gp: [N,k,chi] = [336,4,Mod(223,336)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("336.223");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,-6,0,0,0,-34]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = − 6 \beta = \sqrt{-6} β = − 6 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 336 Z ) × \left(\mathbb{Z}/336\mathbb{Z}\right)^\times ( Z / 3 3 6 Z ) × .
n n n
85 85 8 5
113 113 1 1 3
127 127 1 2 7
241 241 2 4 1
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
− 1 -1 − 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( 336 , [ χ ] ) S_{4}^{\mathrm{new}}(336, [\chi]) S 4 n e w ( 3 3 6 , [ χ ] ) :
T 5 2 + 6 T_{5}^{2} + 6 T 5 2 + 6
T5^2 + 6
T 19 + 10 T_{19} + 10 T 1 9 + 1 0
T19 + 10
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
( T + 3 ) 2 (T + 3)^{2} ( T + 3 ) 2
(T + 3)^2
5 5 5
T 2 + 6 T^{2} + 6 T 2 + 6
T^2 + 6
7 7 7
T 2 + 34 T + 343 T^{2} + 34T + 343 T 2 + 3 4 T + 3 4 3
T^2 + 34*T + 343
11 11 1 1
T 2 + 3174 T^{2} + 3174 T 2 + 3 1 7 4
T^2 + 3174
13 13 1 3
T 2 + 5400 T^{2} + 5400 T 2 + 5 4 0 0
T^2 + 5400
17 17 1 7
T 2 + 2646 T^{2} + 2646 T 2 + 2 6 4 6
T^2 + 2646
19 19 1 9
( T + 10 ) 2 (T + 10)^{2} ( T + 1 0 ) 2
(T + 10)^2
23 23 2 3
T 2 + 13254 T^{2} + 13254 T 2 + 1 3 2 5 4
T^2 + 13254
29 29 2 9
( T − 126 ) 2 (T - 126)^{2} ( T − 1 2 6 ) 2
(T - 126)^2
31 31 3 1
( T + 8 ) 2 (T + 8)^{2} ( T + 8 ) 2
(T + 8)^2
37 37 3 7
( T − 244 ) 2 (T - 244)^{2} ( T − 2 4 4 ) 2
(T - 244)^2
41 41 4 1
T 2 + 136806 T^{2} + 136806 T 2 + 1 3 6 8 0 6
T^2 + 136806
43 43 4 3
T 2 + 26136 T^{2} + 26136 T 2 + 2 6 1 3 6
T^2 + 26136
47 47 4 7
( T − 180 ) 2 (T - 180)^{2} ( T − 1 8 0 ) 2
(T - 180)^2
53 53 5 3
( T − 594 ) 2 (T - 594)^{2} ( T − 5 9 4 ) 2
(T - 594)^2
59 59 5 9
( T − 540 ) 2 (T - 540)^{2} ( T − 5 4 0 ) 2
(T - 540)^2
61 61 6 1
T 2 + 124416 T^{2} + 124416 T 2 + 1 2 4 4 1 6
T^2 + 124416
67 67 6 7
T 2 + 1119744 T^{2} + 1119744 T 2 + 1 1 1 9 7 4 4
T^2 + 1119744
71 71 7 1
T 2 + 31974 T^{2} + 31974 T 2 + 3 1 9 7 4
T^2 + 31974
73 73 7 3
T 2 + 437400 T^{2} + 437400 T 2 + 4 3 7 4 0 0
T^2 + 437400
79 79 7 9
T 2 + 1058400 T^{2} + 1058400 T 2 + 1 0 5 8 4 0 0
T^2 + 1058400
83 83 8 3
( T − 864 ) 2 (T - 864)^{2} ( T − 8 6 4 ) 2
(T - 864)^2
89 89 8 9
T 2 + 1666374 T^{2} + 1666374 T 2 + 1 6 6 6 3 7 4
T^2 + 1666374
97 97 9 7
T 2 + 653400 T^{2} + 653400 T 2 + 6 5 3 4 0 0
T^2 + 653400
show more
show less