Defining parameters
Level: | \( N \) | \(=\) | \( 28 = 2^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 28.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 28 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(16\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(28, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 14 | 14 | 0 |
Cusp forms | 10 | 10 | 0 |
Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(28, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
28.4.d.a | $2$ | $1.652$ | \(\Q(\sqrt{-7}) \) | \(\Q(\sqrt{-7}) \) | \(5\) | \(0\) | \(0\) | \(0\) | \(q+(3-\beta )q^{2}+(7-5\beta )q^{4}+(-7+14\beta )q^{7}+\cdots\) |
28.4.d.b | $8$ | $1.652$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(-8\) | \(0\) | \(0\) | \(0\) | \(q+(-1+\beta _{2})q^{2}+\beta _{1}q^{3}+(-2-\beta _{2}+\cdots)q^{4}+\cdots\) |