Properties

Label 336.4.b.d
Level 336336
Weight 44
Character orbit 336.b
Analytic conductor 19.82519.825
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [336,4,Mod(223,336)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(336, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("336.223"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.b (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,6,0,0,0,34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.824641761919.8246417619
Analytic rank: 00
Dimension: 22
Coefficient field: Q(6)\Q(\sqrt{-6})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+6 x^{2} + 6 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=6\beta = \sqrt{-6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3q3+βq5+(3β+17)q7+9q923βq1130βq13+3βq15+21βq17+10q19+(9β+51)q21+47βq23+119q25+27q27+207βq99+O(q100) q + 3 q^{3} + \beta q^{5} + (3 \beta + 17) q^{7} + 9 q^{9} - 23 \beta q^{11} - 30 \beta q^{13} + 3 \beta q^{15} + 21 \beta q^{17} + 10 q^{19} + (9 \beta + 51) q^{21} + 47 \beta q^{23} + 119 q^{25} + 27 q^{27} + \cdots - 207 \beta q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+6q3+34q7+18q9+20q19+102q21+238q25+54q27+252q29+16q3136q35+488q37360q47+470q49+1188q53+276q55+60q571080q59++48q93+O(q100) 2 q + 6 q^{3} + 34 q^{7} + 18 q^{9} + 20 q^{19} + 102 q^{21} + 238 q^{25} + 54 q^{27} + 252 q^{29} + 16 q^{31} - 36 q^{35} + 488 q^{37} - 360 q^{47} + 470 q^{49} + 1188 q^{53} + 276 q^{55} + 60 q^{57} - 1080 q^{59}+ \cdots + 48 q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 11 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
223.1
2.44949i
2.44949i
0 3.00000 0 2.44949i 0 17.0000 7.34847i 0 9.00000 0
223.2 0 3.00000 0 2.44949i 0 17.0000 + 7.34847i 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 336.4.b.d yes 2
3.b odd 2 1 1008.4.b.f 2
4.b odd 2 1 336.4.b.a 2
7.b odd 2 1 336.4.b.a 2
8.b even 2 1 1344.4.b.b 2
8.d odd 2 1 1344.4.b.c 2
12.b even 2 1 1008.4.b.a 2
21.c even 2 1 1008.4.b.a 2
28.d even 2 1 inner 336.4.b.d yes 2
56.e even 2 1 1344.4.b.b 2
56.h odd 2 1 1344.4.b.c 2
84.h odd 2 1 1008.4.b.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.4.b.a 2 4.b odd 2 1
336.4.b.a 2 7.b odd 2 1
336.4.b.d yes 2 1.a even 1 1 trivial
336.4.b.d yes 2 28.d even 2 1 inner
1008.4.b.a 2 12.b even 2 1
1008.4.b.a 2 21.c even 2 1
1008.4.b.f 2 3.b odd 2 1
1008.4.b.f 2 84.h odd 2 1
1344.4.b.b 2 8.b even 2 1
1344.4.b.b 2 56.e even 2 1
1344.4.b.c 2 8.d odd 2 1
1344.4.b.c 2 56.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]):

T52+6 T_{5}^{2} + 6 Copy content Toggle raw display
T1910 T_{19} - 10 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T3)2 (T - 3)^{2} Copy content Toggle raw display
55 T2+6 T^{2} + 6 Copy content Toggle raw display
77 T234T+343 T^{2} - 34T + 343 Copy content Toggle raw display
1111 T2+3174 T^{2} + 3174 Copy content Toggle raw display
1313 T2+5400 T^{2} + 5400 Copy content Toggle raw display
1717 T2+2646 T^{2} + 2646 Copy content Toggle raw display
1919 (T10)2 (T - 10)^{2} Copy content Toggle raw display
2323 T2+13254 T^{2} + 13254 Copy content Toggle raw display
2929 (T126)2 (T - 126)^{2} Copy content Toggle raw display
3131 (T8)2 (T - 8)^{2} Copy content Toggle raw display
3737 (T244)2 (T - 244)^{2} Copy content Toggle raw display
4141 T2+136806 T^{2} + 136806 Copy content Toggle raw display
4343 T2+26136 T^{2} + 26136 Copy content Toggle raw display
4747 (T+180)2 (T + 180)^{2} Copy content Toggle raw display
5353 (T594)2 (T - 594)^{2} Copy content Toggle raw display
5959 (T+540)2 (T + 540)^{2} Copy content Toggle raw display
6161 T2+124416 T^{2} + 124416 Copy content Toggle raw display
6767 T2+1119744 T^{2} + 1119744 Copy content Toggle raw display
7171 T2+31974 T^{2} + 31974 Copy content Toggle raw display
7373 T2+437400 T^{2} + 437400 Copy content Toggle raw display
7979 T2+1058400 T^{2} + 1058400 Copy content Toggle raw display
8383 (T+864)2 (T + 864)^{2} Copy content Toggle raw display
8989 T2+1666374 T^{2} + 1666374 Copy content Toggle raw display
9797 T2+653400 T^{2} + 653400 Copy content Toggle raw display
show more
show less