Defining parameters
Level: | \( N \) | \(=\) | \( 325 = 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 325.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 15 \) | ||
Sturm bound: | \(140\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(325))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 112 | 57 | 55 |
Cusp forms | 100 | 57 | 43 |
Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||
\(+\) | \(+\) | \(+\) | \(30\) | \(15\) | \(15\) | \(27\) | \(15\) | \(12\) | \(3\) | \(0\) | \(3\) | |||
\(+\) | \(-\) | \(-\) | \(27\) | \(12\) | \(15\) | \(24\) | \(12\) | \(12\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(+\) | \(-\) | \(26\) | \(14\) | \(12\) | \(23\) | \(14\) | \(9\) | \(3\) | \(0\) | \(3\) | |||
\(-\) | \(-\) | \(+\) | \(29\) | \(16\) | \(13\) | \(26\) | \(16\) | \(10\) | \(3\) | \(0\) | \(3\) | |||
Plus space | \(+\) | \(59\) | \(31\) | \(28\) | \(53\) | \(31\) | \(22\) | \(6\) | \(0\) | \(6\) | ||||
Minus space | \(-\) | \(53\) | \(26\) | \(27\) | \(47\) | \(26\) | \(21\) | \(6\) | \(0\) | \(6\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(325))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(325))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(325)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 2}\)