L(s) = 1 | + (−4.48 + 2.62i)3-s + (−5.27 − 9.13i)5-s + (−17.7 + 5.44i)7-s + (13.1 − 23.5i)9-s + (−26.6 − 15.4i)11-s − 19.8i·13-s + (47.6 + 27.0i)15-s + (−46.3 + 80.2i)17-s + (118. − 68.6i)19-s + (65.0 − 70.9i)21-s + (−37.6 + 21.7i)23-s + (6.89 − 11.9i)25-s + (2.87 + 140. i)27-s + 134. i·29-s + (−144. − 83.6i)31-s + ⋯ |
L(s) = 1 | + (−0.862 + 0.505i)3-s + (−0.471 − 0.816i)5-s + (−0.955 + 0.293i)7-s + (0.488 − 0.872i)9-s + (−0.731 − 0.422i)11-s − 0.423i·13-s + (0.820 + 0.466i)15-s + (−0.661 + 1.14i)17-s + (1.43 − 0.828i)19-s + (0.675 − 0.737i)21-s + (−0.341 + 0.197i)23-s + (0.0551 − 0.0956i)25-s + (0.0204 + 0.999i)27-s + 0.860i·29-s + (−0.839 − 0.484i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.6955079021\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6955079021\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (4.48 - 2.62i)T \) |
| 7 | \( 1 + (17.7 - 5.44i)T \) |
good | 5 | \( 1 + (5.27 + 9.13i)T + (-62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (26.6 + 15.4i)T + (665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 19.8iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (46.3 - 80.2i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-118. + 68.6i)T + (3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (37.6 - 21.7i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 134. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + (144. + 83.6i)T + (1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (-191. - 332. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 + 107.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 285.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-120. - 209. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-432. - 249. i)T + (7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (366. - 634. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (265. - 153. i)T + (1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-280. + 485. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 74.2iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (-141. - 81.6i)T + (1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-437. - 757. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 406.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (526. + 911. i)T + (-3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 243. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.23928928107559924838748159385, −10.41184748227435715469992910536, −9.448928514268669020423842172390, −8.638576879614743159191934564485, −7.40179610906410808112792216062, −6.14885334309825715863797897693, −5.36804722836649124199970778536, −4.30352319136922467409539631451, −3.09501212379427608430080896957, −0.798507510516125537980852329949,
0.41452906118394966498057040471, 2.38968685749234472135832061742, 3.74658221831934678064062085509, 5.15133494435564157183205898499, 6.24338477623774713710454514675, 7.24277753705634798529378630916, 7.57604798390124415951236138542, 9.361594752777059223341730618088, 10.22927502506787049177149110629, 11.06811672837665672789345956065