gp: [N,k,chi] = [336,4,Mod(17,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 3, 1]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.17");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [16,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 15 1,\beta_1,\ldots,\beta_{15} 1 , β 1 , … , β 1 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 16 − 2 x 15 − x 14 − 2 x 13 + 9 x 12 − 24 x 11 + 714 x 10 − 1940 x 9 − 2834 x 8 + ⋯ + 43046721 x^{16} - 2 x^{15} - x^{14} - 2 x^{13} + 9 x^{12} - 24 x^{11} + 714 x^{10} - 1940 x^{9} - 2834 x^{8} + \cdots + 43046721 x 1 6 − 2 x 1 5 − x 1 4 − 2 x 1 3 + 9 x 1 2 − 2 4 x 1 1 + 7 1 4 x 1 0 − 1 9 4 0 x 9 − 2 8 3 4 x 8 + ⋯ + 4 3 0 4 6 7 2 1
x^16 - 2*x^15 - x^14 - 2*x^13 + 9*x^12 - 24*x^11 + 714*x^10 - 1940*x^9 - 2834*x^8 - 17460*x^7 + 57834*x^6 - 17496*x^5 + 59049*x^4 - 118098*x^3 - 531441*x^2 - 9565938*x + 43046721
:
β 1 \beta_{1} β 1 = = =
( 5191 ν 15 − 309530 ν 14 − 1581934 ν 13 − 12539069 ν 12 + 1431552 ν 11 + ⋯ − 4281814291149 ) / 980793497376 ( 5191 \nu^{15} - 309530 \nu^{14} - 1581934 \nu^{13} - 12539069 \nu^{12} + 1431552 \nu^{11} + \cdots - 4281814291149 ) / 980793497376 ( 5 1 9 1 ν 1 5 − 3 0 9 5 3 0 ν 1 4 − 1 5 8 1 9 3 4 ν 1 3 − 1 2 5 3 9 0 6 9 ν 1 2 + 1 4 3 1 5 5 2 ν 1 1 + ⋯ − 4 2 8 1 8 1 4 2 9 1 1 4 9 ) / 9 8 0 7 9 3 4 9 7 3 7 6
(5191*v^15 - 309530*v^14 - 1581934*v^13 - 12539069*v^12 + 1431552*v^11 - 2093856*v^10 + 351046074*v^9 - 28002824*v^8 - 315020312*v^7 - 6624592890*v^6 + 9665820720*v^5 + 16813924272*v^4 - 19125837693*v^3 + 82104682050*v^2 + 81989654598*v - 4281814291149) / 980793497376
β 2 \beta_{2} β 2 = = =
( − 1025 ν 15 + 7522 ν 14 + 1448 ν 13 − 4529 ν 12 − 66042 ν 11 + ⋯ + 30596652693 ) / 30024290736 ( - 1025 \nu^{15} + 7522 \nu^{14} + 1448 \nu^{13} - 4529 \nu^{12} - 66042 \nu^{11} + \cdots + 30596652693 ) / 30024290736 ( − 1 0 2 5 ν 1 5 + 7 5 2 2 ν 1 4 + 1 4 4 8 ν 1 3 − 4 5 2 9 ν 1 2 − 6 6 0 4 2 ν 1 1 + ⋯ + 3 0 5 9 6 6 5 2 6 9 3 ) / 3 0 0 2 4 2 9 0 7 3 6
(-1025*v^15 + 7522*v^14 + 1448*v^13 - 4529*v^12 - 66042*v^11 - 322620*v^10 - 2446566*v^9 - 2014304*v^8 + 7719994*v^7 + 24266412*v^6 - 128621250*v^5 - 43066404*v^4 - 341572221*v^3 - 683039466*v^2 + 12045641706*v + 30596652693) / 30024290736
β 3 \beta_{3} β 3 = = =
( − 98467 ν 15 − 3277489 ν 14 − 15183785 ν 13 − 68558206 ν 12 + ⋯ − 17367563093094 ) / 2942380492128 ( - 98467 \nu^{15} - 3277489 \nu^{14} - 15183785 \nu^{13} - 68558206 \nu^{12} + \cdots - 17367563093094 ) / 2942380492128 ( − 9 8 4 6 7 ν 1 5 − 3 2 7 7 4 8 9 ν 1 4 − 1 5 1 8 3 7 8 5 ν 1 3 − 6 8 5 5 8 2 0 6 ν 1 2 + ⋯ − 1 7 3 6 7 5 6 3 0 9 3 0 9 4 ) / 2 9 4 2 3 8 0 4 9 2 1 2 8
(-98467*v^15 - 3277489*v^14 - 15183785*v^13 - 68558206*v^12 - 152052840*v^11 + 442320216*v^10 + 1663355922*v^9 + 425603006*v^8 - 6212634154*v^7 - 20186601156*v^6 + 24902279064*v^5 + 530062542648*v^4 + 1100348911989*v^3 + 2294813669679*v^2 - 8314807374657*v - 17367563093094) / 2942380492128
β 4 \beta_{4} β 4 = = =
( − 10304 ν 15 + 5317 ν 14 − 182755 ν 13 + 524005 ν 12 − 438480 ν 11 + ⋯ + 81143069085 ) / 89163045216 ( - 10304 \nu^{15} + 5317 \nu^{14} - 182755 \nu^{13} + 524005 \nu^{12} - 438480 \nu^{11} + \cdots + 81143069085 ) / 89163045216 ( − 1 0 3 0 4 ν 1 5 + 5 3 1 7 ν 1 4 − 1 8 2 7 5 5 ν 1 3 + 5 2 4 0 0 5 ν 1 2 − 4 3 8 4 8 0 ν 1 1 + ⋯ + 8 1 1 4 3 0 6 9 0 8 5 ) / 8 9 1 6 3 0 4 5 2 1 6
(-10304*v^15 + 5317*v^14 - 182755*v^13 + 524005*v^12 - 438480*v^11 + 1729920*v^10 - 8920464*v^9 + 14071954*v^8 - 61640054*v^7 + 588154338*v^6 + 1339362864*v^5 + 2116782720*v^4 - 10184036688*v^3 + 6948236781*v^2 - 11769823827*v + 81143069085) / 89163045216
β 5 \beta_{5} β 5 = = =
( 99716 ν 15 + 525581 ν 14 + 4176229 ν 13 − 461611 ν 12 + 656424 ν 11 + ⋯ + 74485176237 ) / 735595123032 ( 99716 \nu^{15} + 525581 \nu^{14} + 4176229 \nu^{13} - 461611 \nu^{12} + 656424 \nu^{11} + \cdots + 74485176237 ) / 735595123032 ( 9 9 7 1 6 ν 1 5 + 5 2 5 5 8 1 ν 1 4 + 4 1 7 6 2 2 9 ν 1 3 − 4 6 1 6 1 1 ν 1 2 + 6 5 6 4 2 4 ν 1 1 + ⋯ + 7 4 4 8 5 1 7 6 2 3 7 ) / 7 3 5 5 9 5 1 2 3 0 3 2
(99716*v^15 + 525581*v^14 + 4176229*v^13 - 461611*v^12 + 656424*v^11 - 115779900*v^10 + 5977428*v^9 + 100103006*v^8 + 2177986010*v^7 - 3121868142*v^6 - 5634915336*v^5 + 6477453684*v^4 - 27572576256*v^3 - 28249454943*v^2 + 1410719168997*v + 74485176237) / 735595123032
β 6 \beta_{6} β 6 = = =
( − 355015 ν 15 − 1366828 ν 14 − 1922912 ν 13 + 5844395 ν 12 + ⋯ + 2323389370347 ) / 980793497376 ( - 355015 \nu^{15} - 1366828 \nu^{14} - 1922912 \nu^{13} + 5844395 \nu^{12} + \cdots + 2323389370347 ) / 980793497376 ( − 3 5 5 0 1 5 ν 1 5 − 1 3 6 6 8 2 8 ν 1 4 − 1 9 2 2 9 1 2 ν 1 3 + 5 8 4 4 3 9 5 ν 1 2 + ⋯ + 2 3 2 3 3 8 9 3 7 0 3 4 7 ) / 9 8 0 7 9 3 4 9 7 3 7 6
(-355015*v^15 - 1366828*v^14 - 1922912*v^13 + 5844395*v^12 + 32972292*v^11 + 40769052*v^10 - 195975786*v^9 - 665402224*v^8 - 217765000*v^7 + 10270327878*v^6 + 11992296564*v^5 + 34438178700*v^4 - 106533338643*v^3 - 411473508660*v^2 - 472255478712*v + 2323389370347) / 980793497376
β 7 \beta_{7} β 7 = = =
( 1475767 ν 15 + 15672631 ν 14 + 32942759 ν 13 + 8154460 ν 12 + ⋯ + 67296839372316 ) / 2942380492128 ( 1475767 \nu^{15} + 15672631 \nu^{14} + 32942759 \nu^{13} + 8154460 \nu^{12} + \cdots + 67296839372316 ) / 2942380492128 ( 1 4 7 5 7 6 7 ν 1 5 + 1 5 6 7 2 6 3 1 ν 1 4 + 3 2 9 4 2 7 5 9 ν 1 3 + 8 1 5 4 4 6 0 ν 1 2 + ⋯ + 6 7 2 9 6 8 3 9 3 7 2 3 1 6 ) / 2 9 4 2 3 8 0 4 9 2 1 2 8
(1475767*v^15 + 15672631*v^14 + 32942759*v^13 + 8154460*v^12 - 120991548*v^11 - 989657484*v^10 - 3735497922*v^9 + 4281271114*v^8 + 966748786*v^7 - 4465722504*v^6 - 318113530524*v^5 - 584665940268*v^4 - 1821977966745*v^3 + 4559466192723*v^2 + 13236460863723*v + 67296839372316) / 2942380492128
β 8 \beta_{8} β 8 = = =
( − 386047 ν 15 − 1698028 ν 14 − 7639460 ν 13 − 16796293 ν 12 + ⋯ + 470964608523 ) / 735595123032 ( - 386047 \nu^{15} - 1698028 \nu^{14} - 7639460 \nu^{13} - 16796293 \nu^{12} + \cdots + 470964608523 ) / 735595123032 ( − 3 8 6 0 4 7 ν 1 5 − 1 6 9 8 0 2 8 ν 1 4 − 7 6 3 9 4 6 0 ν 1 3 − 1 6 7 9 6 2 9 3 ν 1 2 + ⋯ + 4 7 0 9 6 4 6 0 8 5 2 3 ) / 7 3 5 5 9 5 1 2 3 0 3 2
(-386047*v^15 - 1698028*v^14 - 7639460*v^13 - 16796293*v^12 + 48884112*v^11 + 192629040*v^10 + 26064114*v^9 - 721298848*v^8 - 2433981664*v^7 + 3399668838*v^6 + 58704418224*v^5 + 122907032208*v^4 + 253687212657*v^3 - 929681863956*v^2 - 2034388034460*v + 470964608523) / 735595123032
β 9 \beta_{9} β 9 = = =
( − 5044301 ν 15 − 1066547 ν 14 + 74264777 ν 13 + 103846498 ν 12 + ⋯ + 184962509874954 ) / 8827141476384 ( - 5044301 \nu^{15} - 1066547 \nu^{14} + 74264777 \nu^{13} + 103846498 \nu^{12} + \cdots + 184962509874954 ) / 8827141476384 ( − 5 0 4 4 3 0 1 ν 1 5 − 1 0 6 6 5 4 7 ν 1 4 + 7 4 2 6 4 7 7 7 ν 1 3 + 1 0 3 8 4 6 4 9 8 ν 1 2 + ⋯ + 1 8 4 9 6 2 5 0 9 8 7 4 9 5 4 ) / 8 8 2 7 1 4 1 4 7 6 3 8 4
(-5044301*v^15 - 1066547*v^14 + 74264777*v^13 + 103846498*v^12 + 412285212*v^11 + 1005805164*v^10 - 9379676382*v^9 - 10615473302*v^8 + 26036371090*v^7 + 246593916828*v^6 - 51131727252*v^5 - 860183867844*v^4 - 4792692303585*v^3 - 9626842260531*v^2 - 20865967451559*v + 184962509874954) / 8827141476384
β 10 \beta_{10} β 1 0 = = =
( 1999363 ν 15 − 277637 ν 14 + 2684699 ν 13 + 34754776 ν 12 + ⋯ + 22962594135852 ) / 2942380492128 ( 1999363 \nu^{15} - 277637 \nu^{14} + 2684699 \nu^{13} + 34754776 \nu^{12} + \cdots + 22962594135852 ) / 2942380492128 ( 1 9 9 9 3 6 3 ν 1 5 − 2 7 7 6 3 7 ν 1 4 + 2 6 8 4 6 9 9 ν 1 3 + 3 4 7 5 4 7 7 6 ν 1 2 + ⋯ + 2 2 9 6 2 5 9 4 1 3 5 8 5 2 ) / 2 9 4 2 3 8 0 4 9 2 1 2 8
(1999363*v^15 - 277637*v^14 + 2684699*v^13 + 34754776*v^12 + 2925480*v^11 + 252961716*v^10 - 1826457846*v^9 - 2387211554*v^8 - 12485606006*v^7 - 28094392284*v^6 + 40613994216*v^5 + 97613184564*v^4 - 1329866505081*v^3 + 197931007971*v^2 + 2006556292143*v + 22962594135852) / 2942380492128
β 11 \beta_{11} β 1 1 = = =
( − 2529436 ν 15 + 12956441 ν 14 + 26278093 ν 13 + 45587477 ν 12 + ⋯ + 52197572223981 ) / 2942380492128 ( - 2529436 \nu^{15} + 12956441 \nu^{14} + 26278093 \nu^{13} + 45587477 \nu^{12} + \cdots + 52197572223981 ) / 2942380492128 ( − 2 5 2 9 4 3 6 ν 1 5 + 1 2 9 5 6 4 4 1 ν 1 4 + 2 6 2 7 8 0 9 3 ν 1 3 + 4 5 5 8 7 4 7 7 ν 1 2 + ⋯ + 5 2 1 9 7 5 7 2 2 2 3 9 8 1 ) / 2 9 4 2 3 8 0 4 9 2 1 2 8
(-2529436*v^15 + 12956441*v^14 + 26278093*v^13 + 45587477*v^12 + 176647380*v^11 + 410135172*v^10 - 2382859164*v^9 + 91377218*v^8 - 6701661862*v^7 + 62980137042*v^6 - 193834271484*v^5 - 224038015020*v^4 - 784421157744*v^3 - 4308749413767*v^2 - 3303725119875*v + 52197572223981) / 2942380492128
β 12 \beta_{12} β 1 2 = = =
( 9038834 ν 15 + 13433807 ν 14 − 6780077 ν 13 − 148095511 ν 12 + ⋯ + 18095200950033 ) / 8827141476384 ( 9038834 \nu^{15} + 13433807 \nu^{14} - 6780077 \nu^{13} - 148095511 \nu^{12} + \cdots + 18095200950033 ) / 8827141476384 ( 9 0 3 8 8 3 4 ν 1 5 + 1 3 4 3 3 8 0 7 ν 1 4 − 6 7 8 0 0 7 7 ν 1 3 − 1 4 8 0 9 5 5 1 1 ν 1 2 + ⋯ + 1 8 0 9 5 2 0 0 9 5 0 0 3 3 ) / 8 8 2 7 1 4 1 4 7 6 3 8 4
(9038834*v^15 + 13433807*v^14 - 6780077*v^13 - 148095511*v^12 - 300478752*v^11 - 81403464*v^10 + 1075087608*v^9 + 9396078962*v^8 - 16357043710*v^7 - 103630786902*v^6 - 311672633328*v^5 + 314707182984*v^4 - 297510237738*v^3 + 661815228051*v^2 + 7357906401759*v + 18095200950033) / 8827141476384
β 13 \beta_{13} β 1 3 = = =
( 12998675 ν 15 − 19337332 ν 14 − 47538200 ν 13 − 375390643 ν 12 + ⋯ − 180263553725439 ) / 8827141476384 ( 12998675 \nu^{15} - 19337332 \nu^{14} - 47538200 \nu^{13} - 375390643 \nu^{12} + \cdots - 180263553725439 ) / 8827141476384 ( 1 2 9 9 8 6 7 5 ν 1 5 − 1 9 3 3 7 3 3 2 ν 1 4 − 4 7 5 3 8 2 0 0 ν 1 3 − 3 7 5 3 9 0 6 4 3 ν 1 2 + ⋯ − 1 8 0 2 6 3 5 5 3 7 2 5 4 3 9 ) / 8 8 2 7 1 4 1 4 7 6 3 8 4
(12998675*v^15 - 19337332*v^14 - 47538200*v^13 - 375390643*v^12 + 126479664*v^11 - 455250396*v^10 + 16091567430*v^9 - 7467089716*v^8 - 16357050232*v^7 - 225287807490*v^6 + 600940070496*v^5 + 629760603060*v^4 + 5903483893443*v^3 - 6585663166416*v^2 - 15371373974832*v - 180263553725439) / 8827141476384
β 14 \beta_{14} β 1 4 = = =
( 1736865 ν 15 − 3022417 ν 14 − 3556645 ν 13 − 24737930 ν 12 + ⋯ − 13774105728810 ) / 980793497376 ( 1736865 \nu^{15} - 3022417 \nu^{14} - 3556645 \nu^{13} - 24737930 \nu^{12} + \cdots - 13774105728810 ) / 980793497376 ( 1 7 3 6 8 6 5 ν 1 5 − 3 0 2 2 4 1 7 ν 1 4 − 3 5 5 6 6 4 5 ν 1 3 − 2 4 7 3 7 9 3 0 ν 1 2 + ⋯ − 1 3 7 7 4 1 0 5 7 2 8 8 1 0 ) / 9 8 0 7 9 3 4 9 7 3 7 6
(1736865*v^15 - 3022417*v^14 - 3556645*v^13 - 24737930*v^12 - 51484948*v^11 - 418316724*v^10 + 942508302*v^9 - 449986026*v^8 + 1166979326*v^7 - 28086264388*v^6 + 58267408860*v^5 - 104928763716*v^4 + 391812659325*v^3 + 2109837402135*v^2 + 7456720651731*v - 13774105728810) / 980793497376
β 15 \beta_{15} β 1 5 = = =
( 6143228 ν 15 − 12559 ν 14 − 42859679 ν 13 − 113257891 ν 12 + ⋯ − 94337802618579 ) / 2942380492128 ( 6143228 \nu^{15} - 12559 \nu^{14} - 42859679 \nu^{13} - 113257891 \nu^{12} + \cdots - 94337802618579 ) / 2942380492128 ( 6 1 4 3 2 2 8 ν 1 5 − 1 2 5 5 9 ν 1 4 − 4 2 8 5 9 6 7 9 ν 1 3 − 1 1 3 2 5 7 8 9 1 ν 1 2 + ⋯ − 9 4 3 3 7 8 0 2 6 1 8 5 7 9 ) / 2 9 4 2 3 8 0 4 9 2 1 2 8
(6143228*v^15 - 12559*v^14 - 42859679*v^13 - 113257891*v^12 - 84984144*v^11 - 206508504*v^10 + 6021465072*v^9 + 4422259994*v^8 - 7900452070*v^7 - 143237921334*v^6 + 69781506480*v^5 + 597650792040*v^4 + 1874434021236*v^3 + 5545082851785*v^2 - 2926044172935*v - 94337802618579) / 2942380492128
ν \nu ν = = =
( 2 β 14 − 2 β 13 + 2 β 12 + 2 β 11 − 2 β 7 + β 5 + 2 β 2 + 2 β 1 ) / 12 ( 2\beta_{14} - 2\beta_{13} + 2\beta_{12} + 2\beta_{11} - 2\beta_{7} + \beta_{5} + 2\beta_{2} + 2\beta_1 ) / 12 ( 2 β 1 4 − 2 β 1 3 + 2 β 1 2 + 2 β 1 1 − 2 β 7 + β 5 + 2 β 2 + 2 β 1 ) / 1 2
(2*b14 - 2*b13 + 2*b12 + 2*b11 - 2*b7 + b5 + 2*b2 + 2*b1) / 12
ν 2 \nu^{2} ν 2 = = =
( β 15 + β 14 − β 13 − β 12 + β 11 + β 9 + β 3 − 3 β 2 − 2 ) / 3 ( \beta_{15} + \beta_{14} - \beta_{13} - \beta_{12} + \beta_{11} + \beta_{9} + \beta_{3} - 3\beta_{2} - 2 ) / 3 ( β 1 5 + β 1 4 − β 1 3 − β 1 2 + β 1 1 + β 9 + β 3 − 3 β 2 − 2 ) / 3
(b15 + b14 - b13 - b12 + b11 + b9 + b3 - 3*b2 - 2) / 3
ν 3 \nu^{3} ν 3 = = =
( 4 β 14 − 4 β 12 + 4 β 11 − 4 β 10 − 4 β 9 + 7 β 8 − 8 β 6 + ⋯ + 8 ) / 12 ( 4 \beta_{14} - 4 \beta_{12} + 4 \beta_{11} - 4 \beta_{10} - 4 \beta_{9} + 7 \beta_{8} - 8 \beta_{6} + \cdots + 8 ) / 12 ( 4 β 1 4 − 4 β 1 2 + 4 β 1 1 − 4 β 1 0 − 4 β 9 + 7 β 8 − 8 β 6 + ⋯ + 8 ) / 1 2
(4*b14 - 4*b12 + 4*b11 - 4*b10 - 4*b9 + 7*b8 - 8*b6 - 16*b4 + 4*b3 - 4*b2 - 36*b1 + 8) / 12
ν 4 \nu^{4} ν 4 = = =
( 2 β 15 − β 14 − β 13 + 2 β 12 + 2 β 11 + 3 β 10 − 2 β 9 + ⋯ + 5 ) / 3 ( 2 \beta_{15} - \beta_{14} - \beta_{13} + 2 \beta_{12} + 2 \beta_{11} + 3 \beta_{10} - 2 \beta_{9} + \cdots + 5 ) / 3 ( 2 β 1 5 − β 1 4 − β 1 3 + 2 β 1 2 + 2 β 1 1 + 3 β 1 0 − 2 β 9 + ⋯ + 5 ) / 3
(2*b15 - b14 - b13 + 2*b12 + 2*b11 + 3*b10 - 2*b9 - b7 + 14*b6 + 18*b5 + 7*b4 + 8*b3 + 6*b2 - 6*b1 + 5) / 3
ν 5 \nu^{5} ν 5 = = =
( − 8 β 15 + 16 β 14 + 10 β 13 − 74 β 12 − 8 β 11 + 26 β 10 + ⋯ + 18 ) / 12 ( - 8 \beta_{15} + 16 \beta_{14} + 10 \beta_{13} - 74 \beta_{12} - 8 \beta_{11} + 26 \beta_{10} + \cdots + 18 ) / 12 ( − 8 β 1 5 + 1 6 β 1 4 + 1 0 β 1 3 − 7 4 β 1 2 − 8 β 1 1 + 2 6 β 1 0 + ⋯ + 1 8 ) / 1 2
(-8*b15 + 16*b14 + 10*b13 - 74*b12 - 8*b11 + 26*b10 + 32*b9 + 79*b8 - 264*b6 + 79*b5 + 264*b4 - 24*b3 - 236*b2 + 18) / 12
ν 6 \nu^{6} ν 6 = = =
( 8 β 15 + 66 β 14 + 56 β 12 + 78 β 11 − 58 β 10 + 56 β 9 − 26 β 8 + ⋯ − 851 ) / 3 ( 8 \beta_{15} + 66 \beta_{14} + 56 \beta_{12} + 78 \beta_{11} - 58 \beta_{10} + 56 \beta_{9} - 26 \beta_{8} + \cdots - 851 ) / 3 ( 8 β 1 5 + 6 6 β 1 4 + 5 6 β 1 2 + 7 8 β 1 1 − 5 8 β 1 0 + 5 6 β 9 − 2 6 β 8 + ⋯ − 8 5 1 ) / 3
(8*b15 + 66*b14 + 56*b12 + 78*b11 - 58*b10 + 56*b9 - 26*b8 - 20*b7 + 94*b6 + 188*b4 + 58*b3 - 58*b2 - 68*b1 - 851) / 3
ν 7 \nu^{7} ν 7 = = =
( 904 β 15 − 18 β 14 − 886 β 13 + 150 β 12 − 522 β 11 − 504 β 10 + ⋯ + 6424 ) / 12 ( 904 \beta_{15} - 18 \beta_{14} - 886 \beta_{13} + 150 \beta_{12} - 522 \beta_{11} - 504 \beta_{10} + \cdots + 6424 ) / 12 ( 9 0 4 β 1 5 − 1 8 β 1 4 − 8 8 6 β 1 3 + 1 5 0 β 1 2 − 5 2 2 β 1 1 − 5 0 4 β 1 0 + ⋯ + 6 4 2 4 ) / 1 2
(904*b15 - 18*b14 - 886*b13 + 150*b12 - 522*b11 - 504*b10 + 1472*b9 - 886*b7 - 1488*b6 + 583*b5 - 744*b4 - 608*b3 + 7310*b2 + 86*b1 + 6424) / 12
ν 8 \nu^{8} ν 8 = = =
( − 259 β 15 + 3 β 14 − 685 β 13 + 1327 β 12 − 259 β 11 − 682 β 10 + ⋯ − 426 ) / 3 ( - 259 \beta_{15} + 3 \beta_{14} - 685 \beta_{13} + 1327 \beta_{12} - 259 \beta_{11} - 682 \beta_{10} + \cdots - 426 ) / 3 ( − 2 5 9 β 1 5 + 3 β 1 4 − 6 8 5 β 1 3 + 1 3 2 7 β 1 2 − 2 5 9 β 1 1 − 6 8 2 β 1 0 + ⋯ − 4 2 6 ) / 3
(-259*b15 + 3*b14 - 685*b13 + 1327*b12 - 259*b11 - 682*b10 - 321*b9 + 654*b8 - 450*b6 + 654*b5 + 450*b4 - 551*b3 - 10777*b2 - 426) / 3
ν 9 \nu^{9} ν 9 = = =
( 1520 β 15 + 3108 β 14 + 740 β 12 + 7732 β 11 − 1588 β 10 + 740 β 9 + ⋯ + 151784 ) / 12 ( 1520 \beta_{15} + 3108 \beta_{14} + 740 \beta_{12} + 7732 \beta_{11} - 1588 \beta_{10} + 740 \beta_{9} + \cdots + 151784 ) / 12 ( 1 5 2 0 β 1 5 + 3 1 0 8 β 1 4 + 7 4 0 β 1 2 + 7 7 3 2 β 1 1 − 1 5 8 8 β 1 0 + 7 4 0 β 9 + ⋯ + 1 5 1 7 8 4 ) / 1 2
(1520*b15 + 3108*b14 + 740*b12 + 7732*b11 - 1588*b10 + 740*b9 - 8623*b8 - 6144*b7 + 4736*b6 + 9472*b4 + 1588*b3 - 1588*b2 + 14660*b1 + 151784) / 12
ν 10 \nu^{10} ν 1 0 = = =
( 3940 β 15 + 7897 β 14 − 11837 β 13 + 7564 β 12 + 8840 β 11 + 943 β 10 + ⋯ − 13359 ) / 3 ( 3940 \beta_{15} + 7897 \beta_{14} - 11837 \beta_{13} + 7564 \beta_{12} + 8840 \beta_{11} + 943 \beta_{10} + \cdots - 13359 ) / 3 ( 3 9 4 0 β 1 5 + 7 8 9 7 β 1 4 − 1 1 8 3 7 β 1 3 + 7 5 6 4 β 1 2 + 8 8 4 0 β 1 1 + 9 4 3 β 1 0 + ⋯ − 1 3 3 5 9 ) / 3
(3940*b15 + 7897*b14 - 11837*b13 + 7564*b12 + 8840*b11 + 943*b10 + 8546*b9 - 11837*b7 - 13026*b6 - 1924*b5 - 6513*b4 + 1332*b3 - 1522*b2 + 7508*b1 - 13359) / 3
ν 11 \nu^{11} ν 1 1 = = =
( 79680 β 15 + 46832 β 14 − 67106 β 13 − 14686 β 12 + 79680 β 11 + ⋯ − 146786 ) / 12 ( 79680 \beta_{15} + 46832 \beta_{14} - 67106 \beta_{13} - 14686 \beta_{12} + 79680 \beta_{11} + \cdots - 146786 ) / 12 ( 7 9 6 8 0 β 1 5 + 4 6 8 3 2 β 1 4 − 6 7 1 0 6 β 1 3 − 1 4 6 8 6 β 1 2 + 7 9 6 8 0 β 1 1 + ⋯ − 1 4 6 7 8 6 ) / 1 2
(79680*b15 + 46832*b14 - 67106*b13 - 14686*b12 + 79680*b11 - 20274*b10 + 40896*b9 + 50857*b8 + 112160*b6 + 50857*b5 - 112160*b4 - 33600*b3 - 483796*b2 - 146786) / 12
ν 12 \nu^{12} ν 1 2 = = =
( 10220 β 15 − 14848 β 14 − 31536 β 12 − 980 β 11 + 25068 β 10 + ⋯ + 648595 ) / 3 ( 10220 \beta_{15} - 14848 \beta_{14} - 31536 \beta_{12} - 980 \beta_{11} + 25068 \beta_{10} + \cdots + 648595 ) / 3 ( 1 0 2 2 0 β 1 5 − 1 4 8 4 8 β 1 4 − 3 1 5 3 6 β 1 2 − 9 8 0 β 1 1 + 2 5 0 6 8 β 1 0 + ⋯ + 6 4 8 5 9 5 ) / 3
(10220*b15 - 14848*b14 - 31536*b12 - 980*b11 + 25068*b10 - 31536*b9 - 35116*b8 - 24088*b7 + 7608*b6 + 15216*b4 - 25068*b3 + 25068*b2 - 88368*b1 + 648595) / 3
ν 13 \nu^{13} ν 1 3 = = =
( − 241968 β 15 + 420802 β 14 − 178834 β 13 + 96850 β 12 + 627458 β 11 + ⋯ − 6565696 ) / 12 ( - 241968 \beta_{15} + 420802 \beta_{14} - 178834 \beta_{13} + 96850 \beta_{12} + 627458 \beta_{11} + \cdots - 6565696 ) / 12 ( − 2 4 1 9 6 8 β 1 5 + 4 2 0 8 0 2 β 1 4 − 1 7 8 8 3 4 β 1 3 + 9 6 8 5 0 β 1 2 + 6 2 7 4 5 8 β 1 1 + ⋯ − 6 5 6 5 6 9 6 ) / 1 2
(-241968*b15 + 420802*b14 - 178834*b13 + 96850*b12 + 627458*b11 + 206656*b10 + 163968*b9 - 178834*b7 - 367232*b6 + 1162993*b5 - 183616*b4 + 686672*b3 - 6386862*b2 - 59214*b1 - 6565696) / 12
ν 14 \nu^{14} ν 1 4 = = =
( 339137 β 15 − 43555 β 14 + 144427 β 13 − 576749 β 12 + 339137 β 11 + ⋯ − 194710 ) / 3 ( 339137 \beta_{15} - 43555 \beta_{14} + 144427 \beta_{13} - 576749 \beta_{12} + 339137 \beta_{11} + \cdots - 194710 ) / 3 ( 3 3 9 1 3 7 β 1 5 − 4 3 5 5 5 β 1 4 + 1 4 4 4 2 7 β 1 3 − 5 7 6 7 4 9 β 1 2 + 3 3 9 1 3 7 β 1 1 + ⋯ − 1 9 4 7 1 0 ) / 3
(339137*b15 - 43555*b14 + 144427*b13 - 576749*b12 + 339137*b11 + 100872*b10 + 216161*b9 + 39108*b8 - 1042408*b6 + 39108*b5 + 1042408*b4 - 47071*b3 + 4385457*b2 - 194710) / 3
ν 15 \nu^{15} ν 1 5 = = =
( 3314576 β 15 + 2956548 β 14 + 5874620 β 12 + 1803636 β 11 + 358028 β 10 + ⋯ − 33554840 ) / 12 ( 3314576 \beta_{15} + 2956548 \beta_{14} + 5874620 \beta_{12} + 1803636 \beta_{11} + 358028 \beta_{10} + \cdots - 33554840 ) / 12 ( 3 3 1 4 5 7 6 β 1 5 + 2 9 5 6 5 4 8 β 1 4 + 5 8 7 4 6 2 0 β 1 2 + 1 8 0 3 6 3 6 β 1 1 + 3 5 8 0 2 8 β 1 0 + ⋯ − 3 3 5 5 4 8 4 0 ) / 1 2
(3314576*b15 + 2956548*b14 + 5874620*b12 + 1803636*b11 + 358028*b10 + 5874620*b9 - 774953*b8 - 2161664*b7 + 1289240*b6 + 2578480*b4 - 358028*b3 + 358028*b2 - 12249284*b1 - 33554840) / 12
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
1 1 1
− β 2 -\beta_{2} − β 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) :
T 5 16 + 597 T 5 14 + 264258 T 5 12 + 45374877 T 5 10 + 5550035922 T 5 8 + ⋯ + 41 ⋯ 56 T_{5}^{16} + 597 T_{5}^{14} + 264258 T_{5}^{12} + 45374877 T_{5}^{10} + 5550035922 T_{5}^{8} + \cdots + 41\!\cdots\!56 T 5 1 6 + 5 9 7 T 5 1 4 + 2 6 4 2 5 8 T 5 1 2 + 4 5 3 7 4 8 7 7 T 5 1 0 + 5 5 5 0 0 3 5 9 2 2 T 5 8 + ⋯ + 4 1 ⋯ 5 6
T5^16 + 597*T5^14 + 264258*T5^12 + 45374877*T5^10 + 5550035922*T5^8 + 367182336789*T5^6 + 17289861638841*T5^4 + 310619615073840*T5^2 + 4153645759078656
T 13 8 + 4551 T 13 6 + 2979108 T 13 4 + 570419712 T 13 2 + 16498888704 T_{13}^{8} + 4551T_{13}^{6} + 2979108T_{13}^{4} + 570419712T_{13}^{2} + 16498888704 T 1 3 8 + 4 5 5 1 T 1 3 6 + 2 9 7 9 1 0 8 T 1 3 4 + 5 7 0 4 1 9 7 1 2 T 1 3 2 + 1 6 4 9 8 8 8 8 7 0 4
T13^8 + 4551*T13^6 + 2979108*T13^4 + 570419712*T13^2 + 16498888704
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 16 T^{16} T 1 6
T^16
3 3 3
T 16 + ⋯ + 282429536481 T^{16} + \cdots + 282429536481 T 1 6 + ⋯ + 2 8 2 4 2 9 5 3 6 4 8 1
T^16 - 9*T^14 + 9*T^12 + 4536*T^11 + 17766*T^10 - 9072*T^9 - 442422*T^8 - 244944*T^7 + 12951414*T^6 + 89282088*T^5 + 4782969*T^4 - 3486784401*T^2 + 282429536481
5 5 5
T 16 + ⋯ + 41 ⋯ 56 T^{16} + \cdots + 41\!\cdots\!56 T 1 6 + ⋯ + 4 1 ⋯ 5 6
T^16 + 597*T^14 + 264258*T^12 + 45374877*T^10 + 5550035922*T^8 + 367182336789*T^6 + 17289861638841*T^4 + 310619615073840*T^2 + 4153645759078656
7 7 7
( T 8 + 40 T 7 + ⋯ + 13841287201 ) 2 (T^{8} + 40 T^{7} + \cdots + 13841287201)^{2} ( T 8 + 4 0 T 7 + ⋯ + 1 3 8 4 1 2 8 7 2 0 1 ) 2
(T^8 + 40*T^7 + 595*T^6 + 17080*T^5 + 498232*T^4 + 5858440*T^3 + 70001155*T^2 + 1614144280*T + 13841287201)^2
11 11 1 1
T 16 + ⋯ + 24 ⋯ 16 T^{16} + \cdots + 24\!\cdots\!16 T 1 6 + ⋯ + 2 4 ⋯ 1 6
T^16 - 5391*T^14 + 22614066*T^12 - 30424674303*T^10 + 29836951734258*T^8 - 13464145104313743*T^6 + 4392246020177179521*T^4 - 107222708372158886976*T^2 + 2440487028417814204416
13 13 1 3
( T 8 + 4551 T 6 + ⋯ + 16498888704 ) 2 (T^{8} + 4551 T^{6} + \cdots + 16498888704)^{2} ( T 8 + 4 5 5 1 T 6 + ⋯ + 1 6 4 9 8 8 8 8 7 0 4 ) 2
(T^8 + 4551*T^6 + 2979108*T^4 + 570419712*T^2 + 16498888704)^2
17 17 1 7
T 16 + ⋯ + 87 ⋯ 00 T^{16} + \cdots + 87\!\cdots\!00 T 1 6 + ⋯ + 8 7 ⋯ 0 0
T^16 + 22782*T^14 + 387463563*T^12 + 2831427288342*T^10 + 15419407094864361*T^8 + 10884654228190861980*T^6 + 6823590140179442638800*T^4 + 24511824186353490528000*T^2 + 87552360667406338560000
19 19 1 9
( T 8 + ⋯ + 69773043356676 ) 2 (T^{8} + \cdots + 69773043356676)^{2} ( T 8 + ⋯ + 6 9 7 7 3 0 4 3 3 5 6 6 7 6 ) 2
(T^8 - 171*T^7 - 1842*T^6 + 1981719*T^5 + 46647738*T^4 - 16123787289*T^3 + 548436272553*T^2 + 11621573426826*T + 69773043356676)^2
23 23 2 3
T 16 + ⋯ + 40 ⋯ 96 T^{16} + \cdots + 40\!\cdots\!96 T 1 6 + ⋯ + 4 0 ⋯ 9 6
T^16 - 44802*T^14 + 1432520235*T^12 - 21745254238794*T^10 + 238601271153713481*T^8 - 969119601478530267924*T^6 + 2844116853911884311685200*T^4 - 4041773605682047226068008192*T^2 + 4079068812534267004985733943296
29 29 2 9
( T 8 + ⋯ + 20 ⋯ 96 ) 2 (T^{8} + \cdots + 20\!\cdots\!96)^{2} ( T 8 + ⋯ + 2 0 ⋯ 9 6 ) 2
(T^8 + 72729*T^6 + 1509134976*T^4 + 10537006777344*T^2 + 20034685818372096)^2
31 31 3 1
( T 8 + ⋯ + 81 ⋯ 01 ) 2 (T^{8} + \cdots + 81\!\cdots\!01)^{2} ( T 8 + ⋯ + 8 1 ⋯ 0 1 ) 2
(T^8 + 402*T^7 + 41736*T^6 - 4877064*T^5 - 855373959*T^4 + 116636150232*T^3 + 34275384741024*T^2 + 2746763081118126*T + 81628318996303401)^2
37 37 3 7
( T 8 + ⋯ + 81 ⋯ 56 ) 2 (T^{8} + \cdots + 81\!\cdots\!56)^{2} ( T 8 + ⋯ + 8 1 ⋯ 5 6 ) 2
(T^8 + 481*T^7 + 314992*T^6 + 102777379*T^5 + 50423553172*T^4 + 14673347636587*T^3 + 4356757010847979*T^2 + 646161179732391370*T + 81666889425188053156)^2
41 41 4 1
( T 8 + ⋯ + 15 ⋯ 76 ) 2 (T^{8} + \cdots + 15\!\cdots\!76)^{2} ( T 8 + ⋯ + 1 5 ⋯ 7 6 ) 2
(T^8 - 432408*T^6 + 52068871440*T^4 - 1898169992301312*T^2 + 15703157914051608576)^2
43 43 4 3
( T 4 + 433 T 3 + ⋯ + 966156928 ) 4 (T^{4} + 433 T^{3} + \cdots + 966156928)^{4} ( T 4 + 4 3 3 T 3 + ⋯ + 9 6 6 1 5 6 9 2 8 ) 4
(T^4 + 433*T^3 - 85728*T^2 - 37466096*T + 966156928)^4
47 47 4 7
T 16 + ⋯ + 20 ⋯ 76 T^{16} + \cdots + 20\!\cdots\!76 T 1 6 + ⋯ + 2 0 ⋯ 7 6
T^16 + 339978*T^14 + 85463986203*T^12 + 8488943280174618*T^10 + 605030860859728798737*T^8 + 23317876952262147392636256*T^6 + 631367312688707787440993753856*T^4 + 3943086387032758537387306721894400*T^2 + 20271517042551867310524846030706507776
53 53 5 3
T 16 + ⋯ + 65 ⋯ 00 T^{16} + \cdots + 65\!\cdots\!00 T 1 6 + ⋯ + 6 5 ⋯ 0 0
T^16 - 569799*T^14 + 212669417970*T^12 - 45756035835996519*T^10 + 7142879178328676547186*T^8 - 720319285173432262398665175*T^6 + 52943745899382875184693158870625*T^4 - 2307580763353529682019075878584250000*T^2 + 65287172450444586808229722789424100000000
59 59 5 9
T 16 + ⋯ + 11 ⋯ 36 T^{16} + \cdots + 11\!\cdots\!36 T 1 6 + ⋯ + 1 1 ⋯ 3 6
T^16 + 1029045*T^14 + 775669902066*T^12 + 271081786005979821*T^10 + 69733896332695474599522*T^8 + 2883654276895085833508868693*T^6 + 103177775220759498146177450600793*T^4 + 34486809666391241700901174502880048*T^2 + 11421128798691498051411901613271572736
61 61 6 1
( T 8 + ⋯ + 25 ⋯ 44 ) 2 (T^{8} + \cdots + 25\!\cdots\!44)^{2} ( T 8 + ⋯ + 2 5 ⋯ 4 4 ) 2
(T^8 + 2310*T^7 + 2370615*T^6 + 1367323650*T^5 + 480636786753*T^4 + 104045523589980*T^3 + 13303541774870928*T^2 + 892159531070742144*T + 25760656722530386944)^2
67 67 6 7
( T 8 + ⋯ + 30 ⋯ 04 ) 2 (T^{8} + \cdots + 30\!\cdots\!04)^{2} ( T 8 + ⋯ + 3 0 ⋯ 0 4 ) 2
(T^8 - 353*T^7 + 260152*T^6 + 32172037*T^5 + 19396001164*T^4 + 167895466285*T^3 + 297604295739955*T^2 + 13656359405763358*T + 3036229573514088004)^2
71 71 7 1
( T 8 + ⋯ + 18 ⋯ 16 ) 2 (T^{8} + \cdots + 18\!\cdots\!16)^{2} ( T 8 + ⋯ + 1 8 ⋯ 1 6 ) 2
(T^8 + 678168*T^6 + 20183760144*T^4 + 123867835918848*T^2 + 182329765184802816)^2
73 73 7 3
( T 8 + ⋯ + 13 ⋯ 64 ) 2 (T^{8} + \cdots + 13\!\cdots\!64)^{2} ( T 8 + ⋯ + 1 3 ⋯ 6 4 ) 2
(T^8 - 1647*T^7 + 1022484*T^6 - 194808807*T^5 - 42941956140*T^4 + 14737310733717*T^3 + 3817932715234431*T^2 - 1429202978440395444*T + 131577405664148738064)^2
79 79 7 9
( T 8 + ⋯ + 11 ⋯ 61 ) 2 (T^{8} + \cdots + 11\!\cdots\!61)^{2} ( T 8 + ⋯ + 1 1 ⋯ 6 1 ) 2
(T^8 - 1328*T^7 + 2621710*T^6 - 1841095856*T^5 + 3059389735471*T^4 - 2192123600069456*T^3 + 1926071802117069670*T^2 - 512429626335775061048*T + 118221278650035601669561)^2
83 83 8 3
( T 8 + ⋯ + 16 ⋯ 56 ) 2 (T^{8} + \cdots + 16\!\cdots\!56)^{2} ( T 8 + ⋯ + 1 6 ⋯ 5 6 ) 2
(T^8 - 2852067*T^6 + 2014371869040*T^4 - 360446437983184128*T^2 + 16674078085265215328256)^2
89 89 8 9
T 16 + ⋯ + 18 ⋯ 36 T^{16} + \cdots + 18\!\cdots\!36 T 1 6 + ⋯ + 1 8 ⋯ 3 6
T^16 + 3316302*T^14 + 6939745175403*T^12 + 9111941852559810822*T^10 + 8832414627220842835829577*T^8 + 5969112231006651616910190968364*T^6 + 2978674006074807124116597289958157456*T^4 + 933446357484172565984921999797925279477760*T^2 + 184527661559301380910022800801801417781737947136
97 97 9 7
( T 8 + ⋯ + 10 ⋯ 36 ) 2 (T^{8} + \cdots + 10\!\cdots\!36)^{2} ( T 8 + ⋯ + 1 0 ⋯ 3 6 ) 2
(T^8 + 832731*T^6 + 84302904096*T^4 + 2451916579670784*T^2 + 10175730882067316736)^2
show more
show less