L(s) = 1 | + (−1.5 − 2.59i)3-s + (10.5 + 6.07i)5-s + (−16.1 − 9.05i)7-s + (−4.5 + 7.79i)9-s + (−0.668 + 0.385i)11-s + 61.4i·13-s − 36.4i·15-s + (16.0 − 9.27i)17-s + (−40.2 + 69.6i)19-s + (0.703 + 55.5i)21-s + (−4.96 − 2.86i)23-s + (11.2 + 19.4i)25-s + 27·27-s − 28.8·29-s + (55.7 + 96.5i)31-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (0.940 + 0.543i)5-s + (−0.872 − 0.488i)7-s + (−0.166 + 0.288i)9-s + (−0.0183 + 0.0105i)11-s + 1.31i·13-s − 0.627i·15-s + (0.229 − 0.132i)17-s + (−0.485 + 0.840i)19-s + (0.00731 + 0.577i)21-s + (−0.0450 − 0.0259i)23-s + (0.0899 + 0.155i)25-s + 0.192·27-s − 0.184·29-s + (0.322 + 0.559i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.113 - 0.993i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.113 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.234633437\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.234633437\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.5 + 2.59i)T \) |
| 7 | \( 1 + (16.1 + 9.05i)T \) |
good | 5 | \( 1 + (-10.5 - 6.07i)T + (62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (0.668 - 0.385i)T + (665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 61.4iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (-16.0 + 9.27i)T + (2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (40.2 - 69.6i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (4.96 + 2.86i)T + (6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + 28.8T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-55.7 - 96.5i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (116. - 201. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 227. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 40.4iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (74.8 - 129. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-340. - 588. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-171. - 297. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-292. - 169. i)T + (1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-730. + 421. i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 912. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (256. - 148. i)T + (1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (415. + 239. i)T + (2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 1.21e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + (866. + 500. i)T + (3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 258. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.33979132391642071149234036858, −10.25155311028419532779478275880, −9.748524071496405444712913817956, −8.569284337708284992439745498113, −7.18323522608034698770557946931, −6.52938506194043468545229631496, −5.77614161165592615091169534918, −4.22381951635100313825536186168, −2.77647144706211117118419845431, −1.48289387703077033374632767525,
0.45227581939021660646635115046, 2.34772642135552704005659515055, 3.65657508912757267200719128800, 5.22904694376132813681463174187, 5.73181098132650321053852735103, 6.82942802085839098196079140138, 8.337122172377502797436145134510, 9.235226328112535567062670851225, 9.930255468673911020513954464963, 10.68751285948509436465549885159