gp: [N,k,chi] = [336,4,Mod(31,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 0, 0, 1]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.31");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,3,0,-3]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
− 1 -1 − 1
ζ 6 \zeta_{6} ζ 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) :
T 5 2 + 3 T 5 + 3 T_{5}^{2} + 3T_{5} + 3 T 5 2 + 3 T 5 + 3
T5^2 + 3*T5 + 3
T 11 2 + 69 T 11 + 1587 T_{11}^{2} + 69T_{11} + 1587 T 1 1 2 + 6 9 T 1 1 + 1 5 8 7
T11^2 + 69*T11 + 1587
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 − 3 T + 9 T^{2} - 3T + 9 T 2 − 3 T + 9
T^2 - 3*T + 9
5 5 5
T 2 + 3 T + 3 T^{2} + 3T + 3 T 2 + 3 T + 3
T^2 + 3*T + 3
7 7 7
T 2 − 7 T + 343 T^{2} - 7T + 343 T 2 − 7 T + 3 4 3
T^2 - 7*T + 343
11 11 1 1
T 2 + 69 T + 1587 T^{2} + 69T + 1587 T 2 + 6 9 T + 1 5 8 7
T^2 + 69*T + 1587
13 13 1 3
T 2 + 1200 T^{2} + 1200 T 2 + 1 2 0 0
T^2 + 1200
17 17 1 7
T 2 + 162 T + 8748 T^{2} + 162T + 8748 T 2 + 1 6 2 T + 8 7 4 8
T^2 + 162*T + 8748
19 19 1 9
T 2 + 94 T + 8836 T^{2} + 94T + 8836 T 2 + 9 4 T + 8 8 3 6
T^2 + 94*T + 8836
23 23 2 3
T 2 − 156 T + 8112 T^{2} - 156T + 8112 T 2 − 1 5 6 T + 8 1 1 2
T^2 - 156*T + 8112
29 29 2 9
( T + 225 ) 2 (T + 225)^{2} ( T + 2 2 5 ) 2
(T + 225)^2
31 31 3 1
T 2 + 11 T + 121 T^{2} + 11T + 121 T 2 + 1 1 T + 1 2 1
T^2 + 11*T + 121
37 37 3 7
T 2 + 358 T + 128164 T^{2} + 358T + 128164 T 2 + 3 5 8 T + 1 2 8 1 6 4
T^2 + 358*T + 128164
41 41 4 1
T 2 + 20172 T^{2} + 20172 T 2 + 2 0 1 7 2
T^2 + 20172
43 43 4 3
T 2 + 158700 T^{2} + 158700 T 2 + 1 5 8 7 0 0
T^2 + 158700
47 47 4 7
T 2 − 192 T + 36864 T^{2} - 192T + 36864 T 2 − 1 9 2 T + 3 6 8 6 4
T^2 - 192*T + 36864
53 53 5 3
T 2 + 417 T + 173889 T^{2} + 417T + 173889 T 2 + 4 1 7 T + 1 7 3 8 8 9
T^2 + 417*T + 173889
59 59 5 9
T 2 − 561 T + 314721 T^{2} - 561T + 314721 T 2 − 5 6 1 T + 3 1 4 7 2 1
T^2 - 561*T + 314721
61 61 6 1
T 2 + 924 T + 284592 T^{2} + 924T + 284592 T 2 + 9 2 4 T + 2 8 4 5 9 2
T^2 + 924*T + 284592
67 67 6 7
T 2 − 168 T + 9408 T^{2} - 168T + 9408 T 2 − 1 6 8 T + 9 4 0 8
T^2 - 168*T + 9408
71 71 7 1
T 2 + 702768 T^{2} + 702768 T 2 + 7 0 2 7 6 8
T^2 + 702768
73 73 7 3
T 2 + 36 T + 432 T^{2} + 36T + 432 T 2 + 3 6 T + 4 3 2
T^2 + 36*T + 432
79 79 7 9
T 2 + 33 T + 363 T^{2} + 33T + 363 T 2 + 3 3 T + 3 6 3
T^2 + 33*T + 363
83 83 8 3
( T + 693 ) 2 (T + 693)^{2} ( T + 6 9 3 ) 2
(T + 693)^2
89 89 8 9
T 2 + 1770 T + 1044300 T^{2} + 1770 T + 1044300 T 2 + 1 7 7 0 T + 1 0 4 4 3 0 0
T^2 + 1770*T + 1044300
97 97 9 7
T 2 + 676875 T^{2} + 676875 T 2 + 6 7 6 8 7 5
T^2 + 676875
show more
show less