Properties

Label 336.4.bc.f.17.2
Level $336$
Weight $4$
Character 336.17
Analytic conductor $19.825$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(17,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.17"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 336.bc (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.8246417619\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.2
Character \(\chi\) \(=\) 336.17
Dual form 336.4.bc.f.257.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.12717 - 0.843898i) q^{3} +(-8.29692 - 14.3707i) q^{5} +(-9.36640 - 15.9772i) q^{7} +(25.5757 + 8.65361i) q^{9} +(-36.0346 - 20.8046i) q^{11} -71.9408i q^{13} +(30.4123 + 80.6827i) q^{15} +(46.0996 - 79.8469i) q^{17} +(-86.6129 + 50.0060i) q^{19} +(34.5400 + 89.8220i) q^{21} +(74.8424 - 43.2103i) q^{23} +(-75.1779 + 130.212i) q^{25} +(-123.828 - 65.9517i) q^{27} -45.0841i q^{29} +(110.666 + 63.8931i) q^{31} +(167.198 + 137.078i) q^{33} +(-151.891 + 267.163i) q^{35} +(188.322 + 326.183i) q^{37} +(-60.7106 + 368.852i) q^{39} -298.098 q^{41} -154.234 q^{43} +(-87.8411 - 439.338i) q^{45} +(-103.187 - 178.724i) q^{47} +(-167.541 + 299.297i) q^{49} +(-303.743 + 370.485i) q^{51} +(-191.437 - 110.526i) q^{53} +690.456i q^{55} +(486.279 - 183.297i) q^{57} +(303.149 - 525.070i) q^{59} +(-291.647 + 168.383i) q^{61} +(-101.292 - 489.681i) q^{63} +(-1033.84 + 596.887i) q^{65} +(-15.4896 + 26.8287i) q^{67} +(-420.195 + 158.387i) q^{69} -450.864i q^{71} +(613.551 + 354.234i) q^{73} +(495.335 - 604.176i) q^{75} +(5.11567 + 770.596i) q^{77} +(372.522 + 645.226i) q^{79} +(579.230 + 442.644i) q^{81} +1057.78 q^{83} -1529.94 q^{85} +(-38.0464 + 231.154i) q^{87} +(333.644 + 577.888i) q^{89} +(-1149.41 + 673.826i) q^{91} +(-513.484 - 420.981i) q^{93} +(1437.24 + 829.791i) q^{95} -1165.89i q^{97} +(-741.575 - 843.921i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 12 q^{7} + 14 q^{9} + 88 q^{15} + 270 q^{19} + 50 q^{21} - 438 q^{25} - 216 q^{31} - 372 q^{33} + 66 q^{37} - 242 q^{39} - 900 q^{43} - 294 q^{45} + 60 q^{49} + 138 q^{51} + 1384 q^{57} + 108 q^{61}+ \cdots - 1988 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −5.12717 0.843898i −0.986724 0.162408i
\(4\) 0 0
\(5\) −8.29692 14.3707i −0.742099 1.28535i −0.951538 0.307532i \(-0.900497\pi\)
0.209438 0.977822i \(-0.432836\pi\)
\(6\) 0 0
\(7\) −9.36640 15.9772i −0.505738 0.862687i
\(8\) 0 0
\(9\) 25.5757 + 8.65361i 0.947247 + 0.320504i
\(10\) 0 0
\(11\) −36.0346 20.8046i −0.987713 0.570256i −0.0831231 0.996539i \(-0.526489\pi\)
−0.904590 + 0.426283i \(0.859823\pi\)
\(12\) 0 0
\(13\) 71.9408i 1.53483i −0.641151 0.767414i \(-0.721543\pi\)
0.641151 0.767414i \(-0.278457\pi\)
\(14\) 0 0
\(15\) 30.4123 + 80.6827i 0.523495 + 1.38881i
\(16\) 0 0
\(17\) 46.0996 79.8469i 0.657694 1.13916i −0.323517 0.946222i \(-0.604865\pi\)
0.981211 0.192937i \(-0.0618013\pi\)
\(18\) 0 0
\(19\) −86.6129 + 50.0060i −1.04581 + 0.603798i −0.921473 0.388443i \(-0.873013\pi\)
−0.124335 + 0.992240i \(0.539680\pi\)
\(20\) 0 0
\(21\) 34.5400 + 89.8220i 0.358916 + 0.933370i
\(22\) 0 0
\(23\) 74.8424 43.2103i 0.678510 0.391738i −0.120784 0.992679i \(-0.538541\pi\)
0.799293 + 0.600941i \(0.205207\pi\)
\(24\) 0 0
\(25\) −75.1779 + 130.212i −0.601423 + 1.04170i
\(26\) 0 0
\(27\) −123.828 65.9517i −0.882619 0.470090i
\(28\) 0 0
\(29\) 45.0841i 0.288687i −0.989528 0.144343i \(-0.953893\pi\)
0.989528 0.144343i \(-0.0461070\pi\)
\(30\) 0 0
\(31\) 110.666 + 63.8931i 0.641168 + 0.370179i 0.785064 0.619414i \(-0.212630\pi\)
−0.143896 + 0.989593i \(0.545963\pi\)
\(32\) 0 0
\(33\) 167.198 + 137.078i 0.881985 + 0.723098i
\(34\) 0 0
\(35\) −151.891 + 267.163i −0.733550 + 1.29025i
\(36\) 0 0
\(37\) 188.322 + 326.183i 0.836756 + 1.44930i 0.892593 + 0.450863i \(0.148884\pi\)
−0.0558374 + 0.998440i \(0.517783\pi\)
\(38\) 0 0
\(39\) −60.7106 + 368.852i −0.249269 + 1.51445i
\(40\) 0 0
\(41\) −298.098 −1.13549 −0.567745 0.823205i \(-0.692184\pi\)
−0.567745 + 0.823205i \(0.692184\pi\)
\(42\) 0 0
\(43\) −154.234 −0.546987 −0.273494 0.961874i \(-0.588179\pi\)
−0.273494 + 0.961874i \(0.588179\pi\)
\(44\) 0 0
\(45\) −87.8411 439.338i −0.290991 1.45539i
\(46\) 0 0
\(47\) −103.187 178.724i −0.320240 0.554673i 0.660297 0.751005i \(-0.270430\pi\)
−0.980538 + 0.196332i \(0.937097\pi\)
\(48\) 0 0
\(49\) −167.541 + 299.297i −0.488458 + 0.872587i
\(50\) 0 0
\(51\) −303.743 + 370.485i −0.833971 + 1.01722i
\(52\) 0 0
\(53\) −191.437 110.526i −0.496148 0.286451i 0.230973 0.972960i \(-0.425809\pi\)
−0.727122 + 0.686509i \(0.759142\pi\)
\(54\) 0 0
\(55\) 690.456i 1.69275i
\(56\) 0 0
\(57\) 486.279 183.297i 1.12999 0.425934i
\(58\) 0 0
\(59\) 303.149 525.070i 0.668927 1.15862i −0.309278 0.950972i \(-0.600087\pi\)
0.978205 0.207643i \(-0.0665794\pi\)
\(60\) 0 0
\(61\) −291.647 + 168.383i −0.612157 + 0.353429i −0.773809 0.633419i \(-0.781651\pi\)
0.161652 + 0.986848i \(0.448318\pi\)
\(62\) 0 0
\(63\) −101.292 489.681i −0.202564 0.979269i
\(64\) 0 0
\(65\) −1033.84 + 596.887i −1.97280 + 1.13900i
\(66\) 0 0
\(67\) −15.4896 + 26.8287i −0.0282441 + 0.0489202i −0.879802 0.475340i \(-0.842325\pi\)
0.851558 + 0.524261i \(0.175658\pi\)
\(68\) 0 0
\(69\) −420.195 + 158.387i −0.733123 + 0.276341i
\(70\) 0 0
\(71\) 450.864i 0.753629i −0.926289 0.376814i \(-0.877019\pi\)
0.926289 0.376814i \(-0.122981\pi\)
\(72\) 0 0
\(73\) 613.551 + 354.234i 0.983709 + 0.567944i 0.903388 0.428825i \(-0.141072\pi\)
0.0803209 + 0.996769i \(0.474405\pi\)
\(74\) 0 0
\(75\) 495.335 604.176i 0.762618 0.930189i
\(76\) 0 0
\(77\) 5.11567 + 770.596i 0.00757123 + 1.14049i
\(78\) 0 0
\(79\) 372.522 + 645.226i 0.530531 + 0.918907i 0.999365 + 0.0356206i \(0.0113408\pi\)
−0.468834 + 0.883286i \(0.655326\pi\)
\(80\) 0 0
\(81\) 579.230 + 442.644i 0.794554 + 0.607193i
\(82\) 0 0
\(83\) 1057.78 1.39888 0.699439 0.714693i \(-0.253433\pi\)
0.699439 + 0.714693i \(0.253433\pi\)
\(84\) 0 0
\(85\) −1529.94 −1.95230
\(86\) 0 0
\(87\) −38.0464 + 231.154i −0.0468851 + 0.284854i
\(88\) 0 0
\(89\) 333.644 + 577.888i 0.397373 + 0.688270i 0.993401 0.114694i \(-0.0365886\pi\)
−0.596028 + 0.802964i \(0.703255\pi\)
\(90\) 0 0
\(91\) −1149.41 + 673.826i −1.32408 + 0.776221i
\(92\) 0 0
\(93\) −513.484 420.981i −0.572536 0.469395i
\(94\) 0 0
\(95\) 1437.24 + 829.791i 1.55219 + 0.896156i
\(96\) 0 0
\(97\) 1165.89i 1.22039i −0.792251 0.610195i \(-0.791091\pi\)
0.792251 0.610195i \(-0.208909\pi\)
\(98\) 0 0
\(99\) −741.575 843.921i −0.752839 0.856740i
\(100\) 0 0
\(101\) 569.548 986.486i 0.561110 0.971871i −0.436290 0.899806i \(-0.643708\pi\)
0.997400 0.0720650i \(-0.0229589\pi\)
\(102\) 0 0
\(103\) 920.316 531.345i 0.880402 0.508301i 0.00961128 0.999954i \(-0.496941\pi\)
0.870791 + 0.491653i \(0.163607\pi\)
\(104\) 0 0
\(105\) 1004.23 1241.61i 0.933359 1.15399i
\(106\) 0 0
\(107\) 402.972 232.656i 0.364082 0.210203i −0.306788 0.951778i \(-0.599254\pi\)
0.670870 + 0.741575i \(0.265921\pi\)
\(108\) 0 0
\(109\) −18.3377 + 31.7618i −0.0161141 + 0.0279104i −0.873970 0.485980i \(-0.838463\pi\)
0.857856 + 0.513890i \(0.171796\pi\)
\(110\) 0 0
\(111\) −690.293 1831.32i −0.590268 1.56596i
\(112\) 0 0
\(113\) 553.407i 0.460709i 0.973107 + 0.230355i \(0.0739886\pi\)
−0.973107 + 0.230355i \(0.926011\pi\)
\(114\) 0 0
\(115\) −1241.92 717.025i −1.00704 0.581417i
\(116\) 0 0
\(117\) 622.547 1839.93i 0.491919 1.45386i
\(118\) 0 0
\(119\) −1707.52 + 11.3355i −1.31536 + 0.00873213i
\(120\) 0 0
\(121\) 200.162 + 346.691i 0.150385 + 0.260474i
\(122\) 0 0
\(123\) 1528.40 + 251.564i 1.12041 + 0.184413i
\(124\) 0 0
\(125\) 420.750 0.301064
\(126\) 0 0
\(127\) −158.835 −0.110979 −0.0554894 0.998459i \(-0.517672\pi\)
−0.0554894 + 0.998459i \(0.517672\pi\)
\(128\) 0 0
\(129\) 790.783 + 130.158i 0.539725 + 0.0888352i
\(130\) 0 0
\(131\) 224.990 + 389.695i 0.150057 + 0.259907i 0.931248 0.364385i \(-0.118721\pi\)
−0.781191 + 0.624292i \(0.785388\pi\)
\(132\) 0 0
\(133\) 1610.21 + 915.454i 1.04979 + 0.596842i
\(134\) 0 0
\(135\) 79.6192 + 2326.69i 0.0507595 + 1.48333i
\(136\) 0 0
\(137\) −1739.78 1004.46i −1.08496 0.626401i −0.152729 0.988268i \(-0.548806\pi\)
−0.932230 + 0.361867i \(0.882139\pi\)
\(138\) 0 0
\(139\) 2400.58i 1.46485i −0.680847 0.732426i \(-0.738388\pi\)
0.680847 0.732426i \(-0.261612\pi\)
\(140\) 0 0
\(141\) 378.229 + 1003.43i 0.225905 + 0.599318i
\(142\) 0 0
\(143\) −1496.70 + 2592.36i −0.875246 + 1.51597i
\(144\) 0 0
\(145\) −647.890 + 374.060i −0.371065 + 0.214234i
\(146\) 0 0
\(147\) 1111.59 1393.16i 0.623688 0.781673i
\(148\) 0 0
\(149\) 1841.72 1063.32i 1.01261 0.584633i 0.100658 0.994921i \(-0.467905\pi\)
0.911956 + 0.410288i \(0.134572\pi\)
\(150\) 0 0
\(151\) −764.888 + 1324.83i −0.412223 + 0.713992i −0.995133 0.0985455i \(-0.968581\pi\)
0.582909 + 0.812537i \(0.301914\pi\)
\(152\) 0 0
\(153\) 1869.99 1643.21i 0.988104 0.868272i
\(154\) 0 0
\(155\) 2120.46i 1.09884i
\(156\) 0 0
\(157\) −633.214 365.586i −0.321885 0.185840i 0.330347 0.943859i \(-0.392834\pi\)
−0.652232 + 0.758019i \(0.726167\pi\)
\(158\) 0 0
\(159\) 888.255 + 728.239i 0.443039 + 0.363227i
\(160\) 0 0
\(161\) −1391.38 791.047i −0.681095 0.387225i
\(162\) 0 0
\(163\) −407.288 705.443i −0.195713 0.338985i 0.751421 0.659823i \(-0.229369\pi\)
−0.947134 + 0.320838i \(0.896035\pi\)
\(164\) 0 0
\(165\) 582.674 3540.08i 0.274916 1.67027i
\(166\) 0 0
\(167\) −993.394 −0.460306 −0.230153 0.973154i \(-0.573923\pi\)
−0.230153 + 0.973154i \(0.573923\pi\)
\(168\) 0 0
\(169\) −2978.47 −1.35570
\(170\) 0 0
\(171\) −2647.91 + 529.423i −1.18416 + 0.236760i
\(172\) 0 0
\(173\) 1849.86 + 3204.06i 0.812963 + 1.40809i 0.910782 + 0.412888i \(0.135480\pi\)
−0.0978189 + 0.995204i \(0.531187\pi\)
\(174\) 0 0
\(175\) 2784.57 18.4856i 1.20282 0.00798503i
\(176\) 0 0
\(177\) −1997.40 + 2436.29i −0.848214 + 1.03459i
\(178\) 0 0
\(179\) −1460.09 842.981i −0.609676 0.351997i 0.163163 0.986599i \(-0.447830\pi\)
−0.772839 + 0.634603i \(0.781164\pi\)
\(180\) 0 0
\(181\) 624.165i 0.256320i −0.991754 0.128160i \(-0.959093\pi\)
0.991754 0.128160i \(-0.0409070\pi\)
\(182\) 0 0
\(183\) 1637.42 617.205i 0.661430 0.249318i
\(184\) 0 0
\(185\) 3124.99 5412.64i 1.24191 2.15105i
\(186\) 0 0
\(187\) −3322.36 + 1918.17i −1.29923 + 0.750108i
\(188\) 0 0
\(189\) 106.099 + 2596.15i 0.0408337 + 0.999166i
\(190\) 0 0
\(191\) 2436.36 1406.63i 0.922979 0.532882i 0.0383946 0.999263i \(-0.487776\pi\)
0.884584 + 0.466381i \(0.154442\pi\)
\(192\) 0 0
\(193\) 271.698 470.594i 0.101333 0.175513i −0.810901 0.585183i \(-0.801023\pi\)
0.912234 + 0.409670i \(0.134356\pi\)
\(194\) 0 0
\(195\) 5804.37 2187.89i 2.13159 0.803475i
\(196\) 0 0
\(197\) 1301.71i 0.470777i 0.971901 + 0.235388i \(0.0756362\pi\)
−0.971901 + 0.235388i \(0.924364\pi\)
\(198\) 0 0
\(199\) −415.849 240.091i −0.148135 0.0855256i 0.424101 0.905615i \(-0.360590\pi\)
−0.572235 + 0.820089i \(0.693924\pi\)
\(200\) 0 0
\(201\) 102.058 124.484i 0.0358141 0.0436836i
\(202\) 0 0
\(203\) −720.318 + 422.276i −0.249046 + 0.146000i
\(204\) 0 0
\(205\) 2473.30 + 4283.87i 0.842646 + 1.45951i
\(206\) 0 0
\(207\) 2288.07 457.475i 0.768270 0.153607i
\(208\) 0 0
\(209\) 4161.41 1.37728
\(210\) 0 0
\(211\) −92.6723 −0.0302361 −0.0151181 0.999886i \(-0.504812\pi\)
−0.0151181 + 0.999886i \(0.504812\pi\)
\(212\) 0 0
\(213\) −380.483 + 2311.65i −0.122395 + 0.743624i
\(214\) 0 0
\(215\) 1279.67 + 2216.45i 0.405919 + 0.703072i
\(216\) 0 0
\(217\) −15.7108 2366.58i −0.00491482 0.740341i
\(218\) 0 0
\(219\) −2846.84 2333.99i −0.878410 0.720167i
\(220\) 0 0
\(221\) −5744.24 3316.44i −1.74841 1.00945i
\(222\) 0 0
\(223\) 3120.21i 0.936972i 0.883471 + 0.468486i \(0.155200\pi\)
−0.883471 + 0.468486i \(0.844800\pi\)
\(224\) 0 0
\(225\) −3049.53 + 2679.70i −0.903564 + 0.793984i
\(226\) 0 0
\(227\) −1912.66 + 3312.83i −0.559242 + 0.968635i 0.438318 + 0.898820i \(0.355574\pi\)
−0.997560 + 0.0698153i \(0.977759\pi\)
\(228\) 0 0
\(229\) 1989.41 1148.59i 0.574080 0.331445i −0.184697 0.982795i \(-0.559131\pi\)
0.758777 + 0.651350i \(0.225797\pi\)
\(230\) 0 0
\(231\) 624.075 3955.29i 0.177754 1.12658i
\(232\) 0 0
\(233\) −4451.29 + 2569.95i −1.25156 + 0.722589i −0.971419 0.237370i \(-0.923715\pi\)
−0.280141 + 0.959959i \(0.590381\pi\)
\(234\) 0 0
\(235\) −1712.26 + 2965.72i −0.475300 + 0.823245i
\(236\) 0 0
\(237\) −1365.48 3622.55i −0.374250 0.992870i
\(238\) 0 0
\(239\) 4561.23i 1.23448i −0.786774 0.617241i \(-0.788250\pi\)
0.786774 0.617241i \(-0.211750\pi\)
\(240\) 0 0
\(241\) −2097.55 1211.02i −0.560644 0.323688i 0.192760 0.981246i \(-0.438256\pi\)
−0.753404 + 0.657558i \(0.771589\pi\)
\(242\) 0 0
\(243\) −2596.26 2758.32i −0.685393 0.728174i
\(244\) 0 0
\(245\) 5691.19 75.5663i 1.48407 0.0197051i
\(246\) 0 0
\(247\) 3597.47 + 6231.00i 0.926726 + 1.60514i
\(248\) 0 0
\(249\) −5423.43 892.661i −1.38031 0.227189i
\(250\) 0 0
\(251\) −2323.52 −0.584301 −0.292150 0.956372i \(-0.594371\pi\)
−0.292150 + 0.956372i \(0.594371\pi\)
\(252\) 0 0
\(253\) −3595.89 −0.893564
\(254\) 0 0
\(255\) 7844.26 + 1291.11i 1.92638 + 0.317069i
\(256\) 0 0
\(257\) 2408.92 + 4172.36i 0.584685 + 1.01270i 0.994915 + 0.100722i \(0.0321152\pi\)
−0.410230 + 0.911982i \(0.634551\pi\)
\(258\) 0 0
\(259\) 3447.59 6064.02i 0.827116 1.45483i
\(260\) 0 0
\(261\) 390.140 1153.06i 0.0925252 0.273458i
\(262\) 0 0
\(263\) −4099.29 2366.73i −0.961114 0.554900i −0.0645984 0.997911i \(-0.520577\pi\)
−0.896516 + 0.443012i \(0.853910\pi\)
\(264\) 0 0
\(265\) 3668.10i 0.850302i
\(266\) 0 0
\(267\) −1222.97 3244.49i −0.280317 0.743669i
\(268\) 0 0
\(269\) −3176.43 + 5501.75i −0.719965 + 1.24702i 0.241048 + 0.970513i \(0.422509\pi\)
−0.961013 + 0.276503i \(0.910824\pi\)
\(270\) 0 0
\(271\) 2207.33 1274.40i 0.494781 0.285662i −0.231775 0.972769i \(-0.574453\pi\)
0.726556 + 0.687108i \(0.241120\pi\)
\(272\) 0 0
\(273\) 6461.86 2484.83i 1.43256 0.550875i
\(274\) 0 0
\(275\) 5418.01 3128.09i 1.18807 0.685931i
\(276\) 0 0
\(277\) −2364.68 + 4095.75i −0.512925 + 0.888411i 0.486963 + 0.873423i \(0.338105\pi\)
−0.999888 + 0.0149889i \(0.995229\pi\)
\(278\) 0 0
\(279\) 2277.45 + 2591.77i 0.488701 + 0.556147i
\(280\) 0 0
\(281\) 3104.55i 0.659082i −0.944141 0.329541i \(-0.893106\pi\)
0.944141 0.329541i \(-0.106894\pi\)
\(282\) 0 0
\(283\) −2706.64 1562.68i −0.568527 0.328239i 0.188034 0.982163i \(-0.439789\pi\)
−0.756561 + 0.653923i \(0.773122\pi\)
\(284\) 0 0
\(285\) −6668.71 5467.36i −1.38604 1.13635i
\(286\) 0 0
\(287\) 2792.10 + 4762.77i 0.574260 + 0.979572i
\(288\) 0 0
\(289\) −1793.85 3107.04i −0.365123 0.632411i
\(290\) 0 0
\(291\) −983.888 + 5977.69i −0.198201 + 1.20419i
\(292\) 0 0
\(293\) −3473.05 −0.692483 −0.346242 0.938145i \(-0.612542\pi\)
−0.346242 + 0.938145i \(0.612542\pi\)
\(294\) 0 0
\(295\) −10060.8 −1.98564
\(296\) 0 0
\(297\) 3089.99 + 4952.74i 0.603702 + 0.967632i
\(298\) 0 0
\(299\) −3108.58 5384.22i −0.601251 1.04140i
\(300\) 0 0
\(301\) 1444.62 + 2464.22i 0.276632 + 0.471879i
\(302\) 0 0
\(303\) −3752.66 + 4577.24i −0.711500 + 0.867839i
\(304\) 0 0
\(305\) 4839.55 + 2794.12i 0.908563 + 0.524559i
\(306\) 0 0
\(307\) 5831.84i 1.08417i −0.840323 0.542086i \(-0.817635\pi\)
0.840323 0.542086i \(-0.182365\pi\)
\(308\) 0 0
\(309\) −5167.01 + 1947.64i −0.951266 + 0.358568i
\(310\) 0 0
\(311\) −4948.29 + 8570.70i −0.902225 + 1.56270i −0.0776259 + 0.996983i \(0.524734\pi\)
−0.824599 + 0.565717i \(0.808599\pi\)
\(312\) 0 0
\(313\) −7417.35 + 4282.41i −1.33947 + 0.773342i −0.986728 0.162380i \(-0.948083\pi\)
−0.352739 + 0.935722i \(0.614750\pi\)
\(314\) 0 0
\(315\) −6196.64 + 5518.47i −1.10838 + 0.987082i
\(316\) 0 0
\(317\) 3265.61 1885.40i 0.578596 0.334053i −0.181979 0.983302i \(-0.558250\pi\)
0.760575 + 0.649250i \(0.224917\pi\)
\(318\) 0 0
\(319\) −937.957 + 1624.59i −0.164625 + 0.285140i
\(320\) 0 0
\(321\) −2262.44 + 852.799i −0.393387 + 0.148282i
\(322\) 0 0
\(323\) 9221.02i 1.58846i
\(324\) 0 0
\(325\) 9367.54 + 5408.35i 1.59882 + 0.923082i
\(326\) 0 0
\(327\) 120.824 147.373i 0.0204330 0.0249228i
\(328\) 0 0
\(329\) −1889.03 + 3322.63i −0.316551 + 0.556786i
\(330\) 0 0
\(331\) 5400.43 + 9353.82i 0.896781 + 1.55327i 0.831585 + 0.555397i \(0.187434\pi\)
0.0651951 + 0.997873i \(0.479233\pi\)
\(332\) 0 0
\(333\) 1993.80 + 9972.02i 0.328107 + 1.64103i
\(334\) 0 0
\(335\) 514.064 0.0838397
\(336\) 0 0
\(337\) 8729.29 1.41102 0.705511 0.708699i \(-0.250717\pi\)
0.705511 + 0.708699i \(0.250717\pi\)
\(338\) 0 0
\(339\) 467.019 2837.41i 0.0748230 0.454593i
\(340\) 0 0
\(341\) −2658.54 4604.72i −0.422193 0.731260i
\(342\) 0 0
\(343\) 6351.19 126.504i 0.999802 0.0199142i
\(344\) 0 0
\(345\) 5762.45 + 4724.36i 0.899247 + 0.737250i
\(346\) 0 0
\(347\) 2951.55 + 1704.08i 0.456621 + 0.263630i 0.710622 0.703574i \(-0.248414\pi\)
−0.254002 + 0.967204i \(0.581747\pi\)
\(348\) 0 0
\(349\) 6078.23i 0.932265i −0.884715 0.466132i \(-0.845647\pi\)
0.884715 0.466132i \(-0.154353\pi\)
\(350\) 0 0
\(351\) −4744.62 + 8908.28i −0.721507 + 1.35467i
\(352\) 0 0
\(353\) 3444.86 5966.67i 0.519409 0.899643i −0.480336 0.877084i \(-0.659485\pi\)
0.999746 0.0225588i \(-0.00718130\pi\)
\(354\) 0 0
\(355\) −6479.22 + 3740.78i −0.968680 + 0.559268i
\(356\) 0 0
\(357\) 8764.28 + 1382.85i 1.29931 + 0.205009i
\(358\) 0 0
\(359\) −6338.74 + 3659.67i −0.931883 + 0.538023i −0.887407 0.460987i \(-0.847495\pi\)
−0.0444765 + 0.999010i \(0.514162\pi\)
\(360\) 0 0
\(361\) 1571.69 2722.25i 0.229143 0.396888i
\(362\) 0 0
\(363\) −733.692 1946.46i −0.106085 0.281439i
\(364\) 0 0
\(365\) 11756.2i 1.68588i
\(366\) 0 0
\(367\) 7729.26 + 4462.49i 1.09936 + 0.634714i 0.936052 0.351861i \(-0.114451\pi\)
0.163305 + 0.986576i \(0.447784\pi\)
\(368\) 0 0
\(369\) −7624.05 2579.62i −1.07559 0.363929i
\(370\) 0 0
\(371\) 27.1774 + 4093.85i 0.00380318 + 0.572890i
\(372\) 0 0
\(373\) 425.459 + 736.916i 0.0590601 + 0.102295i 0.894044 0.447980i \(-0.147856\pi\)
−0.834984 + 0.550275i \(0.814523\pi\)
\(374\) 0 0
\(375\) −2157.25 355.070i −0.297067 0.0488952i
\(376\) 0 0
\(377\) −3243.39 −0.443085
\(378\) 0 0
\(379\) −3715.61 −0.503584 −0.251792 0.967781i \(-0.581020\pi\)
−0.251792 + 0.967781i \(0.581020\pi\)
\(380\) 0 0
\(381\) 814.372 + 134.040i 0.109505 + 0.0180239i
\(382\) 0 0
\(383\) −4703.20 8146.19i −0.627474 1.08682i −0.988057 0.154090i \(-0.950756\pi\)
0.360583 0.932727i \(-0.382578\pi\)
\(384\) 0 0
\(385\) 11031.6 6467.09i 1.46031 0.856087i
\(386\) 0 0
\(387\) −3944.64 1334.68i −0.518132 0.175312i
\(388\) 0 0
\(389\) 850.130 + 490.823i 0.110805 + 0.0639735i 0.554379 0.832265i \(-0.312956\pi\)
−0.443573 + 0.896238i \(0.646289\pi\)
\(390\) 0 0
\(391\) 7967.91i 1.03057i
\(392\) 0 0
\(393\) −824.700 2187.90i −0.105854 0.280827i
\(394\) 0 0
\(395\) 6181.57 10706.8i 0.787413 1.36384i
\(396\) 0 0
\(397\) −8976.10 + 5182.35i −1.13475 + 0.655151i −0.945126 0.326705i \(-0.894061\pi\)
−0.189628 + 0.981856i \(0.560728\pi\)
\(398\) 0 0
\(399\) −7483.24 6052.54i −0.938924 0.759413i
\(400\) 0 0
\(401\) −6115.22 + 3530.62i −0.761545 + 0.439678i −0.829850 0.557986i \(-0.811574\pi\)
0.0683051 + 0.997664i \(0.478241\pi\)
\(402\) 0 0
\(403\) 4596.52 7961.40i 0.568161 0.984083i
\(404\) 0 0
\(405\) 1555.27 11996.5i 0.190819 1.47188i
\(406\) 0 0
\(407\) 15671.9i 1.90866i
\(408\) 0 0
\(409\) −7226.85 4172.42i −0.873703 0.504433i −0.00512627 0.999987i \(-0.501632\pi\)
−0.868577 + 0.495554i \(0.834965\pi\)
\(410\) 0 0
\(411\) 8072.47 + 6618.24i 0.968821 + 0.794291i
\(412\) 0 0
\(413\) −11228.6 + 74.5418i −1.33782 + 0.00888127i
\(414\) 0 0
\(415\) −8776.35 15201.1i −1.03811 1.79805i
\(416\) 0 0
\(417\) −2025.84 + 12308.2i −0.237904 + 1.44540i
\(418\) 0 0
\(419\) 4034.43 0.470393 0.235197 0.971948i \(-0.424427\pi\)
0.235197 + 0.971948i \(0.424427\pi\)
\(420\) 0 0
\(421\) −474.967 −0.0549845 −0.0274923 0.999622i \(-0.508752\pi\)
−0.0274923 + 0.999622i \(0.508752\pi\)
\(422\) 0 0
\(423\) −1092.46 5463.93i −0.125572 0.628051i
\(424\) 0 0
\(425\) 6931.34 + 12005.4i 0.791105 + 1.37023i
\(426\) 0 0
\(427\) 5421.96 + 3082.56i 0.614490 + 0.349358i
\(428\) 0 0
\(429\) 9861.50 12028.4i 1.10983 1.35370i
\(430\) 0 0
\(431\) 2530.47 + 1460.97i 0.282804 + 0.163277i 0.634692 0.772765i \(-0.281127\pi\)
−0.351888 + 0.936042i \(0.614460\pi\)
\(432\) 0 0
\(433\) 12182.0i 1.35203i −0.736888 0.676015i \(-0.763706\pi\)
0.736888 0.676015i \(-0.236294\pi\)
\(434\) 0 0
\(435\) 3637.51 1371.11i 0.400932 0.151126i
\(436\) 0 0
\(437\) −4321.55 + 7485.14i −0.473061 + 0.819365i
\(438\) 0 0
\(439\) 2146.15 1239.08i 0.233326 0.134711i −0.378779 0.925487i \(-0.623656\pi\)
0.612106 + 0.790776i \(0.290323\pi\)
\(440\) 0 0
\(441\) −6874.98 + 6204.90i −0.742358 + 0.670003i
\(442\) 0 0
\(443\) 8956.89 5171.27i 0.960621 0.554615i 0.0642566 0.997933i \(-0.479532\pi\)
0.896364 + 0.443319i \(0.146199\pi\)
\(444\) 0 0
\(445\) 5536.44 9589.39i 0.589780 1.02153i
\(446\) 0 0
\(447\) −10340.1 + 3897.58i −1.09412 + 0.412414i
\(448\) 0 0
\(449\) 10545.1i 1.10837i −0.832395 0.554183i \(-0.813031\pi\)
0.832395 0.554183i \(-0.186969\pi\)
\(450\) 0 0
\(451\) 10741.8 + 6201.80i 1.12154 + 0.647520i
\(452\) 0 0
\(453\) 5039.73 6147.11i 0.522709 0.637564i
\(454\) 0 0
\(455\) 19219.9 + 10927.2i 1.98032 + 1.12587i
\(456\) 0 0
\(457\) −1930.75 3344.16i −0.197629 0.342304i 0.750130 0.661291i \(-0.229991\pi\)
−0.947759 + 0.318986i \(0.896658\pi\)
\(458\) 0 0
\(459\) −10974.5 + 6846.93i −1.11600 + 0.696268i
\(460\) 0 0
\(461\) 11520.2 1.16388 0.581942 0.813230i \(-0.302293\pi\)
0.581942 + 0.813230i \(0.302293\pi\)
\(462\) 0 0
\(463\) −292.312 −0.0293411 −0.0146705 0.999892i \(-0.504670\pi\)
−0.0146705 + 0.999892i \(0.504670\pi\)
\(464\) 0 0
\(465\) −1789.45 + 10872.0i −0.178460 + 1.08425i
\(466\) 0 0
\(467\) −3883.43 6726.30i −0.384805 0.666501i 0.606937 0.794750i \(-0.292398\pi\)
−0.991742 + 0.128248i \(0.959065\pi\)
\(468\) 0 0
\(469\) 573.730 3.80876i 0.0564869 0.000374994i
\(470\) 0 0
\(471\) 2938.07 + 2408.79i 0.287430 + 0.235650i
\(472\) 0 0
\(473\) 5557.76 + 3208.77i 0.540266 + 0.311923i
\(474\) 0 0
\(475\) 15037.4i 1.45255i
\(476\) 0 0
\(477\) −3939.67 4483.40i −0.378166 0.430358i
\(478\) 0 0
\(479\) 5271.30 9130.15i 0.502822 0.870913i −0.497173 0.867652i \(-0.665628\pi\)
0.999995 0.00326151i \(-0.00103817\pi\)
\(480\) 0 0
\(481\) 23465.9 13548.0i 2.22443 1.28428i
\(482\) 0 0
\(483\) 6466.29 + 5230.01i 0.609164 + 0.492699i
\(484\) 0 0
\(485\) −16754.6 + 9673.27i −1.56863 + 0.905650i
\(486\) 0 0
\(487\) 3779.59 6546.44i 0.351683 0.609133i −0.634861 0.772626i \(-0.718943\pi\)
0.986544 + 0.163493i \(0.0522762\pi\)
\(488\) 0 0
\(489\) 1492.91 + 3960.63i 0.138061 + 0.366270i
\(490\) 0 0
\(491\) 19617.4i 1.80310i 0.432674 + 0.901550i \(0.357570\pi\)
−0.432674 + 0.901550i \(0.642430\pi\)
\(492\) 0 0
\(493\) −3599.83 2078.36i −0.328860 0.189868i
\(494\) 0 0
\(495\) −5974.94 + 17658.9i −0.542532 + 1.60345i
\(496\) 0 0
\(497\) −7203.53 + 4222.97i −0.650146 + 0.381139i
\(498\) 0 0
\(499\) −599.984 1039.20i −0.0538256 0.0932286i 0.837857 0.545889i \(-0.183808\pi\)
−0.891683 + 0.452661i \(0.850475\pi\)
\(500\) 0 0
\(501\) 5093.30 + 838.323i 0.454195 + 0.0747575i
\(502\) 0 0
\(503\) 2879.14 0.255218 0.127609 0.991825i \(-0.459270\pi\)
0.127609 + 0.991825i \(0.459270\pi\)
\(504\) 0 0
\(505\) −18902.0 −1.66560
\(506\) 0 0
\(507\) 15271.1 + 2513.53i 1.33770 + 0.220177i
\(508\) 0 0
\(509\) −7735.46 13398.2i −0.673611 1.16673i −0.976873 0.213821i \(-0.931409\pi\)
0.303262 0.952907i \(-0.401924\pi\)
\(510\) 0 0
\(511\) −87.1031 13120.7i −0.00754054 1.13586i
\(512\) 0 0
\(513\) 14023.1 479.869i 1.20689 0.0412996i
\(514\) 0 0
\(515\) −15271.6 8817.05i −1.30669 0.754419i
\(516\) 0 0
\(517\) 8587.01i 0.730477i
\(518\) 0 0
\(519\) −6780.66 17988.8i −0.573484 1.52143i
\(520\) 0 0
\(521\) 1287.45 2229.93i 0.108262 0.187515i −0.806804 0.590819i \(-0.798805\pi\)
0.915066 + 0.403304i \(0.132138\pi\)
\(522\) 0 0
\(523\) −1320.42 + 762.347i −0.110398 + 0.0637382i −0.554182 0.832395i \(-0.686969\pi\)
0.443784 + 0.896134i \(0.353636\pi\)
\(524\) 0 0
\(525\) −14292.5 2255.11i −1.18815 0.187469i
\(526\) 0 0
\(527\) 10203.3 5890.89i 0.843385 0.486928i
\(528\) 0 0
\(529\) −2349.24 + 4069.00i −0.193083 + 0.334429i
\(530\) 0 0
\(531\) 12297.0 10805.7i 1.00498 0.883101i
\(532\) 0 0
\(533\) 21445.4i 1.74278i
\(534\) 0 0
\(535\) −6686.86 3860.66i −0.540370 0.311983i
\(536\) 0 0
\(537\) 6774.72 + 5554.27i 0.544415 + 0.446340i
\(538\) 0 0
\(539\) 12264.0 7299.44i 0.980055 0.583320i
\(540\) 0 0
\(541\) 10053.1 + 17412.4i 0.798920 + 1.38377i 0.920320 + 0.391166i \(0.127928\pi\)
−0.121400 + 0.992604i \(0.538738\pi\)
\(542\) 0 0
\(543\) −526.732 + 3200.20i −0.0416284 + 0.252917i
\(544\) 0 0
\(545\) 608.586 0.0478330
\(546\) 0 0
\(547\) 3946.90 0.308514 0.154257 0.988031i \(-0.450702\pi\)
0.154257 + 0.988031i \(0.450702\pi\)
\(548\) 0 0
\(549\) −8916.19 + 1782.70i −0.693140 + 0.138586i
\(550\) 0 0
\(551\) 2254.48 + 3904.87i 0.174308 + 0.301911i
\(552\) 0 0
\(553\) 6819.72 11995.3i 0.524419 0.922408i
\(554\) 0 0
\(555\) −20590.0 + 25114.3i −1.57477 + 1.92080i
\(556\) 0 0
\(557\) 18086.0 + 10442.0i 1.37582 + 0.794328i 0.991653 0.128938i \(-0.0411567\pi\)
0.384163 + 0.923265i \(0.374490\pi\)
\(558\) 0 0
\(559\) 11095.7i 0.839532i
\(560\) 0 0
\(561\) 18653.0 7031.03i 1.40380 0.529145i
\(562\) 0 0
\(563\) −4026.52 + 6974.13i −0.301416 + 0.522069i −0.976457 0.215712i \(-0.930793\pi\)
0.675041 + 0.737781i \(0.264126\pi\)
\(564\) 0 0
\(565\) 7952.84 4591.58i 0.592175 0.341892i
\(566\) 0 0
\(567\) 1646.90 13400.4i 0.121981 0.992532i
\(568\) 0 0
\(569\) −3249.15 + 1875.90i −0.239387 + 0.138210i −0.614895 0.788609i \(-0.710802\pi\)
0.375508 + 0.926819i \(0.377468\pi\)
\(570\) 0 0
\(571\) 7068.28 12242.6i 0.518036 0.897264i −0.481745 0.876312i \(-0.659997\pi\)
0.999780 0.0209525i \(-0.00666987\pi\)
\(572\) 0 0
\(573\) −13678.7 + 5156.01i −0.997269 + 0.375908i
\(574\) 0 0
\(575\) 12993.8i 0.942401i
\(576\) 0 0
\(577\) −13804.0 7969.72i −0.995956 0.575015i −0.0889067 0.996040i \(-0.528337\pi\)
−0.907049 + 0.421025i \(0.861671\pi\)
\(578\) 0 0
\(579\) −1790.17 + 2183.53i −0.128492 + 0.156726i
\(580\) 0 0
\(581\) −9907.62 16900.4i −0.707466 1.20679i
\(582\) 0 0
\(583\) 4598.90 + 7965.53i 0.326701 + 0.565863i
\(584\) 0 0
\(585\) −31606.3 + 6319.35i −2.23378 + 0.446621i
\(586\) 0 0
\(587\) −26116.9 −1.83639 −0.918196 0.396127i \(-0.870354\pi\)
−0.918196 + 0.396127i \(0.870354\pi\)
\(588\) 0 0
\(589\) −12780.1 −0.894052
\(590\) 0 0
\(591\) 1098.51 6674.09i 0.0764580 0.464527i
\(592\) 0 0
\(593\) −5150.35 8920.66i −0.356660 0.617753i 0.630741 0.775994i \(-0.282751\pi\)
−0.987401 + 0.158240i \(0.949418\pi\)
\(594\) 0 0
\(595\) 14330.0 + 24444.1i 0.987351 + 1.68422i
\(596\) 0 0
\(597\) 1929.52 + 1581.92i 0.132278 + 0.108448i
\(598\) 0 0
\(599\) −3319.39 1916.45i −0.226421 0.130725i 0.382499 0.923956i \(-0.375064\pi\)
−0.608920 + 0.793232i \(0.708397\pi\)
\(600\) 0 0
\(601\) 19446.0i 1.31983i −0.751339 0.659916i \(-0.770592\pi\)
0.751339 0.659916i \(-0.229408\pi\)
\(602\) 0 0
\(603\) −628.322 + 552.122i −0.0424332 + 0.0372872i
\(604\) 0 0
\(605\) 3321.46 5752.93i 0.223201 0.386595i
\(606\) 0 0
\(607\) 14174.9 8183.87i 0.947842 0.547237i 0.0554324 0.998462i \(-0.482346\pi\)
0.892410 + 0.451225i \(0.149013\pi\)
\(608\) 0 0
\(609\) 4049.55 1557.21i 0.269451 0.103614i
\(610\) 0 0
\(611\) −12857.6 + 7423.32i −0.851328 + 0.491514i
\(612\) 0 0
\(613\) 10423.9 18054.7i 0.686814 1.18960i −0.286049 0.958215i \(-0.592342\pi\)
0.972863 0.231381i \(-0.0743245\pi\)
\(614\) 0 0
\(615\) −9065.85 24051.3i −0.594423 1.57698i
\(616\) 0 0
\(617\) 2420.87i 0.157959i 0.996876 + 0.0789793i \(0.0251661\pi\)
−0.996876 + 0.0789793i \(0.974834\pi\)
\(618\) 0 0
\(619\) −18668.5 10778.2i −1.21220 0.699862i −0.248959 0.968514i \(-0.580088\pi\)
−0.963237 + 0.268653i \(0.913422\pi\)
\(620\) 0 0
\(621\) −12117.4 + 414.656i −0.783017 + 0.0267948i
\(622\) 0 0
\(623\) 6107.99 10743.4i 0.392795 0.690893i
\(624\) 0 0
\(625\) 5906.31 + 10230.0i 0.378004 + 0.654722i
\(626\) 0 0
\(627\) −21336.3 3511.81i −1.35899 0.223681i
\(628\) 0 0
\(629\) 34726.3 2.20132
\(630\) 0 0
\(631\) −24199.6 −1.52674 −0.763368 0.645964i \(-0.776456\pi\)
−0.763368 + 0.645964i \(0.776456\pi\)
\(632\) 0 0
\(633\) 475.146 + 78.2059i 0.0298347 + 0.00491060i
\(634\) 0 0
\(635\) 1317.84 + 2282.57i 0.0823573 + 0.142647i
\(636\) 0 0
\(637\) 21531.7 + 12053.0i 1.33927 + 0.749700i
\(638\) 0 0
\(639\) 3901.60 11531.1i 0.241541 0.713873i
\(640\) 0 0
\(641\) 731.695 + 422.445i 0.0450862 + 0.0260305i 0.522374 0.852717i \(-0.325047\pi\)
−0.477287 + 0.878747i \(0.658380\pi\)
\(642\) 0 0
\(643\) 27219.9i 1.66944i 0.550676 + 0.834719i \(0.314370\pi\)
−0.550676 + 0.834719i \(0.685630\pi\)
\(644\) 0 0
\(645\) −4690.61 12444.0i −0.286345 0.759662i
\(646\) 0 0
\(647\) −4462.47 + 7729.23i −0.271156 + 0.469656i −0.969158 0.246440i \(-0.920739\pi\)
0.698002 + 0.716096i \(0.254073\pi\)
\(648\) 0 0
\(649\) −21847.7 + 12613.8i −1.32142 + 0.762919i
\(650\) 0 0
\(651\) −1916.60 + 12147.1i −0.115388 + 0.731310i
\(652\) 0 0
\(653\) 2771.82 1600.31i 0.166110 0.0959036i −0.414640 0.909985i \(-0.636093\pi\)
0.580750 + 0.814082i \(0.302759\pi\)
\(654\) 0 0
\(655\) 3733.45 6466.53i 0.222715 0.385753i
\(656\) 0 0
\(657\) 12626.6 + 14369.2i 0.749787 + 0.853266i
\(658\) 0 0
\(659\) 23233.0i 1.37334i 0.726972 + 0.686668i \(0.240927\pi\)
−0.726972 + 0.686668i \(0.759073\pi\)
\(660\) 0 0
\(661\) 20885.6 + 12058.3i 1.22898 + 0.709551i 0.966816 0.255473i \(-0.0822313\pi\)
0.262162 + 0.965024i \(0.415565\pi\)
\(662\) 0 0
\(663\) 26653.0 + 21851.5i 1.56126 + 1.28000i
\(664\) 0 0
\(665\) −204.039 30735.2i −0.0118982 1.79227i
\(666\) 0 0
\(667\) −1948.10 3374.21i −0.113090 0.195877i
\(668\) 0 0
\(669\) 2633.14 15997.8i 0.152172 0.924532i
\(670\) 0 0
\(671\) 14012.5 0.806181
\(672\) 0 0
\(673\) 2234.31 0.127974 0.0639869 0.997951i \(-0.479618\pi\)
0.0639869 + 0.997951i \(0.479618\pi\)
\(674\) 0 0
\(675\) 17896.8 11165.8i 1.02052 0.636697i
\(676\) 0 0
\(677\) 17006.4 + 29456.0i 0.965449 + 1.67221i 0.708403 + 0.705808i \(0.249416\pi\)
0.257046 + 0.966399i \(0.417251\pi\)
\(678\) 0 0
\(679\) −18627.6 + 10920.2i −1.05281 + 0.617198i
\(680\) 0 0
\(681\) 12602.2 15371.3i 0.709131 0.864950i
\(682\) 0 0
\(683\) 11045.9 + 6377.33i 0.618826 + 0.357279i 0.776412 0.630226i \(-0.217038\pi\)
−0.157586 + 0.987505i \(0.550371\pi\)
\(684\) 0 0
\(685\) 33335.8i 1.85941i
\(686\) 0 0
\(687\) −11169.4 + 4210.15i −0.620287 + 0.233809i
\(688\) 0 0
\(689\) −7951.33 + 13772.1i −0.439654 + 0.761503i
\(690\) 0 0
\(691\) −13341.2 + 7702.57i −0.734479 + 0.424051i −0.820058 0.572280i \(-0.806059\pi\)
0.0855797 + 0.996331i \(0.472726\pi\)
\(692\) 0 0
\(693\) −6537.60 + 19752.8i −0.358359 + 1.08275i
\(694\) 0 0
\(695\) −34498.0 + 19917.4i −1.88285 + 1.08707i
\(696\) 0 0
\(697\) −13742.2 + 23802.2i −0.746805 + 1.29350i
\(698\) 0 0
\(699\) 24991.3 9420.14i 1.35230 0.509732i
\(700\) 0 0
\(701\) 28790.5i 1.55122i −0.631215 0.775608i \(-0.717443\pi\)
0.631215 0.775608i \(-0.282557\pi\)
\(702\) 0 0
\(703\) −32622.2 18834.5i −1.75017 1.01046i
\(704\) 0 0
\(705\) 11281.8 13760.8i 0.602692 0.735122i
\(706\) 0 0
\(707\) −21095.9 + 140.047i −1.12220 + 0.00744980i
\(708\) 0 0
\(709\) −4358.50 7549.15i −0.230870 0.399879i 0.727194 0.686432i \(-0.240824\pi\)
−0.958064 + 0.286553i \(0.907491\pi\)
\(710\) 0 0
\(711\) 3943.96 + 19725.8i 0.208031 + 1.04047i
\(712\) 0 0
\(713\) 11043.4 0.580052
\(714\) 0 0
\(715\) 49672.0 2.59808
\(716\) 0 0
\(717\) −3849.21 + 23386.2i −0.200490 + 1.21809i
\(718\) 0 0
\(719\) −11357.0 19670.9i −0.589075 1.02031i −0.994354 0.106114i \(-0.966159\pi\)
0.405279 0.914193i \(-0.367174\pi\)
\(720\) 0 0
\(721\) −17109.4 9727.28i −0.883757 0.502445i
\(722\) 0 0
\(723\) 9732.52 + 7979.23i 0.500631 + 0.410444i
\(724\) 0 0
\(725\) 5870.49 + 3389.33i 0.300724 + 0.173623i
\(726\) 0 0
\(727\) 3053.19i 0.155759i 0.996963 + 0.0778794i \(0.0248149\pi\)
−0.996963 + 0.0778794i \(0.975185\pi\)
\(728\) 0 0
\(729\) 10983.7 + 16333.3i 0.558032 + 0.829820i
\(730\) 0 0
\(731\) −7110.12 + 12315.1i −0.359750 + 0.623106i
\(732\) 0 0
\(733\) −19325.0 + 11157.3i −0.973787 + 0.562216i −0.900389 0.435086i \(-0.856718\pi\)
−0.0733987 + 0.997303i \(0.523385\pi\)
\(734\) 0 0
\(735\) −29243.4 4415.34i −1.46757 0.221581i
\(736\) 0 0
\(737\) 1116.32 644.509i 0.0557941 0.0322127i
\(738\) 0 0
\(739\) −3328.38 + 5764.91i −0.165678 + 0.286963i −0.936896 0.349608i \(-0.886315\pi\)
0.771218 + 0.636572i \(0.219648\pi\)
\(740\) 0 0
\(741\) −13186.5 34983.2i −0.653735 1.73433i
\(742\) 0 0
\(743\) 15251.1i 0.753041i −0.926408 0.376520i \(-0.877120\pi\)
0.926408 0.376520i \(-0.122880\pi\)
\(744\) 0 0
\(745\) −30561.2 17644.5i −1.50292 0.867711i
\(746\) 0 0
\(747\) 27053.5 + 9153.64i 1.32508 + 0.448346i
\(748\) 0 0
\(749\) −7491.59 4259.21i −0.365470 0.207781i
\(750\) 0 0
\(751\) 15011.8 + 26001.2i 0.729411 + 1.26338i 0.957132 + 0.289651i \(0.0935392\pi\)
−0.227721 + 0.973726i \(0.573128\pi\)
\(752\) 0 0
\(753\) 11913.1 + 1960.82i 0.576544 + 0.0948952i
\(754\) 0 0
\(755\) 25384.9 1.22364
\(756\) 0 0
\(757\) 28779.9 1.38180 0.690901 0.722949i \(-0.257214\pi\)
0.690901 + 0.722949i \(0.257214\pi\)
\(758\) 0 0
\(759\) 18436.7 + 3034.56i 0.881701 + 0.145122i
\(760\) 0 0
\(761\) −14841.5 25706.2i −0.706969 1.22451i −0.965976 0.258631i \(-0.916729\pi\)
0.259007 0.965875i \(-0.416605\pi\)
\(762\) 0 0
\(763\) 679.223 4.50908i 0.0322274 0.000213945i
\(764\) 0 0
\(765\) −39129.2 13239.5i −1.84931 0.625719i
\(766\) 0 0
\(767\) −37773.9 21808.8i −1.77828 1.02669i
\(768\) 0 0
\(769\) 16261.1i 0.762534i 0.924465 + 0.381267i \(0.124512\pi\)
−0.924465 + 0.381267i \(0.875488\pi\)
\(770\) 0 0
\(771\) −8829.86 23425.3i −0.412451 1.09422i
\(772\) 0 0
\(773\) 8515.09 14748.6i 0.396205 0.686248i −0.597049 0.802205i \(-0.703660\pi\)
0.993254 + 0.115957i \(0.0369935\pi\)
\(774\) 0 0
\(775\) −16639.3 + 9606.69i −0.771226 + 0.445268i
\(776\) 0 0
\(777\) −22793.8 + 28181.8i −1.05241 + 1.30118i
\(778\) 0 0
\(779\) 25819.1 14906.7i 1.18750 0.685606i
\(780\) 0 0
\(781\) −9380.03 + 16246.7i −0.429762 + 0.744369i
\(782\) 0 0
\(783\) −2973.38 + 5582.68i −0.135709 + 0.254800i
\(784\) 0 0
\(785\) 12133.0i 0.551648i
\(786\) 0 0
\(787\) 14775.6 + 8530.69i 0.669242 + 0.386387i 0.795789 0.605574i \(-0.207056\pi\)
−0.126548 + 0.991961i \(0.540390\pi\)
\(788\) 0 0
\(789\) 19020.5 + 15594.0i 0.858234 + 0.703625i
\(790\) 0 0
\(791\) 8841.89 5183.43i 0.397448 0.232998i
\(792\) 0 0
\(793\) 12113.6 + 20981.3i 0.542453 + 0.939557i
\(794\) 0 0
\(795\) 3095.50 18807.0i 0.138096 0.839013i
\(796\) 0 0
\(797\) −29152.4 −1.29565 −0.647823 0.761791i \(-0.724321\pi\)
−0.647823 + 0.761791i \(0.724321\pi\)
\(798\) 0 0
\(799\) −19027.4 −0.842481
\(800\) 0 0
\(801\) 3532.35 + 17667.1i 0.155817 + 0.779321i
\(802\) 0 0
\(803\) −14739.4 25529.4i −0.647748 1.12193i
\(804\) 0 0
\(805\) 176.310 + 26558.4i 0.00771941 + 1.16281i
\(806\) 0 0
\(807\) 20929.0 25527.8i 0.912932 1.11353i
\(808\) 0 0
\(809\) −23571.9 13609.3i −1.02441 0.591441i −0.109029 0.994039i \(-0.534774\pi\)
−0.915377 + 0.402598i \(0.868107\pi\)
\(810\) 0 0
\(811\) 36722.8i 1.59003i 0.606591 + 0.795014i \(0.292537\pi\)
−0.606591 + 0.795014i \(0.707463\pi\)
\(812\) 0 0
\(813\) −12392.8 + 4671.31i −0.534606 + 0.201513i
\(814\) 0 0
\(815\) −6758.47 + 11706.0i −0.290477 + 0.503121i
\(816\) 0 0
\(817\) 13358.6 7712.61i 0.572044 0.330270i
\(818\) 0 0
\(819\) −35228.0 + 7287.00i −1.50301 + 0.310902i
\(820\) 0 0
\(821\) −19548.0 + 11286.0i −0.830974 + 0.479763i −0.854186 0.519967i \(-0.825944\pi\)
0.0232120 + 0.999731i \(0.492611\pi\)
\(822\) 0 0
\(823\) 17102.5 29622.4i 0.724370 1.25465i −0.234863 0.972029i \(-0.575464\pi\)
0.959233 0.282617i \(-0.0912027\pi\)
\(824\) 0 0
\(825\) −30418.8 + 11466.0i −1.28369 + 0.483872i
\(826\) 0 0
\(827\) 24956.1i 1.04935i −0.851304 0.524674i \(-0.824187\pi\)
0.851304 0.524674i \(-0.175813\pi\)
\(828\) 0 0
\(829\) −27970.1 16148.5i −1.17182 0.676552i −0.217714 0.976013i \(-0.569860\pi\)
−0.954109 + 0.299460i \(0.903193\pi\)
\(830\) 0 0
\(831\) 15580.5 19004.1i 0.650400 0.793313i
\(832\) 0 0
\(833\) 16174.4 + 27175.1i 0.672760 + 1.13033i
\(834\) 0 0
\(835\) 8242.12 + 14275.8i 0.341593 + 0.591657i
\(836\) 0 0
\(837\) −9489.69 15210.4i −0.391890 0.628133i
\(838\) 0 0
\(839\) −23250.5 −0.956731 −0.478365 0.878161i \(-0.658771\pi\)
−0.478365 + 0.878161i \(0.658771\pi\)
\(840\) 0 0
\(841\) 22356.4 0.916660
\(842\) 0 0
\(843\) −2619.92 + 15917.5i −0.107040 + 0.650332i
\(844\) 0 0
\(845\) 24712.2 + 42802.7i 1.00606 + 1.74255i
\(846\) 0 0
\(847\) 3664.34 6445.27i 0.148652 0.261466i
\(848\) 0 0
\(849\) 12558.7 + 10296.3i 0.507671 + 0.416215i
\(850\) 0 0
\(851\) 28189.0 + 16274.9i 1.13549 + 0.655578i
\(852\) 0 0
\(853\) 6705.16i 0.269145i 0.990904 + 0.134572i \(0.0429661\pi\)
−0.990904 + 0.134572i \(0.957034\pi\)
\(854\) 0 0
\(855\) 29577.7 + 33659.8i 1.18308 + 1.34636i
\(856\) 0 0
\(857\) 3136.56 5432.69i 0.125021 0.216543i −0.796720 0.604348i \(-0.793434\pi\)
0.921741 + 0.387806i \(0.126767\pi\)
\(858\) 0 0
\(859\) 9239.39 5334.37i 0.366990 0.211882i −0.305153 0.952303i \(-0.598708\pi\)
0.672142 + 0.740422i \(0.265374\pi\)
\(860\) 0 0
\(861\) −10296.3 26775.7i −0.407546 1.05983i
\(862\) 0 0
\(863\) 17034.3 9834.75i 0.671905 0.387925i −0.124893 0.992170i \(-0.539859\pi\)
0.796798 + 0.604246i \(0.206525\pi\)
\(864\) 0 0
\(865\) 30696.4 53167.7i 1.20660 2.08989i
\(866\) 0 0
\(867\) 6575.34 + 17444.1i 0.257566 + 0.683314i
\(868\) 0 0
\(869\) 31000.6i 1.21015i
\(870\) 0 0
\(871\) 1930.08 + 1114.33i 0.0750841 + 0.0433498i
\(872\) 0 0
\(873\) 10089.1 29818.3i 0.391140 1.15601i
\(874\) 0 0
\(875\) −3940.91 6722.40i −0.152259 0.259724i
\(876\) 0 0
\(877\) −4189.33 7256.13i −0.161304 0.279386i 0.774033 0.633146i \(-0.218237\pi\)
−0.935337 + 0.353759i \(0.884903\pi\)
\(878\) 0 0
\(879\) 17806.9 + 2930.90i 0.683289 + 0.112465i
\(880\) 0 0
\(881\) −24758.7 −0.946814 −0.473407 0.880844i \(-0.656976\pi\)
−0.473407 + 0.880844i \(0.656976\pi\)
\(882\) 0 0
\(883\) −34812.0 −1.32675 −0.663374 0.748288i \(-0.730876\pi\)
−0.663374 + 0.748288i \(0.730876\pi\)
\(884\) 0 0
\(885\) 51583.5 + 8490.31i 1.95928 + 0.322484i
\(886\) 0 0
\(887\) 7366.01 + 12758.3i 0.278835 + 0.482956i 0.971095 0.238692i \(-0.0767185\pi\)
−0.692261 + 0.721647i \(0.743385\pi\)
\(888\) 0 0
\(889\) 1487.71 + 2537.73i 0.0561262 + 0.0957399i
\(890\) 0 0
\(891\) −11663.3 28001.1i −0.438536 1.05283i
\(892\) 0 0
\(893\) 17874.6 + 10319.9i 0.669820 + 0.386721i
\(894\) 0 0
\(895\) 27976.6i 1.04487i
\(896\) 0 0
\(897\) 11394.5 + 30229.1i 0.424137 + 1.12522i
\(898\) 0 0
\(899\) 2880.56 4989.28i 0.106866 0.185097i
\(900\) 0 0
\(901\) −17650.3 + 10190.4i −0.652627 + 0.376795i
\(902\) 0 0
\(903\) −5327.24 13853.6i −0.196323 0.510541i
\(904\) 0 0
\(905\) −8969.69 + 5178.65i −0.329461 + 0.190215i
\(906\) 0 0
\(907\) −16011.0 + 27731.8i −0.586147 + 1.01524i 0.408584 + 0.912721i \(0.366023\pi\)
−0.994731 + 0.102516i \(0.967311\pi\)
\(908\) 0 0
\(909\) 23103.2 20301.4i 0.842999 0.740764i
\(910\) 0 0
\(911\) 20643.5i 0.750767i 0.926869 + 0.375384i \(0.122489\pi\)
−0.926869 + 0.375384i \(0.877511\pi\)
\(912\) 0 0
\(913\) −38116.8 22006.8i −1.38169 0.797719i
\(914\) 0 0
\(915\) −22455.2 18410.0i −0.811308 0.665153i
\(916\) 0 0
\(917\) 4118.87 7244.75i 0.148328 0.260897i
\(918\) 0 0
\(919\) −18121.5 31387.4i −0.650462 1.12663i −0.983011 0.183547i \(-0.941242\pi\)
0.332549 0.943086i \(-0.392091\pi\)
\(920\) 0 0
\(921\) −4921.48 + 29900.8i −0.176078 + 1.06978i
\(922\) 0 0
\(923\) −32435.5 −1.15669
\(924\) 0 0
\(925\) −56630.6 −2.01298
\(926\) 0 0
\(927\) 28135.8 5625.45i 0.996871 0.199314i
\(928\) 0 0
\(929\) 16984.4 + 29417.9i 0.599828 + 1.03893i 0.992846 + 0.119402i \(0.0380977\pi\)
−0.393018 + 0.919531i \(0.628569\pi\)
\(930\) 0 0
\(931\) −455.442 34301.1i −0.0160328 1.20749i
\(932\) 0 0
\(933\) 32603.5 39767.5i 1.14404 1.39542i
\(934\) 0 0
\(935\) 55130.8 + 31829.8i 1.92831 + 1.11331i
\(936\) 0 0
\(937\) 14636.9i 0.510318i 0.966899 + 0.255159i \(0.0821279\pi\)
−0.966899 + 0.255159i \(0.917872\pi\)
\(938\) 0 0
\(939\) 41643.9 15697.1i 1.44728 0.545534i
\(940\) 0 0
\(941\) 16015.3 27739.3i 0.554818 0.960973i −0.443099 0.896472i \(-0.646121\pi\)
0.997918 0.0645009i \(-0.0205455\pi\)
\(942\) 0 0
\(943\) −22310.4 + 12880.9i −0.770441 + 0.444814i
\(944\) 0 0
\(945\) 36428.2 23064.8i 1.25398 0.793966i
\(946\) 0 0
\(947\) 4795.10 2768.45i 0.164540 0.0949974i −0.415469 0.909608i \(-0.636382\pi\)
0.580009 + 0.814610i \(0.303049\pi\)
\(948\) 0 0
\(949\) 25483.9 44139.3i 0.871698 1.50982i
\(950\) 0 0
\(951\) −18334.4 + 6910.92i −0.625167 + 0.235649i
\(952\) 0 0
\(953\) 36036.5i 1.22491i 0.790506 + 0.612454i \(0.209818\pi\)
−0.790506 + 0.612454i \(0.790182\pi\)
\(954\) 0 0
\(955\) −40428.6 23341.5i −1.36988 0.790903i
\(956\) 0 0
\(957\) 6180.05 7538.00i 0.208749 0.254617i
\(958\) 0 0
\(959\) 246.988 + 37205.0i 0.00831666 + 1.25277i
\(960\) 0 0
\(961\) −6730.85 11658.2i −0.225936 0.391332i
\(962\) 0 0
\(963\) 12319.6 2463.17i 0.412247 0.0824244i
\(964\) 0 0
\(965\) −9017.02 −0.300796
\(966\) 0 0
\(967\) 56255.8 1.87080 0.935400 0.353591i \(-0.115040\pi\)
0.935400 + 0.353591i \(0.115040\pi\)
\(968\) 0 0
\(969\) 7781.60 47277.7i 0.257978 1.56737i
\(970\) 0 0
\(971\) 13498.6 + 23380.2i 0.446128 + 0.772716i 0.998130 0.0611266i \(-0.0194693\pi\)
−0.552002 + 0.833843i \(0.686136\pi\)
\(972\) 0 0
\(973\) −38354.5 + 22484.8i −1.26371 + 0.740831i
\(974\) 0 0
\(975\) −43464.9 35634.8i −1.42768 1.17049i
\(976\) 0 0
\(977\) 2971.88 + 1715.82i 0.0973172 + 0.0561861i 0.547869 0.836564i \(-0.315439\pi\)
−0.450552 + 0.892750i \(0.648773\pi\)
\(978\) 0 0
\(979\) 27765.3i 0.906418i
\(980\) 0 0
\(981\) −743.854 + 653.643i −0.0242094 + 0.0212734i
\(982\) 0 0
\(983\) 17017.3 29474.7i 0.552153 0.956357i −0.445966 0.895050i \(-0.647140\pi\)
0.998119 0.0613068i \(-0.0195268\pi\)
\(984\) 0 0
\(985\) 18706.5 10800.2i 0.605115 0.349363i
\(986\) 0 0
\(987\) 12489.3 15441.6i 0.402775 0.497984i
\(988\) 0 0
\(989\) −11543.2 + 6664.49i −0.371136 + 0.214276i
\(990\) 0 0
\(991\) −8251.21 + 14291.5i −0.264489 + 0.458108i −0.967430 0.253140i \(-0.918537\pi\)
0.702941 + 0.711248i \(0.251870\pi\)
\(992\) 0 0
\(993\) −19795.2 52516.0i −0.632611 1.67829i
\(994\) 0 0
\(995\) 7968.06i 0.253874i
\(996\) 0 0
\(997\) 43733.5 + 25249.5i 1.38922 + 0.802067i 0.993227 0.116186i \(-0.0370670\pi\)
0.395993 + 0.918253i \(0.370400\pi\)
\(998\) 0 0
\(999\) −1807.18 52810.8i −0.0572339 1.67253i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.4.bc.f.17.2 48
3.2 odd 2 inner 336.4.bc.f.17.7 48
4.3 odd 2 168.4.u.a.17.23 yes 48
7.5 odd 6 inner 336.4.bc.f.257.7 48
12.11 even 2 168.4.u.a.17.18 48
21.5 even 6 inner 336.4.bc.f.257.2 48
28.19 even 6 168.4.u.a.89.18 yes 48
84.47 odd 6 168.4.u.a.89.23 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.4.u.a.17.18 48 12.11 even 2
168.4.u.a.17.23 yes 48 4.3 odd 2
168.4.u.a.89.18 yes 48 28.19 even 6
168.4.u.a.89.23 yes 48 84.47 odd 6
336.4.bc.f.17.2 48 1.1 even 1 trivial
336.4.bc.f.17.7 48 3.2 odd 2 inner
336.4.bc.f.257.2 48 21.5 even 6 inner
336.4.bc.f.257.7 48 7.5 odd 6 inner