Properties

Label 325.4.a
Level $325$
Weight $4$
Character orbit 325.a
Rep. character $\chi_{325}(1,\cdot)$
Character field $\Q$
Dimension $57$
Newform subspaces $15$
Sturm bound $140$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 15 \)
Sturm bound: \(140\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(325))\).

Total New Old
Modular forms 112 57 55
Cusp forms 100 57 43
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(13\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(30\)\(15\)\(15\)\(27\)\(15\)\(12\)\(3\)\(0\)\(3\)
\(+\)\(-\)\(-\)\(27\)\(12\)\(15\)\(24\)\(12\)\(12\)\(3\)\(0\)\(3\)
\(-\)\(+\)\(-\)\(26\)\(14\)\(12\)\(23\)\(14\)\(9\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(29\)\(16\)\(13\)\(26\)\(16\)\(10\)\(3\)\(0\)\(3\)
Plus space\(+\)\(59\)\(31\)\(28\)\(53\)\(31\)\(22\)\(6\)\(0\)\(6\)
Minus space\(-\)\(53\)\(26\)\(27\)\(47\)\(26\)\(21\)\(6\)\(0\)\(6\)

Trace form

\( 57 q - 4 q^{2} + 6 q^{3} + 250 q^{4} + 28 q^{6} - 6 q^{7} + 36 q^{8} + 423 q^{9} + 86 q^{11} - 10 q^{12} - 13 q^{13} - 154 q^{14} + 770 q^{16} + 64 q^{17} + 256 q^{18} - 10 q^{19} - 28 q^{21} + 8 q^{22}+ \cdots + 6262 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(325))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 13
325.4.a.a 325.a 1.a $1$ $19.176$ \(\Q\) None 65.4.a.a \(-5\) \(-2\) \(0\) \(12\) $+$ $-$ $\mathrm{SU}(2)$ \(q-5q^{2}-2q^{3}+17q^{4}+10q^{6}+12q^{7}+\cdots\)
325.4.a.b 325.a 1.a $1$ $19.176$ \(\Q\) None 65.4.b.a \(-3\) \(-4\) \(0\) \(28\) $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{2}-4q^{3}+q^{4}+12q^{6}+28q^{7}+\cdots\)
325.4.a.c 325.a 1.a $1$ $19.176$ \(\Q\) None 65.4.b.a \(3\) \(4\) \(0\) \(-28\) $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{2}+4q^{3}+q^{4}+12q^{6}-28q^{7}+\cdots\)
325.4.a.d 325.a 1.a $1$ $19.176$ \(\Q\) None 13.4.a.a \(5\) \(7\) \(0\) \(13\) $+$ $+$ $\mathrm{SU}(2)$ \(q+5q^{2}+7q^{3}+17q^{4}+35q^{6}+13q^{7}+\cdots\)
325.4.a.e 325.a 1.a $2$ $19.176$ \(\Q(\sqrt{3}) \) None 65.4.a.d \(-4\) \(10\) \(0\) \(36\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-2+\beta )q^{2}+(5-3\beta )q^{3}+(-1-4\beta )q^{4}+\cdots\)
325.4.a.f 325.a 1.a $2$ $19.176$ \(\Q(\sqrt{17}) \) None 13.4.a.b \(-1\) \(-5\) \(0\) \(9\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(-4+3\beta )q^{3}+(-4+\beta )q^{4}+\cdots\)
325.4.a.g 325.a 1.a $2$ $19.176$ \(\Q(\sqrt{17}) \) None 65.4.a.c \(-1\) \(0\) \(0\) \(-58\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+(2-4\beta )q^{3}+(-4+\beta )q^{4}+\cdots\)
325.4.a.h 325.a 1.a $2$ $19.176$ \(\Q(\sqrt{6}) \) None 65.4.a.b \(2\) \(4\) \(0\) \(20\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+(2-\beta )q^{3}+(-1+2\beta )q^{4}+\cdots\)
325.4.a.i 325.a 1.a $5$ $19.176$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 325.4.a.i \(-1\) \(-1\) \(0\) \(-26\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(\beta _{1}+\beta _{2})q^{3}+(5+\beta _{2}+\beta _{3}+\cdots)q^{4}+\cdots\)
325.4.a.j 325.a 1.a $5$ $19.176$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 65.4.a.e \(0\) \(-8\) \(0\) \(-38\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-2-\beta _{1}-\beta _{3})q^{3}+(7-\beta _{2}+\cdots)q^{4}+\cdots\)
325.4.a.k 325.a 1.a $5$ $19.176$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 325.4.a.i \(1\) \(1\) \(0\) \(26\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-\beta _{1}-\beta _{2})q^{3}+(5+\beta _{2}+\cdots)q^{4}+\cdots\)
325.4.a.l 325.a 1.a $7$ $19.176$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 325.4.a.l \(-1\) \(-1\) \(0\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-\beta _{1}+\beta _{3})q^{3}+(7+\beta _{2}+\cdots)q^{4}+\cdots\)
325.4.a.m 325.a 1.a $7$ $19.176$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 325.4.a.l \(1\) \(1\) \(0\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{3})q^{3}+(7+\beta _{2})q^{4}+\cdots\)
325.4.a.n 325.a 1.a $8$ $19.176$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 65.4.b.b \(-9\) \(-16\) \(0\) \(-12\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{2}+(-2-\beta _{3})q^{3}+(4+\cdots)q^{4}+\cdots\)
325.4.a.o 325.a 1.a $8$ $19.176$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 65.4.b.b \(9\) \(16\) \(0\) \(12\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{2}+(2+\beta _{3})q^{3}+(4+\beta _{1}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(325))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(325)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 2}\)