gp: [N,k,chi] = [588,4,Mod(293,588)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(588, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("588.293");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [12,0,0,0,0,0,0,0,168,0,0,0,0,0,132,0,0,0,0,0,0,0,0,0,888,0,0,
0,0,0,0,0,0,0,0,0,-480]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(37)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 − 14 x 10 − 32 x 9 + 70 x 8 + 224 x 7 − 50 x 6 + 2016 x 5 + 5670 x 4 + ⋯ + 531441 x^{12} - 14 x^{10} - 32 x^{9} + 70 x^{8} + 224 x^{7} - 50 x^{6} + 2016 x^{5} + 5670 x^{4} + \cdots + 531441 x 1 2 − 1 4 x 1 0 − 3 2 x 9 + 7 0 x 8 + 2 2 4 x 7 − 5 0 x 6 + 2 0 1 6 x 5 + 5 6 7 0 x 4 + ⋯ + 5 3 1 4 4 1
x^12 - 14*x^10 - 32*x^9 + 70*x^8 + 224*x^7 - 50*x^6 + 2016*x^5 + 5670*x^4 - 23328*x^3 - 91854*x^2 + 531441
:
β 1 \beta_{1} β 1 = = =
( − 533 ν 11 + 1872 ν 10 + 901 ν 9 − 14984 ν 8 − 64409 ν 7 + 67052 ν 6 + ⋯ − 151874028 ) / 23147208 ( - 533 \nu^{11} + 1872 \nu^{10} + 901 \nu^{9} - 14984 \nu^{8} - 64409 \nu^{7} + 67052 \nu^{6} + \cdots - 151874028 ) / 23147208 ( − 5 3 3 ν 1 1 + 1 8 7 2 ν 1 0 + 9 0 1 ν 9 − 1 4 9 8 4 ν 8 − 6 4 4 0 9 ν 7 + 6 7 0 5 2 ν 6 + ⋯ − 1 5 1 8 7 4 0 2 8 ) / 2 3 1 4 7 2 0 8
(-533*v^11 + 1872*v^10 + 901*v^9 - 14984*v^8 - 64409*v^7 + 67052*v^6 + 468577*v^5 + 1677888*v^4 + 4202199*v^3 + 16253784*v^2 - 33926931*v - 151874028) / 23147208
β 2 \beta_{2} β 2 = = =
( 36 ν 11 + 109 ν 10 − 180 ν 9 − 1949 ν 8 − 2588 ν 7 + 1681 ν 6 + ⋯ − 7722297 ) / 1285956 ( 36 \nu^{11} + 109 \nu^{10} - 180 \nu^{9} - 1949 \nu^{8} - 2588 \nu^{7} + 1681 \nu^{6} + \cdots - 7722297 ) / 1285956 ( 3 6 ν 1 1 + 1 0 9 ν 1 0 − 1 8 0 ν 9 − 1 9 4 9 ν 8 − 2 5 8 8 ν 7 + 1 6 8 1 ν 6 + ⋯ − 7 7 2 2 2 9 7 ) / 1 2 8 5 9 5 6
(36*v^11 + 109*v^10 - 180*v^9 - 1949*v^8 - 2588*v^7 + 1681*v^6 + 7388*v^5 + 64615*v^4 + 433908*v^3 + 556065*v^2 - 2452356*v - 7722297) / 1285956
β 3 \beta_{3} β 3 = = =
( − 109 ν 11 − 324 ν 10 + 797 ν 9 + 5108 ν 8 + 6383 ν 7 − 9188 ν 6 + ⋯ + 19131876 ) / 2571912 ( - 109 \nu^{11} - 324 \nu^{10} + 797 \nu^{9} + 5108 \nu^{8} + 6383 \nu^{7} - 9188 \nu^{6} + \cdots + 19131876 ) / 2571912 ( − 1 0 9 ν 1 1 − 3 2 4 ν 1 0 + 7 9 7 ν 9 + 5 1 0 8 ν 8 + 6 3 8 3 ν 7 − 9 1 8 8 ν 6 + ⋯ + 1 9 1 3 1 8 7 6 ) / 2 5 7 1 9 1 2
(-109*v^11 - 324*v^10 + 797*v^9 + 5108*v^8 + 6383*v^7 - 9188*v^6 + 7961*v^5 - 229788*v^4 - 1395873*v^3 - 854388*v^2 + 11580165*v + 19131876) / 2571912
β 4 \beta_{4} β 4 = = =
( − 14 ν 11 + 115 ν 9 + 448 ν 8 + 154 ν 7 − 544 ν 6 − 4970 ν 5 + ⋯ + 944784 ) / 275562 ( - 14 \nu^{11} + 115 \nu^{9} + 448 \nu^{8} + 154 \nu^{7} - 544 \nu^{6} - 4970 \nu^{5} + \cdots + 944784 ) / 275562 ( − 1 4 ν 1 1 + 1 1 5 ν 9 + 4 4 8 ν 8 + 1 5 4 ν 7 − 5 4 4 ν 6 − 4 9 7 0 ν 5 + ⋯ + 9 4 4 7 8 4 ) / 2 7 5 5 6 2
(-14*v^11 + 115*v^9 + 448*v^8 + 154*v^7 - 544*v^6 - 4970*v^5 - 46368*v^4 - 16281*v^3 + 163296*v^2 + 826686*v + 944784) / 275562
β 5 \beta_{5} β 5 = = =
( 1390 ν 11 − 9567 ν 10 − 3422 ν 9 + 107683 ν 8 + 323254 ν 7 − 595255 ν 6 + ⋯ + 546734691 ) / 23147208 ( 1390 \nu^{11} - 9567 \nu^{10} - 3422 \nu^{9} + 107683 \nu^{8} + 323254 \nu^{7} - 595255 \nu^{6} + \cdots + 546734691 ) / 23147208 ( 1 3 9 0 ν 1 1 − 9 5 6 7 ν 1 0 − 3 4 2 2 ν 9 + 1 0 7 6 8 3 ν 8 + 3 2 3 2 5 4 ν 7 − 5 9 5 2 5 5 ν 6 + ⋯ + 5 4 6 7 3 4 6 9 1 ) / 2 3 1 4 7 2 0 8
(1390*v^11 - 9567*v^10 - 3422*v^9 + 107683*v^8 + 323254*v^7 - 595255*v^6 - 2394758*v^5 + 2526075*v^4 - 18216090*v^3 + 3359961*v^2 + 125144514*v + 546734691) / 23147208
β 6 \beta_{6} β 6 = = =
( 3281 ν 11 + 9792 ν 10 − 6325 ν 9 − 131272 ν 8 − 342955 ν 7 − 217436 ν 6 + ⋯ − 616235364 ) / 23147208 ( 3281 \nu^{11} + 9792 \nu^{10} - 6325 \nu^{9} - 131272 \nu^{8} - 342955 \nu^{7} - 217436 \nu^{6} + \cdots - 616235364 ) / 23147208 ( 3 2 8 1 ν 1 1 + 9 7 9 2 ν 1 0 − 6 3 2 5 ν 9 − 1 3 1 2 7 2 ν 8 − 3 4 2 9 5 5 ν 7 − 2 1 7 4 3 6 ν 6 + ⋯ − 6 1 6 2 3 5 3 6 4 ) / 2 3 1 4 7 2 0 8
(3281*v^11 + 9792*v^10 - 6325*v^9 - 131272*v^8 - 342955*v^7 - 217436*v^6 - 220093*v^5 + 5747760*v^4 + 34080993*v^3 + 55654776*v^2 - 97476777*v - 616235364) / 23147208
β 7 \beta_{7} β 7 = = =
( 125 ν 11 + 477 ν 10 − 454 ν 9 − 9949 ν 8 − 18097 ν 7 + 9712 ν 6 + ⋯ − 40743810 ) / 826686 ( 125 \nu^{11} + 477 \nu^{10} - 454 \nu^{9} - 9949 \nu^{8} - 18097 \nu^{7} + 9712 \nu^{6} + \cdots - 40743810 ) / 826686 ( 1 2 5 ν 1 1 + 4 7 7 ν 1 0 − 4 5 4 ν 9 − 9 9 4 9 ν 8 − 1 8 0 9 7 ν 7 + 9 7 1 2 ν 6 + ⋯ − 4 0 7 4 3 8 1 0 ) / 8 2 6 6 8 6
(125*v^11 + 477*v^10 - 454*v^9 - 9949*v^8 - 18097*v^7 + 9712*v^6 + 17087*v^5 + 300483*v^4 + 2110050*v^3 + 3421197*v^2 - 10517283*v - 40743810) / 826686
β 8 \beta_{8} β 8 = = =
( − 44 ν 11 − 81 ν 10 + 454 ν 9 + 1813 ν 8 + 1780 ν 7 − 136 ν 6 + ⋯ + 5471874 ) / 275562 ( - 44 \nu^{11} - 81 \nu^{10} + 454 \nu^{9} + 1813 \nu^{8} + 1780 \nu^{7} - 136 \nu^{6} + \cdots + 5471874 ) / 275562 ( − 4 4 ν 1 1 − 8 1 ν 1 0 + 4 5 4 ν 9 + 1 8 1 3 ν 8 + 1 7 8 0 ν 7 − 1 3 6 ν 6 + ⋯ + 5 4 7 1 8 7 4 ) / 2 7 5 5 6 2
(-44*v^11 - 81*v^10 + 454*v^9 + 1813*v^8 + 1780*v^7 - 136*v^6 - 3956*v^5 - 112923*v^4 - 449874*v^3 - 18225*v^2 + 2598156*v + 5471874) / 275562
β 9 \beta_{9} β 9 = = =
( − 1373 ν 11 − 2916 ν 10 + 10393 ν 9 + 58516 ν 8 + 61759 ν 7 + ⋯ + 198640836 ) / 7715736 ( - 1373 \nu^{11} - 2916 \nu^{10} + 10393 \nu^{9} + 58516 \nu^{8} + 61759 \nu^{7} + \cdots + 198640836 ) / 7715736 ( − 1 3 7 3 ν 1 1 − 2 9 1 6 ν 1 0 + 1 0 3 9 3 ν 9 + 5 8 5 1 6 ν 8 + 6 1 7 5 9 ν 7 + ⋯ + 1 9 8 6 4 0 8 3 6 ) / 7 7 1 5 7 3 6
(-1373*v^11 - 2916*v^10 + 10393*v^9 + 58516*v^8 + 61759*v^7 - 97924*v^6 - 67511*v^5 - 3366396*v^4 - 13018725*v^3 - 3117204*v^2 + 81074277*v + 198640836) / 7715736
β 10 \beta_{10} β 1 0 = = =
( − 1543 ν 11 − 3645 ν 10 + 4187 ν 9 + 67601 ν 8 + 75293 ν 7 + 120523 ν 6 + ⋯ + 214682481 ) / 7715736 ( - 1543 \nu^{11} - 3645 \nu^{10} + 4187 \nu^{9} + 67601 \nu^{8} + 75293 \nu^{7} + 120523 \nu^{6} + \cdots + 214682481 ) / 7715736 ( − 1 5 4 3 ν 1 1 − 3 6 4 5 ν 1 0 + 4 1 8 7 ν 9 + 6 7 6 0 1 ν 8 + 7 5 2 9 3 ν 7 + 1 2 0 5 2 3 ν 6 + ⋯ + 2 1 4 6 8 2 4 8 1 ) / 7 7 1 5 7 3 6
(-1543*v^11 - 3645*v^10 + 4187*v^9 + 67601*v^8 + 75293*v^7 + 120523*v^6 - 22885*v^5 - 3634191*v^4 - 17555535*v^3 - 5917293*v^2 + 91112607*v + 214682481) / 7715736
β 11 \beta_{11} β 1 1 = = =
( − 4909 ν 11 − 18306 ν 10 + 23285 ν 9 + 248618 ν 8 + 346895 ν 7 + ⋯ + 755236710 ) / 7715736 ( - 4909 \nu^{11} - 18306 \nu^{10} + 23285 \nu^{9} + 248618 \nu^{8} + 346895 \nu^{7} + \cdots + 755236710 ) / 7715736 ( − 4 9 0 9 ν 1 1 − 1 8 3 0 6 ν 1 0 + 2 3 2 8 5 ν 9 + 2 4 8 6 1 8 ν 8 + 3 4 6 8 9 5 ν 7 + ⋯ + 7 5 5 2 3 6 7 1 0 ) / 7 7 1 5 7 3 6
(-4909*v^11 - 18306*v^10 + 23285*v^9 + 248618*v^8 + 346895*v^7 + 80554*v^6 + 893369*v^5 - 8844678*v^4 - 59513697*v^3 - 62847090*v^2 + 289871541*v + 755236710) / 7715736
ν \nu ν = = =
( − β 9 + β 4 + 3 β 3 ) / 6 ( -\beta_{9} + \beta_{4} + 3\beta_{3} ) / 6 ( − β 9 + β 4 + 3 β 3 ) / 6
(-b9 + b4 + 3*b3) / 6
ν 2 \nu^{2} ν 2 = = =
( β 10 + β 9 + β 5 + 13 β 2 + 2 β 1 + 14 ) / 6 ( \beta_{10} + \beta_{9} + \beta_{5} + 13\beta_{2} + 2\beta _1 + 14 ) / 6 ( β 1 0 + β 9 + β 5 + 1 3 β 2 + 2 β 1 + 1 4 ) / 6
(b10 + b9 + b5 + 13*b2 + 2*b1 + 14) / 6
ν 3 \nu^{3} ν 3 = = =
( β 11 − 2 β 10 − 3 β 9 − β 8 + 9 β 4 + 24 ) / 3 ( \beta_{11} - 2\beta_{10} - 3\beta_{9} - \beta_{8} + 9\beta_{4} + 24 ) / 3 ( β 1 1 − 2 β 1 0 − 3 β 9 − β 8 + 9 β 4 + 2 4 ) / 3
(b11 - 2*b10 - 3*b9 - b8 + 9*b4 + 24) / 3
ν 4 \nu^{4} ν 4 = = =
( − 5 β 10 − 21 β 9 + 9 β 8 + 5 β 5 − 2 β 4 + 21 β 3 − 70 β 2 + 37 β 1 + 56 ) / 6 ( -5\beta_{10} - 21\beta_{9} + 9\beta_{8} + 5\beta_{5} - 2\beta_{4} + 21\beta_{3} - 70\beta_{2} + 37\beta _1 + 56 ) / 6 ( − 5 β 1 0 − 2 1 β 9 + 9 β 8 + 5 β 5 − 2 β 4 + 2 1 β 3 − 7 0 β 2 + 3 7 β 1 + 5 6 ) / 6
(-5*b10 - 21*b9 + 9*b8 + 5*b5 - 2*b4 + 21*b3 - 70*b2 + 37*b1 + 56) / 6
ν 5 \nu^{5} ν 5 = = =
( 14 β 11 − 12 β 10 + 19 β 9 − 14 β 8 − 42 β 7 + 17 β 6 − 12 β 5 + ⋯ + 560 ) / 6 ( 14 \beta_{11} - 12 \beta_{10} + 19 \beta_{9} - 14 \beta_{8} - 42 \beta_{7} + 17 \beta_{6} - 12 \beta_{5} + \cdots + 560 ) / 6 ( 1 4 β 1 1 − 1 2 β 1 0 + 1 9 β 9 − 1 4 β 8 − 4 2 β 7 + 1 7 β 6 − 1 2 β 5 + ⋯ + 5 6 0 ) / 6
(14*b11 - 12*b10 + 19*b9 - 14*b8 - 42*b7 + 17*b6 - 12*b5 + 59*b3 + 558*b2 + 35*b1 + 560) / 6
ν 6 \nu^{6} ν 6 = = =
( 16 β 11 + 24 β 10 − 216 β 9 + 110 β 8 + 116 β 4 + 745 ) / 3 ( 16\beta_{11} + 24\beta_{10} - 216\beta_{9} + 110\beta_{8} + 116\beta_{4} + 745 ) / 3 ( 1 6 β 1 1 + 2 4 β 1 0 − 2 1 6 β 9 + 1 1 0 β 8 + 1 1 6 β 4 + 7 4 5 ) / 3
(16*b11 + 24*b10 - 216*b9 + 110*b8 + 116*b4 + 745) / 3
ν 7 \nu^{7} ν 7 = = =
( − 70 β 11 − 164 β 10 − 251 β 9 + 214 β 8 − 210 β 7 − 644 β 6 + ⋯ − 3920 ) / 6 ( - 70 \beta_{11} - 164 \beta_{10} - 251 \beta_{9} + 214 \beta_{8} - 210 \beta_{7} - 644 \beta_{6} + \cdots - 3920 ) / 6 ( − 7 0 β 1 1 − 1 6 4 β 1 0 − 2 5 1 β 9 + 2 1 4 β 8 − 2 1 0 β 7 − 6 4 4 β 6 + ⋯ − 3 9 2 0 ) / 6
(-70*b11 - 164*b10 - 251*b9 + 214*b8 - 210*b7 - 644*b6 + 164*b5 + 373*b4 + 1117*b3 + 3542*b2 + 326*b1 - 3920) / 6
ν 8 \nu^{8} ν 8 = = =
( 448 β 11 + 45 β 10 − 803 β 9 + 182 β 8 − 1344 β 7 + 1840 β 6 + ⋯ + 2128 ) / 6 ( 448 \beta_{11} + 45 \beta_{10} - 803 \beta_{9} + 182 \beta_{8} - 1344 \beta_{7} + 1840 \beta_{6} + \cdots + 2128 ) / 6 ( 4 4 8 β 1 1 + 4 5 β 1 0 − 8 0 3 β 9 + 1 8 2 β 8 − 1 3 4 4 β 7 + 1 8 4 0 β 6 + ⋯ + 2 1 2 8 ) / 6
(448*b11 + 45*b10 - 803*b9 + 182*b8 - 1344*b7 + 1840*b6 + 45*b5 + 1876*b4 - 4334*b3 + 2265*b2 + 1384*b1 + 2128) / 6
ν 9 \nu^{9} ν 9 = = =
( 311 β 11 − 1966 β 10 − 2389 β 9 + 3721 β 8 + 517 β 4 + 10104 ) / 3 ( 311\beta_{11} - 1966\beta_{10} - 2389\beta_{9} + 3721\beta_{8} + 517\beta_{4} + 10104 ) / 3 ( 3 1 1 β 1 1 − 1 9 6 6 β 1 0 − 2 3 8 9 β 9 + 3 7 2 1 β 8 + 5 1 7 β 4 + 1 0 1 0 4 ) / 3
(311*b11 - 1966*b10 - 2389*b9 + 3721*b8 + 517*b4 + 10104) / 3
ν 10 \nu^{10} ν 1 0 = = =
( − 5376 β 11 + 3415 β 10 − 4681 β 9 + 8175 β 8 − 16128 β 7 + 1344 β 6 + ⋯ − 39466 ) / 6 ( - 5376 \beta_{11} + 3415 \beta_{10} - 4681 \beta_{9} + 8175 \beta_{8} - 16128 \beta_{7} + 1344 \beta_{6} + \cdots - 39466 ) / 6 ( − 5 3 7 6 β 1 1 + 3 4 1 5 β 1 0 − 4 6 8 1 β 9 + 8 1 7 5 β 8 − 1 6 1 2 8 β 7 + 1 3 4 4 β 6 + ⋯ − 3 9 4 6 6 ) / 6
(-5376*b11 + 3415*b10 - 4681*b9 + 8175*b8 - 16128*b7 + 1344*b6 - 3415*b5 - 4222*b4 + 13203*b3 + 34706*b2 + 19039*b1 - 39466) / 6
ν 11 \nu^{11} ν 1 1 = = =
( 10136 β 11 + 2608 β 10 − 28519 β 9 + 38248 β 8 − 30408 β 7 + 45761 β 6 + ⋯ + 261184 ) / 6 ( 10136 \beta_{11} + 2608 \beta_{10} - 28519 \beta_{9} + 38248 \beta_{8} - 30408 \beta_{7} + 45761 \beta_{6} + \cdots + 261184 ) / 6 ( 1 0 1 3 6 β 1 1 + 2 6 0 8 β 1 0 − 2 8 5 1 9 β 9 + 3 8 2 4 8 β 8 − 3 0 4 0 8 β 7 + 4 5 7 6 1 β 6 + ⋯ + 2 6 1 1 8 4 ) / 6
(10136*b11 + 2608*b10 - 28519*b9 + 38248*b8 - 30408*b7 + 45761*b6 + 2608*b5 - 9744*b4 - 39751*b3 + 296824*b2 - 63767*b1 + 261184) / 6
Character values
We give the values of χ \chi χ on generators for ( Z / 588 Z ) × \left(\mathbb{Z}/588\mathbb{Z}\right)^\times ( Z / 5 8 8 Z ) × .
n n n
197 197 1 9 7
295 295 2 9 5
493 493 4 9 3
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 588 , [ χ ] ) S_{4}^{\mathrm{new}}(588, [\chi]) S 4 n e w ( 5 8 8 , [ χ ] ) :
T 5 6 − 597 T 5 4 + 83511 T 5 2 − 126819 T_{5}^{6} - 597T_{5}^{4} + 83511T_{5}^{2} - 126819 T 5 6 − 5 9 7 T 5 4 + 8 3 5 1 1 T 5 2 − 1 2 6 8 1 9
T5^6 - 597*T5^4 + 83511*T5^2 - 126819
T 13 6 + 11724 T 13 4 + 42650496 T 13 2 + 49422707712 T_{13}^{6} + 11724T_{13}^{4} + 42650496T_{13}^{2} + 49422707712 T 1 3 6 + 1 1 7 2 4 T 1 3 4 + 4 2 6 5 0 4 9 6 T 1 3 2 + 4 9 4 2 2 7 0 7 7 1 2
T13^6 + 11724*T13^4 + 42650496*T13^2 + 49422707712
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 T^{12} T 1 2
T^12
3 3 3
T 12 + ⋯ + 387420489 T^{12} + \cdots + 387420489 T 1 2 + ⋯ + 3 8 7 4 2 0 4 8 9
T^12 - 84*T^10 + 4032*T^8 - 127710*T^6 + 2939328*T^4 - 44641044*T^2 + 387420489
5 5 5
( T 6 − 597 T 4 + ⋯ − 126819 ) 2 (T^{6} - 597 T^{4} + \cdots - 126819)^{2} ( T 6 − 5 9 7 T 4 + ⋯ − 1 2 6 8 1 9 ) 2
(T^6 - 597*T^4 + 83511*T^2 - 126819)^2
7 7 7
T 12 T^{12} T 1 2
T^12
11 11 1 1
( T 6 + 5967 T 4 + ⋯ + 3424113 ) 2 (T^{6} + 5967 T^{4} + \cdots + 3424113)^{2} ( T 6 + 5 9 6 7 T 4 + ⋯ + 3 4 2 4 1 1 3 ) 2
(T^6 + 5967*T^4 + 7403967*T^2 + 3424113)^2
13 13 1 3
( T 6 + 11724 T 4 + ⋯ + 49422707712 ) 2 (T^{6} + 11724 T^{4} + \cdots + 49422707712)^{2} ( T 6 + 1 1 7 2 4 T 4 + ⋯ + 4 9 4 2 2 7 0 7 7 1 2 ) 2
(T^6 + 11724*T^4 + 42650496*T^2 + 49422707712)^2
17 17 1 7
( T 6 − 19902 T 4 + ⋯ − 3494624364 ) 2 (T^{6} - 19902 T^{4} + \cdots - 3494624364)^{2} ( T 6 − 1 9 9 0 2 T 4 + ⋯ − 3 4 9 4 6 2 4 3 6 4 ) 2
(T^6 - 19902*T^4 + 98814249*T^2 - 3494624364)^2
19 19 1 9
( T 6 + 15402 T 4 + ⋯ + 33716904588 ) 2 (T^{6} + 15402 T^{4} + \cdots + 33716904588)^{2} ( T 6 + 1 5 4 0 2 T 4 + ⋯ + 3 3 7 1 6 9 0 4 5 8 8 ) 2
(T^6 + 15402*T^4 + 57231945*T^2 + 33716904588)^2
23 23 2 3
( T 6 + 31338 T 4 + ⋯ + 671126148 ) 2 (T^{6} + 31338 T^{4} + \cdots + 671126148)^{2} ( T 6 + 3 1 3 3 8 T 4 + ⋯ + 6 7 1 1 2 6 1 4 8 ) 2
(T^6 + 31338*T^4 + 38589777*T^2 + 671126148)^2
29 29 2 9
( T 6 + 55377 T 4 + ⋯ + 42952073472 ) 2 (T^{6} + 55377 T^{4} + \cdots + 42952073472)^{2} ( T 6 + 5 5 3 7 7 T 4 + ⋯ + 4 2 9 5 2 0 7 3 4 7 2 ) 2
(T^6 + 55377*T^4 + 165491424*T^2 + 42952073472)^2
31 31 3 1
( T 6 + ⋯ + 2248345829547 ) 2 (T^{6} + \cdots + 2248345829547)^{2} ( T 6 + ⋯ + 2 2 4 8 3 4 5 8 2 9 5 4 7 ) 2
(T^6 + 85257*T^4 + 848742219*T^2 + 2248345829547)^2
37 37 3 7
( T 3 + 120 T 2 + ⋯ − 486598 ) 4 (T^{3} + 120 T^{2} + \cdots - 486598)^{4} ( T 3 + 1 2 0 T 2 + ⋯ − 4 8 6 5 9 8 ) 4
(T^3 + 120*T^2 - 6111*T - 486598)^4
41 41 4 1
( T 6 + ⋯ − 18213269969664 ) 2 (T^{6} + \cdots - 18213269969664)^{2} ( T 6 + ⋯ − 1 8 2 1 3 2 6 9 9 6 9 6 6 4 ) 2
(T^6 - 129432*T^4 + 3004260624*T^2 - 18213269969664)^2
43 43 4 3
( T 3 − 100848 T + 12209024 ) 4 (T^{3} - 100848 T + 12209024)^{4} ( T 3 − 1 0 0 8 4 8 T + 1 2 2 0 9 0 2 4 ) 4
(T^3 - 100848*T + 12209024)^4
47 47 4 7
( T 6 + ⋯ − 13 ⋯ 44 ) 2 (T^{6} + \cdots - 13\!\cdots\!44)^{2} ( T 6 + ⋯ − 1 3 ⋯ 4 4 ) 2
(T^6 - 532002*T^4 + 57741588801*T^2 - 1364403539412144)^2
53 53 5 3
( T 6 + ⋯ + 13410336541833 ) 2 (T^{6} + \cdots + 13410336541833)^{2} ( T 6 + ⋯ + 1 3 4 1 0 3 3 6 5 4 1 8 3 3 ) 2
(T^6 + 604215*T^4 + 43102470303*T^2 + 13410336541833)^2
59 59 5 9
( T 6 + ⋯ − 19 ⋯ 99 ) 2 (T^{6} + \cdots - 19\!\cdots\!99)^{2} ( T 6 + ⋯ − 1 9 ⋯ 9 9 ) 2
(T^6 - 549669*T^4 + 82469596743*T^2 - 1921422230719299)^2
61 61 6 1
( T 6 + ⋯ + 687780167594688 ) 2 (T^{6} + \cdots + 687780167594688)^{2} ( T 6 + ⋯ + 6 8 7 7 8 0 1 6 7 5 9 4 6 8 8 ) 2
(T^6 + 424350*T^4 + 32920754769*T^2 + 687780167594688)^2
67 67 6 7
( T 3 + 990 T 2 + ⋯ − 106815638 ) 4 (T^{3} + 990 T^{2} + \cdots - 106815638)^{4} ( T 3 + 9 9 0 T 2 + ⋯ − 1 0 6 8 1 5 6 3 8 ) 4
(T^3 + 990*T^2 - 27381*T - 106815638)^4
71 71 7 1
( T 6 + ⋯ + 15 ⋯ 72 ) 2 (T^{6} + \cdots + 15\!\cdots\!72)^{2} ( T 6 + ⋯ + 1 5 ⋯ 7 2 ) 2
(T^6 + 821736*T^4 + 202724447760*T^2 + 15147749091670272)^2
73 73 7 3
( T 6 + ⋯ + 13 ⋯ 72 ) 2 (T^{6} + \cdots + 13\!\cdots\!72)^{2} ( T 6 + ⋯ + 1 3 ⋯ 7 2 ) 2
(T^6 + 589350*T^4 + 74941982073*T^2 + 1316942318068272)^2
79 79 7 9
( T 3 − 219 T 2 + ⋯ + 48980551 ) 4 (T^{3} - 219 T^{2} + \cdots + 48980551)^{4} ( T 3 − 2 1 9 T 2 + ⋯ + 4 8 9 8 0 5 5 1 ) 4
(T^3 - 219*T^2 - 202005*T + 48980551)^4
83 83 8 3
( T 6 + ⋯ − 18 ⋯ 04 ) 2 (T^{6} + \cdots - 18\!\cdots\!04)^{2} ( T 6 + ⋯ − 1 8 ⋯ 0 4 ) 2
(T^6 - 1217091*T^4 + 282198968928*T^2 - 18264889109263104)^2
89 89 8 9
( T 6 + ⋯ − 11 ⋯ 76 ) 2 (T^{6} + \cdots - 11\!\cdots\!76)^{2} ( T 6 + ⋯ − 1 1 ⋯ 7 6 ) 2
(T^6 - 3892158*T^4 + 4368197452329*T^2 - 1189425065252007276)^2
97 97 9 7
( T 6 + ⋯ + 59 ⋯ 52 ) 2 (T^{6} + \cdots + 59\!\cdots\!52)^{2} ( T 6 + ⋯ + 5 9 ⋯ 5 2 ) 2
(T^6 + 3137499*T^4 + 2519767249344*T^2 + 597566408536829952)^2
show more
show less