Properties

Label 336.4.bl.d
Level 336336
Weight 44
Character orbit 336.bl
Analytic conductor 19.82519.825
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(31,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.31"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.bl (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,3,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 11
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(3ζ6+3)q3+(ζ62)q5+(21ζ67)q79ζ6q9+(23ζ623)q11+(40ζ620)q13+(6ζ63)q15+(54ζ654)q17++(414ζ6207)q99+O(q100) q + ( - 3 \zeta_{6} + 3) q^{3} + (\zeta_{6} - 2) q^{5} + (21 \zeta_{6} - 7) q^{7} - 9 \zeta_{6} q^{9} + ( - 23 \zeta_{6} - 23) q^{11} + (40 \zeta_{6} - 20) q^{13} + (6 \zeta_{6} - 3) q^{15} + ( - 54 \zeta_{6} - 54) q^{17} + \cdots + (414 \zeta_{6} - 207) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+3q33q5+7q79q969q11162q1794q19+105q21+156q23122q2554q27450q2911q31207q3342q35358q37+180q39++282q95+O(q100) 2 q + 3 q^{3} - 3 q^{5} + 7 q^{7} - 9 q^{9} - 69 q^{11} - 162 q^{17} - 94 q^{19} + 105 q^{21} + 156 q^{23} - 122 q^{25} - 54 q^{27} - 450 q^{29} - 11 q^{31} - 207 q^{33} - 42 q^{35} - 358 q^{37} + 180 q^{39}+ \cdots + 282 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 11 1-1 ζ6\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
31.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.50000 2.59808i 0 −1.50000 + 0.866025i 0 3.50000 + 18.1865i 0 −4.50000 7.79423i 0
271.1 0 1.50000 + 2.59808i 0 −1.50000 0.866025i 0 3.50000 18.1865i 0 −4.50000 + 7.79423i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.bl.d yes 2
4.b odd 2 1 336.4.bl.b 2
7.d odd 6 1 336.4.bl.b 2
28.f even 6 1 inner 336.4.bl.d yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.4.bl.b 2 4.b odd 2 1
336.4.bl.b 2 7.d odd 6 1
336.4.bl.d yes 2 1.a even 1 1 trivial
336.4.bl.d yes 2 28.f even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]):

T52+3T5+3 T_{5}^{2} + 3T_{5} + 3 Copy content Toggle raw display
T112+69T11+1587 T_{11}^{2} + 69T_{11} + 1587 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T23T+9 T^{2} - 3T + 9 Copy content Toggle raw display
55 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
77 T27T+343 T^{2} - 7T + 343 Copy content Toggle raw display
1111 T2+69T+1587 T^{2} + 69T + 1587 Copy content Toggle raw display
1313 T2+1200 T^{2} + 1200 Copy content Toggle raw display
1717 T2+162T+8748 T^{2} + 162T + 8748 Copy content Toggle raw display
1919 T2+94T+8836 T^{2} + 94T + 8836 Copy content Toggle raw display
2323 T2156T+8112 T^{2} - 156T + 8112 Copy content Toggle raw display
2929 (T+225)2 (T + 225)^{2} Copy content Toggle raw display
3131 T2+11T+121 T^{2} + 11T + 121 Copy content Toggle raw display
3737 T2+358T+128164 T^{2} + 358T + 128164 Copy content Toggle raw display
4141 T2+20172 T^{2} + 20172 Copy content Toggle raw display
4343 T2+158700 T^{2} + 158700 Copy content Toggle raw display
4747 T2192T+36864 T^{2} - 192T + 36864 Copy content Toggle raw display
5353 T2+417T+173889 T^{2} + 417T + 173889 Copy content Toggle raw display
5959 T2561T+314721 T^{2} - 561T + 314721 Copy content Toggle raw display
6161 T2+924T+284592 T^{2} + 924T + 284592 Copy content Toggle raw display
6767 T2168T+9408 T^{2} - 168T + 9408 Copy content Toggle raw display
7171 T2+702768 T^{2} + 702768 Copy content Toggle raw display
7373 T2+36T+432 T^{2} + 36T + 432 Copy content Toggle raw display
7979 T2+33T+363 T^{2} + 33T + 363 Copy content Toggle raw display
8383 (T+693)2 (T + 693)^{2} Copy content Toggle raw display
8989 T2+1770T+1044300 T^{2} + 1770 T + 1044300 Copy content Toggle raw display
9797 T2+676875 T^{2} + 676875 Copy content Toggle raw display
show more
show less