L(s) = 1 | + (1.5 + 2.59i)3-s + (−1.5 − 0.866i)5-s + (3.5 − 18.1i)7-s + (−4.5 + 7.79i)9-s + (−34.5 + 19.9i)11-s − 34.6i·13-s − 5.19i·15-s + (−81 + 46.7i)17-s + (−47 + 81.4i)19-s + (52.5 − 18.1i)21-s + (78 + 45.0i)23-s + (−61 − 105. i)25-s − 27·27-s − 225·29-s + (−5.5 − 9.52i)31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (−0.134 − 0.0774i)5-s + (0.188 − 0.981i)7-s + (−0.166 + 0.288i)9-s + (−0.945 + 0.545i)11-s − 0.739i·13-s − 0.0894i·15-s + (−1.15 + 0.667i)17-s + (−0.567 + 0.982i)19-s + (0.545 − 0.188i)21-s + (0.707 + 0.408i)23-s + (−0.487 − 0.845i)25-s − 0.192·27-s − 1.44·29-s + (−0.0318 − 0.0551i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.978 + 0.205i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.978 + 0.205i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.5 - 2.59i)T \) |
| 7 | \( 1 + (-3.5 + 18.1i)T \) |
good | 5 | \( 1 + (1.5 + 0.866i)T + (62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (34.5 - 19.9i)T + (665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 + 34.6iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (81 - 46.7i)T + (2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (47 - 81.4i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-78 - 45.0i)T + (6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + 225T + 2.43e4T^{2} \) |
| 31 | \( 1 + (5.5 + 9.52i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (179 - 310. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + 142. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 398. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (-96 + 166. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (208.5 + 361. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-280.5 - 485. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (462 + 266. i)T + (1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-84 + 48.4i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 838. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (18 - 10.3i)T + (1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (16.5 + 9.52i)T + (2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + 693T + 5.71e5T^{2} \) |
| 89 | \( 1 + (885 + 510. i)T + (3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 + 822. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42816820060875177209556161826, −10.11350241300699496559686047862, −8.703059438029110940706129276916, −7.924667828614949123166468957021, −7.00151136400332508628681726683, −5.57834627042492679058005713078, −4.47640060092204602627770239979, −3.55676014326945022677220083062, −1.98863001593976343892261436119, 0,
2.01600139395742909364106300538, 2.97403333323051362084706578867, 4.62703483952176866488821527689, 5.73294588577397202555474505373, 6.83213915758802382845440843753, 7.77381384905319206279790000833, 8.892722147642145279803686290010, 9.293602885989573499760974839062, 11.07277452345220138171865353375