Properties

Label 2-325-1.1-c3-0-45
Degree $2$
Conductor $325$
Sign $-1$
Analytic cond. $19.1756$
Root an. cond. $4.37899$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.06·2-s − 8.01·3-s + 8.48·4-s − 32.5·6-s + 18.3·7-s + 1.97·8-s + 37.2·9-s − 21.1·11-s − 68.0·12-s − 13·13-s + 74.5·14-s − 59.8·16-s + 1.67·17-s + 151.·18-s − 129.·19-s − 147.·21-s − 86.0·22-s + 8.41·23-s − 15.8·24-s − 52.7·26-s − 81.7·27-s + 155.·28-s − 138.·29-s − 203.·31-s − 258.·32-s + 169.·33-s + 6.81·34-s + ⋯
L(s)  = 1  + 1.43·2-s − 1.54·3-s + 1.06·4-s − 2.21·6-s + 0.991·7-s + 0.0875·8-s + 1.37·9-s − 0.580·11-s − 1.63·12-s − 0.277·13-s + 1.42·14-s − 0.935·16-s + 0.0239·17-s + 1.97·18-s − 1.56·19-s − 1.52·21-s − 0.833·22-s + 0.0762·23-s − 0.134·24-s − 0.398·26-s − 0.582·27-s + 1.05·28-s − 0.885·29-s − 1.18·31-s − 1.43·32-s + 0.895·33-s + 0.0343·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(325\)    =    \(5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(19.1756\)
Root analytic conductor: \(4.37899\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 325,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 + 13T \)
good2 \( 1 - 4.06T + 8T^{2} \)
3 \( 1 + 8.01T + 27T^{2} \)
7 \( 1 - 18.3T + 343T^{2} \)
11 \( 1 + 21.1T + 1.33e3T^{2} \)
17 \( 1 - 1.67T + 4.91e3T^{2} \)
19 \( 1 + 129.T + 6.85e3T^{2} \)
23 \( 1 - 8.41T + 1.21e4T^{2} \)
29 \( 1 + 138.T + 2.43e4T^{2} \)
31 \( 1 + 203.T + 2.97e4T^{2} \)
37 \( 1 + 376.T + 5.06e4T^{2} \)
41 \( 1 - 62.4T + 6.89e4T^{2} \)
43 \( 1 + 355.T + 7.95e4T^{2} \)
47 \( 1 - 600.T + 1.03e5T^{2} \)
53 \( 1 - 192.T + 1.48e5T^{2} \)
59 \( 1 + 661.T + 2.05e5T^{2} \)
61 \( 1 - 770.T + 2.26e5T^{2} \)
67 \( 1 - 821.T + 3.00e5T^{2} \)
71 \( 1 + 866.T + 3.57e5T^{2} \)
73 \( 1 - 227.T + 3.89e5T^{2} \)
79 \( 1 + 3.26T + 4.93e5T^{2} \)
83 \( 1 - 316.T + 5.71e5T^{2} \)
89 \( 1 - 1.13e3T + 7.04e5T^{2} \)
97 \( 1 - 658.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.03919959852629740985523475111, −10.43157907737840636630389710310, −8.770973027563245724278012658153, −7.33904856017782299591957543020, −6.35372267632795843402176668502, −5.40125690212375621146169939003, −4.93390160190217179013931131770, −3.89884063465540720468199989247, −2.04198384812628974837077522805, 0, 2.04198384812628974837077522805, 3.89884063465540720468199989247, 4.93390160190217179013931131770, 5.40125690212375621146169939003, 6.35372267632795843402176668502, 7.33904856017782299591957543020, 8.770973027563245724278012658153, 10.43157907737840636630389710310, 11.03919959852629740985523475111

Graph of the $Z$-function along the critical line