4566 T^{4} + \cdots + 16258752 Copy content Toggle raw display
1717 T6++4401589248 T^{6} + \cdots + 4401589248 Copy content Toggle raw display
1919 T6++685249528804 T^{6} + \cdots + 685249528804 Copy content Toggle raw display
2323 T6204T5++35831808 T^{6} - 204 T^{5} + \cdots + 35831808 Copy content Toggle raw display
2929 (T3321T2++580608)2 (T^{3} - 321 T^{2} + \cdots + 580608)^{2} Copy content Toggle raw display
3131 T6++21708638518009 T^{6} + \cdots + 21708638518009 Copy content Toggle raw display
3737 T6++3152350536196 T^{6} + \cdots + 3152350536196 Copy content Toggle raw display
4141 T6++20 ⁣ ⁣12 T^{6} + \cdots + 20\!\cdots\!12 Copy content Toggle raw display
4343 T6++174888512748 T^{6} + \cdots + 174888512748 Copy content Toggle raw display
4747 T6++140222353768704 T^{6} + \cdots + 140222353768704 Copy content Toggle raw display
5353 T6++67024218196224 T^{6} + \cdots + 67024218196224 Copy content Toggle raw display
5959 T6++805339943334144 T^{6} + \cdots + 805339943334144 Copy content Toggle raw display
6161 T6++10 ⁣ ⁣72 T^{6} + \cdots + 10\!\cdots\!72 Copy content Toggle raw display
6767 T6++64 ⁣ ⁣68 T^{6} + \cdots + 64\!\cdots\!68 Copy content Toggle raw display
7171 T6++25 ⁣ ⁣72 T^{6} + \cdots + 25\!\cdots\!72 Copy content Toggle raw display
7373 T6++11 ⁣ ⁣48 T^{6} + \cdots + 11\!\cdots\!48 Copy content Toggle raw display
7979 T6++17 ⁣ ⁣63 T^{6} + \cdots + 17\!\cdots\!63 Copy content Toggle raw display
8383 (T3729T2++967816836)2 (T^{3} - 729 T^{2} + \cdots + 967816836)^{2} Copy content Toggle raw display
8989 T6++17 ⁣ ⁣52 T^{6} + \cdots + 17\!\cdots\!52 Copy content Toggle raw display
9797 T6++22 ⁣ ⁣88 T^{6} + \cdots + 22\!\cdots\!88 Copy content Toggle raw display
show more
show less