Properties

Label 325.4.a.k
Level $325$
Weight $4$
Character orbit 325.a
Self dual yes
Analytic conductor $19.176$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,4,Mod(1,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,1,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.1756207519\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 31x^{3} + 37x^{2} + 188x - 130 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + ( - \beta_{2} - \beta_1) q^{3} + (\beta_{3} + \beta_{2} + 5) q^{4} + (\beta_{4} - \beta_{3} - 3 \beta_{2} + \cdots - 9) q^{6} + ( - \beta_{4} + \beta_{3} + 3 \beta_{2} + \cdots + 7) q^{7}+ \cdots + (41 \beta_{4} + 51 \beta_{3} + \cdots + 109) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + q^{3} + 23 q^{4} - 39 q^{6} + 26 q^{7} - 33 q^{8} - 20 q^{9} - 77 q^{11} - 33 q^{12} - 65 q^{13} - 166 q^{14} - 45 q^{16} - 73 q^{17} + 176 q^{18} - 223 q^{19} - 88 q^{21} - 125 q^{22} + 114 q^{23}+ \cdots + 836 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 31x^{3} + 37x^{2} + 188x - 130 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{4} + 4\nu^{3} - 17\nu^{2} - 60\nu + 8 ) / 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{4} - 4\nu^{3} + 23\nu^{2} + 60\nu - 86 ) / 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{4} - 2\nu^{3} + 21\nu^{2} + 22\nu - 46 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + 13 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} - 2\beta_{3} + \beta_{2} + 19\beta _1 - 7 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -4\beta_{4} + 25\beta_{3} + 19\beta_{2} - 16\beta _1 + 241 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.98185
−2.56487
0.653783
3.83244
4.06049
−4.98185 3.91681 16.8188 0 −19.5129 32.4585 −43.9339 −11.6586 0
1.2 −2.56487 −1.74206 −1.42145 0 4.46816 1.22645 24.1648 −23.9652 0
1.3 0.653783 5.54502 −7.57257 0 3.62524 −7.58659 −10.1811 3.74725 0
1.4 3.83244 1.29302 6.68760 0 4.95541 −18.4527 −5.02971 −25.3281 0
1.5 4.06049 −8.01278 8.48761 0 −32.5359 18.3544 1.97995 37.2047 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 325.4.a.k yes 5
5.b even 2 1 325.4.a.i 5
5.c odd 4 2 325.4.b.h 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
325.4.a.i 5 5.b even 2 1
325.4.a.k yes 5 1.a even 1 1 trivial
325.4.b.h 10 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(325))\):

\( T_{2}^{5} - T_{2}^{4} - 31T_{2}^{3} + 37T_{2}^{2} + 188T_{2} - 130 \) Copy content Toggle raw display
\( T_{3}^{5} - T_{3}^{4} - 57T_{3}^{3} + 153T_{3}^{2} + 200T_{3} - 392 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - T^{4} + \cdots - 130 \) Copy content Toggle raw display
$3$ \( T^{5} - T^{4} + \cdots - 392 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} - 26 T^{4} + \cdots - 102288 \) Copy content Toggle raw display
$11$ \( T^{5} + 77 T^{4} + \cdots + 25116068 \) Copy content Toggle raw display
$13$ \( (T + 13)^{5} \) Copy content Toggle raw display
$17$ \( T^{5} + 73 T^{4} + \cdots + 19828508 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots - 4913016192 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots - 1505910528 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 2717874652 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 19810902888 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots + 455049091584 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots - 12725013504 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 11730477712 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots + 74990464640 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots + 256822186914 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 34612631436096 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots + 19214667161816 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 4619162534916 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 6904899526656 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 64468435248 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots - 213811065504 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 14144978104992 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots - 77883058038240 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 28787199835520 \) Copy content Toggle raw display
show more
show less