Properties

Label 336.4.b
Level 336336
Weight 44
Character orbit 336.b
Rep. character χ336(223,)\chi_{336}(223,\cdot)
Character field Q\Q
Dimension 2424
Newform subspaces 66
Sturm bound 256256
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 336.b (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 28 28
Character field: Q\Q
Newform subspaces: 6 6
Sturm bound: 256256
Trace bound: 77
Distinguishing TpT_p: 55, 1919

Dimensions

The following table gives the dimensions of various subspaces of M4(336,[χ])M_{4}(336, [\chi]).

Total New Old
Modular forms 204 24 180
Cusp forms 180 24 156
Eisenstein series 24 0 24

Trace form

24q+216q9+60q211104q25+504q37+1104q49+2352q53168q571680q652304q77+1944q81+408q853216q93+O(q100) 24 q + 216 q^{9} + 60 q^{21} - 1104 q^{25} + 504 q^{37} + 1104 q^{49} + 2352 q^{53} - 168 q^{57} - 1680 q^{65} - 2304 q^{77} + 1944 q^{81} + 408 q^{85} - 3216 q^{93}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(336,[χ])S_{4}^{\mathrm{new}}(336, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
336.4.b.a 336.b 28.d 22 19.82519.825 Q(6)\Q(\sqrt{-6}) None 336.4.b.a 00 6-6 00 34-34 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q3q3+βq5+(173β)q7+9q9+q-3q^{3}+\beta q^{5}+(-17-3\beta )q^{7}+9q^{9}+\cdots
336.4.b.b 336.b 28.d 22 19.82519.825 Q(3)\Q(\sqrt{-3}) None 336.4.b.b 00 6-6 00 2828 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q3q38βq5+(7β+14)q7+q-3 q^{3}-8\beta q^{5}+(-7\beta+14)q^{7}+\cdots
336.4.b.c 336.b 28.d 22 19.82519.825 Q(3)\Q(\sqrt{-3}) None 336.4.b.b 00 66 00 28-28 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+3q38βq5+(7β14)q7+9q9+q+3 q^{3}-8\beta q^{5}+(7\beta-14)q^{7}+9 q^{9}+\cdots
336.4.b.d 336.b 28.d 22 19.82519.825 Q(6)\Q(\sqrt{-6}) None 336.4.b.a 00 66 00 3434 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+3q3+βq5+(17+3β)q7+9q9+q+3q^{3}+\beta q^{5}+(17+3\beta )q^{7}+9q^{9}+\cdots
336.4.b.e 336.b 28.d 88 19.82519.825 Q[x]/(x8+)\mathbb{Q}[x]/(x^{8} + \cdots) None 336.4.b.e 00 24-24 00 4-4 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q3q3+β5q5β2q7+9q9+(β1+)q11+q-3q^{3}+\beta _{5}q^{5}-\beta _{2}q^{7}+9q^{9}+(-\beta _{1}+\cdots)q^{11}+\cdots
336.4.b.f 336.b 28.d 88 19.82519.825 Q[x]/(x8+)\mathbb{Q}[x]/(x^{8} + \cdots) None 336.4.b.e 00 2424 00 44 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+3q3+β5q5+β2q7+9q9+(β1+)q11+q+3q^{3}+\beta _{5}q^{5}+\beta _{2}q^{7}+9q^{9}+(\beta _{1}+\cdots)q^{11}+\cdots

Decomposition of S4old(336,[χ])S_{4}^{\mathrm{old}}(336, [\chi]) into lower level spaces

S4old(336,[χ]) S_{4}^{\mathrm{old}}(336, [\chi]) \simeq S4new(28,[χ])S_{4}^{\mathrm{new}}(28, [\chi])6^{\oplus 6}\oplusS4new(84,[χ])S_{4}^{\mathrm{new}}(84, [\chi])3^{\oplus 3}\oplusS4new(112,[χ])S_{4}^{\mathrm{new}}(112, [\chi])2^{\oplus 2}