gp: [N,k,chi] = [336,4,Mod(17,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 3, 1]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.17");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,-9]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 6 \zeta_{6} ζ 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
1 1 1
ζ 6 \zeta_{6} ζ 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) :
T 5 T_{5} T 5
T5
T 13 2 + 867 T_{13}^{2} + 867 T 1 3 2 + 8 6 7
T13^2 + 867
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 + 9 T + 27 T^{2} + 9T + 27 T 2 + 9 T + 2 7
T^2 + 9*T + 27
5 5 5
T 2 T^{2} T 2
T^2
7 7 7
T 2 + 37 T + 343 T^{2} + 37T + 343 T 2 + 3 7 T + 3 4 3
T^2 + 37*T + 343
11 11 1 1
T 2 T^{2} T 2
T^2
13 13 1 3
T 2 + 867 T^{2} + 867 T 2 + 8 6 7
T^2 + 867
17 17 1 7
T 2 T^{2} T 2
T^2
19 19 1 9
T 2 + 51 T + 867 T^{2} + 51T + 867 T 2 + 5 1 T + 8 6 7
T^2 + 51*T + 867
23 23 2 3
T 2 T^{2} T 2
T^2
29 29 2 9
T 2 T^{2} T 2
T^2
31 31 3 1
T 2 − 597 T + 118803 T^{2} - 597T + 118803 T 2 − 5 9 7 T + 1 1 8 8 0 3
T^2 - 597*T + 118803
37 37 3 7
T 2 + 433 T + 187489 T^{2} + 433T + 187489 T 2 + 4 3 3 T + 1 8 7 4 8 9
T^2 + 433*T + 187489
41 41 4 1
T 2 T^{2} T 2
T^2
43 43 4 3
( T − 449 ) 2 (T - 449)^{2} ( T − 4 4 9 ) 2
(T - 449)^2
47 47 4 7
T 2 T^{2} T 2
T^2
53 53 5 3
T 2 T^{2} T 2
T^2
59 59 5 9
T 2 T^{2} T 2
T^2
61 61 6 1
T 2 − 1620 T + 874800 T^{2} - 1620 T + 874800 T 2 − 1 6 2 0 T + 8 7 4 8 0 0
T^2 - 1620*T + 874800
67 67 6 7
T 2 − 1007 T + 1014049 T^{2} - 1007 T + 1014049 T 2 − 1 0 0 7 T + 1 0 1 4 0 4 9
T^2 - 1007*T + 1014049
71 71 7 1
T 2 T^{2} T 2
T^2
73 73 7 3
T 2 − 1461 T + 711507 T^{2} - 1461 T + 711507 T 2 − 1 4 6 1 T + 7 1 1 5 0 7
T^2 - 1461*T + 711507
79 79 7 9
T 2 − 503 T + 253009 T^{2} - 503T + 253009 T 2 − 5 0 3 T + 2 5 3 0 0 9
T^2 - 503*T + 253009
83 83 8 3
T 2 T^{2} T 2
T^2
89 89 8 9
T 2 T^{2} T 2
T^2
97 97 9 7
T 2 + 1881792 T^{2} + 1881792 T 2 + 1 8 8 1 7 9 2
T^2 + 1881792
show more
show less