gp: [N,k,chi] = [336,4,Mod(17,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 3, 1]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.17");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [12,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 − 14 x 10 − 32 x 9 + 70 x 8 + 224 x 7 − 50 x 6 + 2016 x 5 + 5670 x 4 + ⋯ + 531441 x^{12} - 14 x^{10} - 32 x^{9} + 70 x^{8} + 224 x^{7} - 50 x^{6} + 2016 x^{5} + 5670 x^{4} + \cdots + 531441 x 1 2 − 1 4 x 1 0 − 3 2 x 9 + 7 0 x 8 + 2 2 4 x 7 − 5 0 x 6 + 2 0 1 6 x 5 + 5 6 7 0 x 4 + ⋯ + 5 3 1 4 4 1
x^12 - 14*x^10 - 32*x^9 + 70*x^8 + 224*x^7 - 50*x^6 + 2016*x^5 + 5670*x^4 - 23328*x^3 - 91854*x^2 + 531441
:
β 1 \beta_{1} β 1 = = =
( − 36 ν 11 − 109 ν 10 + 180 ν 9 + 1949 ν 8 + 2588 ν 7 − 1681 ν 6 + ⋯ + 6436341 ) / 2571912 ( - 36 \nu^{11} - 109 \nu^{10} + 180 \nu^{9} + 1949 \nu^{8} + 2588 \nu^{7} - 1681 \nu^{6} + \cdots + 6436341 ) / 2571912 ( − 3 6 ν 1 1 − 1 0 9 ν 1 0 + 1 8 0 ν 9 + 1 9 4 9 ν 8 + 2 5 8 8 ν 7 − 1 6 8 1 ν 6 + ⋯ + 6 4 3 6 3 4 1 ) / 2 5 7 1 9 1 2
(-36*v^11 - 109*v^10 + 180*v^9 + 1949*v^8 + 2588*v^7 - 1681*v^6 - 7388*v^5 - 64615*v^4 - 433908*v^3 - 556065*v^2 + 2452356*v + 6436341) / 2571912
β 2 \beta_{2} β 2 = = =
( 871 ν 11 + 2952 ν 10 + 7489 ν 9 − 31292 ν 8 − 131909 ν 7 − 50236 ν 6 + ⋯ − 192499740 ) / 23147208 ( 871 \nu^{11} + 2952 \nu^{10} + 7489 \nu^{9} - 31292 \nu^{8} - 131909 \nu^{7} - 50236 \nu^{6} + \cdots - 192499740 ) / 23147208 ( 8 7 1 ν 1 1 + 2 9 5 2 ν 1 0 + 7 4 8 9 ν 9 − 3 1 2 9 2 ν 8 − 1 3 1 9 0 9 ν 7 − 5 0 2 3 6 ν 6 + ⋯ − 1 9 2 4 9 9 7 4 0 ) / 2 3 1 4 7 2 0 8
(871*v^11 + 2952*v^10 + 7489*v^9 - 31292*v^8 - 131909*v^7 - 50236*v^6 - 103283*v^5 + 1112616*v^4 + 5111019*v^3 + 24048252*v^2 - 26447391*v - 192499740) / 23147208
β 3 \beta_{3} β 3 = = =
( 109 ν 11 + 324 ν 10 − 797 ν 9 − 5108 ν 8 − 6383 ν 7 + 9188 ν 6 + ⋯ − 19131876 ) / 2571912 ( 109 \nu^{11} + 324 \nu^{10} - 797 \nu^{9} - 5108 \nu^{8} - 6383 \nu^{7} + 9188 \nu^{6} + \cdots - 19131876 ) / 2571912 ( 1 0 9 ν 1 1 + 3 2 4 ν 1 0 − 7 9 7 ν 9 − 5 1 0 8 ν 8 − 6 3 8 3 ν 7 + 9 1 8 8 ν 6 + ⋯ − 1 9 1 3 1 8 7 6 ) / 2 5 7 1 9 1 2
(109*v^11 + 324*v^10 - 797*v^9 - 5108*v^8 - 6383*v^7 + 9188*v^6 - 7961*v^5 + 229788*v^4 + 1395873*v^3 + 854388*v^2 - 3864429*v - 19131876) / 2571912
β 4 \beta_{4} β 4 = = =
( − 109 ν 11 − 324 ν 10 + 797 ν 9 + 5108 ν 8 + 6383 ν 7 − 9188 ν 6 + ⋯ + 19131876 ) / 2571912 ( - 109 \nu^{11} - 324 \nu^{10} + 797 \nu^{9} + 5108 \nu^{8} + 6383 \nu^{7} - 9188 \nu^{6} + \cdots + 19131876 ) / 2571912 ( − 1 0 9 ν 1 1 − 3 2 4 ν 1 0 + 7 9 7 ν 9 + 5 1 0 8 ν 8 + 6 3 8 3 ν 7 − 9 1 8 8 ν 6 + ⋯ + 1 9 1 3 1 8 7 6 ) / 2 5 7 1 9 1 2
(-109*v^11 - 324*v^10 + 797*v^9 + 5108*v^8 + 6383*v^7 - 9188*v^6 + 7961*v^5 - 229788*v^4 - 1395873*v^3 - 854388*v^2 + 11580165*v + 19131876) / 2571912
β 5 \beta_{5} β 5 = = =
( − 1522 ν 11 − 11709 ν 10 + 3326 ν 9 + 159413 ν 8 + 296822 ν 7 + ⋯ + 653377185 ) / 23147208 ( - 1522 \nu^{11} - 11709 \nu^{10} + 3326 \nu^{9} + 159413 \nu^{8} + 296822 \nu^{7} + \cdots + 653377185 ) / 23147208 ( − 1 5 2 2 ν 1 1 − 1 1 7 0 9 ν 1 0 + 3 3 2 6 ν 9 + 1 5 9 4 1 3 ν 8 + 2 9 6 8 2 2 ν 7 + ⋯ + 6 5 3 3 7 7 1 8 5 ) / 2 3 1 4 7 2 0 8
(-1522*v^11 - 11709*v^10 + 3326*v^9 + 159413*v^8 + 296822*v^7 - 135341*v^6 - 987142*v^5 - 3274839*v^4 - 41038974*v^3 - 17899137*v^2 + 216631098*v + 653377185) / 23147208
β 6 \beta_{6} β 6 = = =
( − 1643 ν 11 − 4941 ν 10 + 403 ν 9 + 56869 ν 8 + 156097 ν 7 + ⋯ + 250426809 ) / 23147208 ( - 1643 \nu^{11} - 4941 \nu^{10} + 403 \nu^{9} + 56869 \nu^{8} + 156097 \nu^{7} + \cdots + 250426809 ) / 23147208 ( − 1 6 4 3 ν 1 1 − 4 9 4 1 ν 1 0 + 4 0 3 ν 9 + 5 6 8 6 9 ν 8 + 1 5 6 0 9 7 ν 7 + ⋯ + 2 5 0 4 2 6 8 0 9 ) / 2 3 1 4 7 2 0 8
(-1643*v^11 - 4941*v^10 + 403*v^9 + 56869*v^8 + 156097*v^7 + 149963*v^6 + 486583*v^5 - 669015*v^4 - 18160767*v^3 - 31563513*v^2 + 19125315*v + 250426809) / 23147208
β 7 \beta_{7} β 7 = = =
( − 58 ν 11 − 36 ν 10 + 569 ν 9 + 1631 ν 8 + 494 ν 7 + 2470 ν 6 + ⋯ + 2834352 ) / 826686 ( - 58 \nu^{11} - 36 \nu^{10} + 569 \nu^{9} + 1631 \nu^{8} + 494 \nu^{7} + 2470 \nu^{6} + \cdots + 2834352 ) / 826686 ( − 5 8 ν 1 1 − 3 6 ν 1 0 + 5 6 9 ν 9 + 1 6 3 1 ν 8 + 4 9 4 ν 7 + 2 4 7 0 ν 6 + ⋯ + 2 8 3 4 3 5 2 ) / 8 2 6 6 8 6
(-58*v^11 - 36*v^10 + 569*v^9 + 1631*v^8 + 494*v^7 + 2470*v^6 + 1154*v^5 - 102492*v^4 - 375435*v^3 + 400221*v^2 + 1430298*v + 2834352) / 826686
β 8 \beta_{8} β 8 = = =
( − 1931 ν 11 + 774 ν 10 − 425 ν 9 + 5758 ν 8 − 83879 ν 7 + 542606 ν 6 + ⋯ − 65544390 ) / 23147208 ( - 1931 \nu^{11} + 774 \nu^{10} - 425 \nu^{9} + 5758 \nu^{8} - 83879 \nu^{7} + 542606 \nu^{6} + \cdots - 65544390 ) / 23147208 ( − 1 9 3 1 ν 1 1 + 7 7 4 ν 1 0 − 4 2 5 ν 9 + 5 7 5 8 ν 8 − 8 3 8 7 9 ν 7 + 5 4 2 6 0 6 ν 6 + ⋯ − 6 5 5 4 4 3 9 0 ) / 2 3 1 4 7 2 0 8
(-1931*v^11 + 774*v^10 - 425*v^9 + 5758*v^8 - 83879*v^7 + 542606*v^6 + 1335967*v^5 - 3732822*v^4 - 10260027*v^3 - 13569606*v^2 - 12734901*v - 65544390) / 23147208
β 9 \beta_{9} β 9 = = =
( 74 ν 11 + 207 ν 10 − 793 ν 9 − 3808 ν 8 − 4846 ν 7 + 2878 ν 6 + ⋯ − 13581270 ) / 826686 ( 74 \nu^{11} + 207 \nu^{10} - 793 \nu^{9} - 3808 \nu^{8} - 4846 \nu^{7} + 2878 \nu^{6} + \cdots - 13581270 ) / 826686 ( 7 4 ν 1 1 + 2 0 7 ν 1 0 − 7 9 3 ν 9 − 3 8 0 8 ν 8 − 4 8 4 6 ν 7 + 2 8 7 8 ν 6 + ⋯ − 1 3 5 8 1 2 7 0 ) / 8 2 6 6 8 6
(74*v^11 + 207*v^10 - 793*v^9 - 3808*v^8 - 4846*v^7 + 2878*v^6 + 13022*v^5 + 236277*v^4 + 974187*v^3 + 454896*v^2 - 6364170*v - 13581270) / 826686
β 10 \beta_{10} β 1 0 = = =
( − 125 ν 11 − 477 ν 10 + 454 ν 9 + 9949 ν 8 + 18097 ν 7 − 9712 ν 6 + ⋯ + 40743810 ) / 826686 ( - 125 \nu^{11} - 477 \nu^{10} + 454 \nu^{9} + 9949 \nu^{8} + 18097 \nu^{7} - 9712 \nu^{6} + \cdots + 40743810 ) / 826686 ( − 1 2 5 ν 1 1 − 4 7 7 ν 1 0 + 4 5 4 ν 9 + 9 9 4 9 ν 8 + 1 8 0 9 7 ν 7 − 9 7 1 2 ν 6 + ⋯ + 4 0 7 4 3 8 1 0 ) / 8 2 6 6 8 6
(-125*v^11 - 477*v^10 + 454*v^9 + 9949*v^8 + 18097*v^7 - 9712*v^6 - 17087*v^5 - 300483*v^4 - 2110050*v^3 - 3421197*v^2 + 10517283*v + 40743810) / 826686
β 11 \beta_{11} β 1 1 = = =
( − 3554 ν 11 − 16407 ν 10 + 12982 ν 9 + 145867 ν 8 + 174346 ν 7 + ⋯ + 264480471 ) / 23147208 ( - 3554 \nu^{11} - 16407 \nu^{10} + 12982 \nu^{9} + 145867 \nu^{8} + 174346 \nu^{7} + \cdots + 264480471 ) / 23147208 ( − 3 5 5 4 ν 1 1 − 1 6 4 0 7 ν 1 0 + 1 2 9 8 2 ν 9 + 1 4 5 8 6 7 ν 8 + 1 7 4 3 4 6 ν 7 + ⋯ + 2 6 4 4 8 0 4 7 1 ) / 2 3 1 4 7 2 0 8
(-3554*v^11 - 16407*v^10 + 12982*v^9 + 145867*v^8 + 174346*v^7 + 403685*v^6 + 1680538*v^5 - 4010661*v^4 - 40201758*v^3 - 41698071*v^2 + 165953934*v + 264480471) / 23147208
ν \nu ν = = =
( β 4 + β 3 ) / 3 ( \beta_{4} + \beta_{3} ) / 3 ( β 4 + β 3 ) / 3
(b4 + b3) / 3
ν 2 \nu^{2} ν 2 = = =
( β 9 + 2 β 7 − β 6 + β 5 + β 4 − β 3 − β 2 − 12 β 1 − 1 ) / 3 ( \beta_{9} + 2\beta_{7} - \beta_{6} + \beta_{5} + \beta_{4} - \beta_{3} - \beta_{2} - 12\beta _1 - 1 ) / 3 ( β 9 + 2 β 7 − β 6 + β 5 + β 4 − β 3 − β 2 − 1 2 β 1 − 1 ) / 3
(b9 + 2*b7 - b6 + b5 + b4 - b3 - b2 - 12*b1 - 1) / 3
ν 3 \nu^{3} ν 3 = = =
( 2 β 11 + β 10 + β 9 − 2 β 8 + 4 β 7 − 5 β 6 − 2 β 5 + ⋯ + 26 ) / 3 ( 2 \beta_{11} + \beta_{10} + \beta_{9} - 2 \beta_{8} + 4 \beta_{7} - 5 \beta_{6} - 2 \beta_{5} + \cdots + 26 ) / 3 ( 2 β 1 1 + β 1 0 + β 9 − 2 β 8 + 4 β 7 − 5 β 6 − 2 β 5 + ⋯ + 2 6 ) / 3
(2*b11 + b10 + b9 - 2*b8 + 4*b7 - 5*b6 - 2*b5 - 2*b4 + 4*b3 - 5*b2 + 5*b1 + 26) / 3
ν 4 \nu^{4} ν 4 = = =
( 14 β 9 − 5 β 8 + 9 β 7 + 14 β 6 + 16 β 4 + 21 β 3 + 14 β 2 + 56 β 1 + 47 ) / 3 ( 14\beta_{9} - 5\beta_{8} + 9\beta_{7} + 14\beta_{6} + 16\beta_{4} + 21\beta_{3} + 14\beta_{2} + 56\beta _1 + 47 ) / 3 ( 1 4 β 9 − 5 β 8 + 9 β 7 + 1 4 β 6 + 1 6 β 4 + 2 1 β 3 + 1 4 β 2 + 5 6 β 1 + 4 7 ) / 3
(14*b9 - 5*b8 + 9*b7 + 14*b6 + 16*b4 + 21*b3 + 14*b2 + 56*b1 + 47) / 3
ν 5 \nu^{5} ν 5 = = =
( 14 β 11 + 28 β 10 + 33 β 9 + 21 β 7 − 19 β 6 − 12 β 5 + 78 β 4 + ⋯ − 19 ) / 3 ( 14 \beta_{11} + 28 \beta_{10} + 33 \beta_{9} + 21 \beta_{7} - 19 \beta_{6} - 12 \beta_{5} + 78 \beta_{4} + \cdots - 19 ) / 3 ( 1 4 β 1 1 + 2 8 β 1 0 + 3 3 β 9 + 2 1 β 7 − 1 9 β 6 − 1 2 β 5 + 7 8 β 4 + ⋯ − 1 9 ) / 3
(14*b11 + 28*b10 + 33*b9 + 21*b7 - 19*b6 - 12*b5 + 78*b4 - 33*b3 - 2*b2 - 539*b1 - 19) / 3
ν 6 \nu^{6} ν 6 = = =
( 32 β 11 + 16 β 10 − 110 β 9 + 24 β 8 + 50 β 7 + 60 β 6 + 24 β 5 + ⋯ + 721 ) / 3 ( 32 \beta_{11} + 16 \beta_{10} - 110 \beta_{9} + 24 \beta_{8} + 50 \beta_{7} + 60 \beta_{6} + 24 \beta_{5} + \cdots + 721 ) / 3 ( 3 2 β 1 1 + 1 6 β 1 0 − 1 1 0 β 9 + 2 4 β 8 + 5 0 β 7 + 6 0 β 6 + 2 4 β 5 + ⋯ + 7 2 1 ) / 3
(32*b11 + 16*b10 - 110*b9 + 24*b8 + 50*b7 + 60*b6 + 24*b5 - 200*b4 + 400*b3 + 60*b2 - 60*b1 + 721) / 3
ν 7 \nu^{7} ν 7 = = =
( − 70 β 11 + 70 β 10 − 266 β 9 − 164 β 8 + 214 β 7 + 378 β 6 + ⋯ − 3490 ) / 3 ( - 70 \beta_{11} + 70 \beta_{10} - 266 \beta_{9} - 164 \beta_{8} + 214 \beta_{7} + 378 \beta_{6} + \cdots - 3490 ) / 3 ( − 7 0 β 1 1 + 7 0 β 1 0 − 2 6 6 β 9 − 1 6 4 β 8 + 2 1 4 β 7 + 3 7 8 β 6 + ⋯ − 3 4 9 0 ) / 3
(-70*b11 + 70*b10 - 266*b9 - 164*b8 + 214*b7 + 378*b6 + 157*b4 + 321*b3 - 266*b2 - 3920*b1 - 3490) / 3
ν 8 \nu^{8} ν 8 = = =
( 448 β 11 + 896 β 10 + 1521 β 9 + 1566 β 7 − 1703 β 6 + 45 β 5 + ⋯ − 1703 ) / 3 ( 448 \beta_{11} + 896 \beta_{10} + 1521 \beta_{9} + 1566 \beta_{7} - 1703 \beta_{6} + 45 \beta_{5} + \cdots - 1703 ) / 3 ( 4 4 8 β 1 1 + 8 9 6 β 1 0 + 1 5 2 1 β 9 + 1 5 6 6 β 7 − 1 7 0 3 β 6 + 4 5 β 5 + ⋯ − 1 7 0 3 ) / 3
(448*b11 + 896*b10 + 1521*b9 + 1566*b7 - 1703*b6 + 45*b5 - 755*b4 + 355*b3 + 137*b2 - 562*b1 - 1703) / 3
ν 9 \nu^{9} ν 9 = = =
( 622 β 11 + 311 β 10 − 3721 β 9 − 1966 β 8 + 194 β 7 + 3527 β 6 + ⋯ + 12070 ) / 3 ( 622 \beta_{11} + 311 \beta_{10} - 3721 \beta_{9} - 1966 \beta_{8} + 194 \beta_{7} + 3527 \beta_{6} + \cdots + 12070 ) / 3 ( 6 2 2 β 1 1 + 3 1 1 β 1 0 − 3 7 2 1 β 9 − 1 9 6 6 β 8 + 1 9 4 β 7 + 3 5 2 7 β 6 + ⋯ + 1 2 0 7 0 ) / 3
(622*b11 + 311*b10 - 3721*b9 - 1966*b8 + 194*b7 + 3527*b6 - 1966*b5 - 2078*b4 + 4156*b3 + 3527*b2 - 3527*b1 + 12070) / 3
ν 10 \nu^{10} ν 1 0 = = =
( − 5376 β 11 + 5376 β 10 + 6104 β 9 + 3415 β 8 + 8175 β 7 + 4760 β 6 + ⋯ − 48985 ) / 3 ( - 5376 \beta_{11} + 5376 \beta_{10} + 6104 \beta_{9} + 3415 \beta_{8} + 8175 \beta_{7} + 4760 \beta_{6} + \cdots - 48985 ) / 3 ( − 5 3 7 6 β 1 1 + 5 3 7 6 β 1 0 + 6 1 0 4 β 9 + 3 4 1 5 β 8 + 8 1 7 5 β 7 + 4 7 6 0 β 6 + ⋯ − 4 8 9 8 5 ) / 3
(-5376*b11 + 5376*b10 + 6104*b9 + 3415*b8 + 8175*b7 + 4760*b6 + 13472*b4 + 10057*b3 + 6104*b2 - 39466*b1 - 48985) / 3
ν 11 \nu^{11} ν 1 1 = = =
( 10136 β 11 + 20272 β 10 − 28127 β 9 − 25519 β 7 − 10121 β 6 + 2608 β 5 + ⋯ − 10121 ) / 3 ( 10136 \beta_{11} + 20272 \beta_{10} - 28127 \beta_{9} - 25519 \beta_{7} - 10121 \beta_{6} + 2608 \beta_{5} + \cdots - 10121 ) / 3 ( 1 0 1 3 6 β 1 1 + 2 0 2 7 2 β 1 0 − 2 8 1 2 7 β 9 − 2 5 5 1 9 β 7 − 1 0 1 2 1 β 6 + 2 6 0 8 β 5 + ⋯ − 1 0 1 2 1 ) / 3
(10136*b11 + 20272*b10 - 28127*b9 - 25519*b7 - 10121*b6 + 2608*b5 - 39374*b4 + 18383*b3 + 35640*b2 - 286703*b1 - 10121) / 3
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
1 1 1
− β 1 -\beta_{1} − β 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) :
T 5 12 + 597 T 5 10 + 272898 T 5 8 + 49602429 T 5 6 + 6898376178 T 5 4 + 10590781509 T 5 2 + 16083058761 T_{5}^{12} + 597T_{5}^{10} + 272898T_{5}^{8} + 49602429T_{5}^{6} + 6898376178T_{5}^{4} + 10590781509T_{5}^{2} + 16083058761 T 5 1 2 + 5 9 7 T 5 1 0 + 2 7 2 8 9 8 T 5 8 + 4 9 6 0 2 4 2 9 T 5 6 + 6 8 9 8 3 7 6 1 7 8 T 5 4 + 1 0 5 9 0 7 8 1 5 0 9 T 5 2 + 1 6 0 8 3 0 5 8 7 6 1
T5^12 + 597*T5^10 + 272898*T5^8 + 49602429*T5^6 + 6898376178*T5^4 + 10590781509*T5^2 + 16083058761
T 13 6 + 11724 T 13 4 + 42650496 T 13 2 + 49422707712 T_{13}^{6} + 11724T_{13}^{4} + 42650496T_{13}^{2} + 49422707712 T 1 3 6 + 1 1 7 2 4 T 1 3 4 + 4 2 6 5 0 4 9 6 T 1 3 2 + 4 9 4 2 2 7 0 7 7 1 2
T13^6 + 11724*T13^4 + 42650496*T13^2 + 49422707712
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 T^{12} T 1 2
T^12
3 3 3
T 12 + ⋯ + 387420489 T^{12} + \cdots + 387420489 T 1 2 + ⋯ + 3 8 7 4 2 0 4 8 9
T^12 + 42*T^10 + 630*T^8 - 6048*T^7 + 15174*T^6 - 163296*T^5 + 459270*T^4 + 22320522*T^2 + 387420489
5 5 5
T 12 + ⋯ + 16083058761 T^{12} + \cdots + 16083058761 T 1 2 + ⋯ + 1 6 0 8 3 0 5 8 7 6 1
T^12 + 597*T^10 + 272898*T^8 + 49602429*T^6 + 6898376178*T^4 + 10590781509*T^2 + 16083058761
7 7 7
( T 6 − 21 T 5 + ⋯ + 40353607 ) 2 (T^{6} - 21 T^{5} + \cdots + 40353607)^{2} ( T 6 − 2 1 T 5 + ⋯ + 4 0 3 5 3 6 0 7 ) 2
(T^6 - 21*T^5 + 525*T^4 - 11270*T^3 + 180075*T^2 - 2470629*T + 40353607)^2
11 11 1 1
T 12 + ⋯ + 11724549836769 T^{12} + \cdots + 11724549836769 T 1 2 + ⋯ + 1 1 7 2 4 5 4 9 8 3 6 7 6 9
T^12 - 5967*T^10 + 28201122*T^8 - 44172622863*T^6 + 54798295654818*T^4 - 25352019656271*T^2 + 11724549836769
13 13 1 3
( T 6 + 11724 T 4 + ⋯ + 49422707712 ) 2 (T^{6} + 11724 T^{4} + \cdots + 49422707712)^{2} ( T 6 + 1 1 7 2 4 T 4 + ⋯ + 4 9 4 2 2 7 0 7 7 1 2 ) 2
(T^6 + 11724*T^4 + 42650496*T^2 + 49422707712)^2
17 17 1 7
T 12 + ⋯ + 12 ⋯ 96 T^{12} + \cdots + 12\!\cdots\!96 T 1 2 + ⋯ + 1 2 ⋯ 9 6
T^12 + 19902*T^10 + 297275355*T^8 + 1959611934870*T^6 + 9694705791341673*T^4 + 345318682065762636*T^2 + 12212399445462404496
19 19 1 9
( T 6 + 102 T 5 + ⋯ + 33716904588 ) 2 (T^{6} + 102 T^{5} + \cdots + 33716904588)^{2} ( T 6 + 1 0 2 T 5 + ⋯ + 3 3 7 1 6 9 0 4 5 8 8 ) 2
(T^6 + 102*T^5 - 2499*T^4 - 608634*T^3 + 24791661*T^2 + 1897756614*T + 33716904588)^2
23 23 2 3
T 12 + ⋯ + 45 ⋯ 04 T^{12} + \cdots + 45\!\cdots\!04 T 1 2 + ⋯ + 4 5 ⋯ 0 4
T^12 - 31338*T^10 + 943480467*T^8 - 1207984179330*T^6 + 1468139137683705*T^4 - 25898608390188996*T^2 + 450410306529317904
29 29 2 9
( T 6 + 55377 T 4 + ⋯ + 42952073472 ) 2 (T^{6} + 55377 T^{4} + \cdots + 42952073472)^{2} ( T 6 + 5 5 3 7 7 T 4 + ⋯ + 4 2 9 5 2 0 7 3 4 7 2 ) 2
(T^6 + 55377*T^4 + 165491424*T^2 + 42952073472)^2
31 31 3 1
( T 6 + ⋯ + 2248345829547 ) 2 (T^{6} + \cdots + 2248345829547)^{2} ( T 6 + ⋯ + 2 2 4 8 3 4 5 8 2 9 5 4 7 ) 2
(T^6 + 729*T^5 + 223092*T^4 + 33493905*T^3 + 2742043428*T^2 + 119324724345*T + 2248345829547)^2
37 37 3 7
( T 6 − 120 T 5 + ⋯ + 236777613604 ) 2 (T^{6} - 120 T^{5} + \cdots + 236777613604)^{2} ( T 6 − 1 2 0 T 5 + ⋯ + 2 3 6 7 7 7 6 1 3 6 0 4 ) 2
(T^6 - 120*T^5 + 20511*T^4 - 239876*T^3 + 95736081*T^2 - 2973600378*T + 236777613604)^2
41 41 4 1
( T 6 + ⋯ − 18213269969664 ) 2 (T^{6} + \cdots - 18213269969664)^{2} ( T 6 + ⋯ − 1 8 2 1 3 2 6 9 9 6 9 6 6 4 ) 2
(T^6 - 129432*T^4 + 3004260624*T^2 - 18213269969664)^2
43 43 4 3
( T 3 − 100848 T − 12209024 ) 4 (T^{3} - 100848 T - 12209024)^{4} ( T 3 − 1 0 0 8 4 8 T − 1 2 2 0 9 0 2 4 ) 4
(T^3 - 100848*T - 12209024)^4
47 47 4 7
T 12 + ⋯ + 18 ⋯ 36 T^{12} + \cdots + 18\!\cdots\!36 T 1 2 + ⋯ + 1 8 ⋯ 3 6
T^12 + 532002*T^10 + 225284539203*T^8 + 27989833646485314*T^6 + 2608225665489429185313*T^4 + 78782828131365016113799344*T^2 + 1861597018360385985525094676736
53 53 5 3
T 12 + ⋯ + 17 ⋯ 89 T^{12} + \cdots + 17\!\cdots\!89 T 1 2 + ⋯ + 1 7 ⋯ 8 9
T^12 - 604215*T^10 + 321973295922*T^8 - 26016338421043479*T^6 + 1849720219727373285714*T^4 - 578018632547592599685399*T^2 + 179837126165221465358999889
59 59 5 9
T 12 + ⋯ + 36 ⋯ 01 T^{12} + \cdots + 36\!\cdots\!01 T 1 2 + ⋯ + 3 6 ⋯ 0 1
T^12 + 549669*T^10 + 219666412818*T^8 + 41488136310689469*T^6 + 5745088150815789846018*T^4 + 158458916540456095357643157*T^2 + 3691863388702327077750931051401
61 61 6 1
( T 6 + ⋯ + 687780167594688 ) 2 (T^{6} + \cdots + 687780167594688)^{2} ( T 6 + ⋯ + 6 8 7 7 8 0 1 6 7 5 9 4 6 8 8 ) 2
(T^6 - 1074*T^5 + 364563*T^4 + 21403746*T^3 - 15864629823*T^2 - 905255055432*T + 687780167594688)^2
67 67 6 7
( T 6 + ⋯ + 11 ⋯ 44 ) 2 (T^{6} + \cdots + 11\!\cdots\!44)^{2} ( T 6 + ⋯ + 1 1 ⋯ 4 4 ) 2
(T^6 + 990*T^5 + 1007481*T^4 + 186524086*T^3 + 106497200781*T^2 + 2924718984078*T + 11409580521347044)^2
71 71 7 1
( T 6 + ⋯ + 15 ⋯ 72 ) 2 (T^{6} + \cdots + 15\!\cdots\!72)^{2} ( T 6 + ⋯ + 1 5 ⋯ 7 2 ) 2
(T^6 + 821736*T^4 + 202724447760*T^2 + 15147749091670272)^2
73 73 7 3
( T 6 + ⋯ + 13 ⋯ 72 ) 2 (T^{6} + \cdots + 13\!\cdots\!72)^{2} ( T 6 + ⋯ + 1 3 ⋯ 7 2 ) 2
(T^6 + 1542*T^5 + 894207*T^4 + 156696498*T^3 - 21981359295*T^2 - 6387323622876*T + 1316942318068272)^2
79 79 7 9
( T 6 + ⋯ + 23 ⋯ 01 ) 2 (T^{6} + \cdots + 23\!\cdots\!01)^{2} ( T 6 + ⋯ + 2 3 ⋯ 0 1 ) 2
(T^6 - 219*T^5 + 249966*T^4 - 53722007*T^3 + 51532760694*T^2 - 9894316204755*T + 2399094376263601)^2
83 83 8 3
( T 6 + ⋯ − 18 ⋯ 04 ) 2 (T^{6} + \cdots - 18\!\cdots\!04)^{2} ( T 6 + ⋯ − 1 8 ⋯ 0 4 ) 2
(T^6 - 1217091*T^4 + 282198968928*T^2 - 18264889109263104)^2
89 89 8 9
T 12 + ⋯ + 14 ⋯ 76 T^{12} + \cdots + 14\!\cdots\!76 T 1 2 + ⋯ + 1 4 ⋯ 7 6
T^12 + 3892158*T^10 + 10780696444635*T^8 + 14622864529157921430*T^6 + 14451718699412444092182633*T^4 + 5195643539770072767376571145804*T^2 + 1414731985849741766337053547156940176
97 97 9 7
( T 6 + ⋯ + 59 ⋯ 52 ) 2 (T^{6} + \cdots + 59\!\cdots\!52)^{2} ( T 6 + ⋯ + 5 9 ⋯ 5 2 ) 2
(T^6 + 3137499*T^4 + 2519767249344*T^2 + 597566408536829952)^2
show more
show less