Properties

Label 325.3.w.e.24.5
Level $325$
Weight $3$
Character 325.24
Analytic conductor $8.856$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,3,Mod(24,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 325.w (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.85560859171\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 24.5
Character \(\chi\) \(=\) 325.24
Dual form 325.3.w.e.149.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.401493 - 0.107580i) q^{2} +(3.61165 - 2.08519i) q^{3} +(-3.31448 - 1.91361i) q^{4} +(-1.67438 + 0.448649i) q^{6} +(-10.0361 + 2.68917i) q^{7} +(2.30053 + 2.30053i) q^{8} +(4.19603 - 7.26773i) q^{9} +(-4.73818 - 1.26959i) q^{11} -15.9610 q^{12} +(-10.5948 + 7.53326i) q^{13} +4.31874 q^{14} +(6.97830 + 12.0868i) q^{16} +(11.0538 - 19.1458i) q^{17} +(-2.46654 + 2.46654i) q^{18} +(-33.5167 + 8.98078i) q^{19} +(-30.6396 + 30.6396i) q^{21} +(1.76576 + 1.01946i) q^{22} +(-15.9694 - 27.6598i) q^{23} +(13.1058 + 3.51168i) q^{24} +(5.06417 - 1.88476i) q^{26} +2.53538i q^{27} +(38.4106 + 10.2921i) q^{28} +(13.5241 + 23.4245i) q^{29} +(9.08360 + 9.08360i) q^{31} +(-4.86966 - 18.1738i) q^{32} +(-19.7600 + 5.29467i) q^{33} +(-6.49775 + 6.49775i) q^{34} +(-27.8153 + 16.0592i) q^{36} +(3.85300 - 14.3796i) q^{37} +14.4229 q^{38} +(-22.5565 + 49.2997i) q^{39} +(-3.69614 + 13.7942i) q^{41} +(15.5978 - 9.00539i) q^{42} +(2.96708 - 5.13914i) q^{43} +(13.2751 + 13.2751i) q^{44} +(3.43597 + 12.8232i) q^{46} +(-33.5097 - 33.5097i) q^{47} +(50.4064 + 29.1022i) q^{48} +(51.0571 - 29.4778i) q^{49} -92.1974i q^{51} +(49.5320 - 4.69442i) q^{52} -33.8049i q^{53} +(0.272755 - 1.01794i) q^{54} +(-29.2749 - 16.9019i) q^{56} +(-102.324 + 102.324i) q^{57} +(-2.90985 - 10.8597i) q^{58} +(-9.82174 - 36.6552i) q^{59} +(-9.55739 + 16.5539i) q^{61} +(-2.66979 - 4.62422i) q^{62} +(-22.5677 + 84.2237i) q^{63} -48.0059i q^{64} +8.50311 q^{66} +(-43.6377 - 11.6927i) q^{67} +(-73.2755 + 42.3056i) q^{68} +(-115.352 - 66.5984i) q^{69} +(-63.4555 + 17.0028i) q^{71} +(26.3727 - 7.06654i) q^{72} +(-55.4200 - 55.4200i) q^{73} +(-3.09391 + 5.35881i) q^{74} +(128.276 + 34.3715i) q^{76} +50.9671 q^{77} +(14.3600 - 17.3669i) q^{78} -71.0406 q^{79} +(43.0510 + 74.5665i) q^{81} +(2.96795 - 5.14064i) q^{82} +(54.0196 - 54.0196i) q^{83} +(160.187 - 42.9219i) q^{84} +(-1.74413 + 1.74413i) q^{86} +(97.6891 + 56.4008i) q^{87} +(-7.97958 - 13.8210i) q^{88} +(66.8590 + 17.9148i) q^{89} +(86.0727 - 104.096i) q^{91} +122.237i q^{92} +(51.7478 + 13.8658i) q^{93} +(9.84896 + 17.0589i) q^{94} +(-55.4833 - 55.4833i) q^{96} +(-14.8307 - 55.3488i) q^{97} +(-23.6703 + 6.34244i) q^{98} +(-29.1086 + 29.1086i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 12 q^{3} - 12 q^{6} - 44 q^{7} + 36 q^{8} + 72 q^{9} - 12 q^{11} + 120 q^{12} - 36 q^{13} - 48 q^{14} + 128 q^{16} - 32 q^{17} + 136 q^{18} - 68 q^{19} - 48 q^{21} - 72 q^{22} - 28 q^{23} + 56 q^{24}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.401493 0.107580i −0.200747 0.0537899i 0.157045 0.987592i \(-0.449803\pi\)
−0.357791 + 0.933802i \(0.616470\pi\)
\(3\) 3.61165 2.08519i 1.20388 0.695063i 0.242468 0.970159i \(-0.422043\pi\)
0.961417 + 0.275096i \(0.0887098\pi\)
\(4\) −3.31448 1.91361i −0.828620 0.478404i
\(5\) 0 0
\(6\) −1.67438 + 0.448649i −0.279063 + 0.0747748i
\(7\) −10.0361 + 2.68917i −1.43373 + 0.384168i −0.890335 0.455307i \(-0.849530\pi\)
−0.543399 + 0.839475i \(0.682863\pi\)
\(8\) 2.30053 + 2.30053i 0.287566 + 0.287566i
\(9\) 4.19603 7.26773i 0.466225 0.807526i
\(10\) 0 0
\(11\) −4.73818 1.26959i −0.430743 0.115417i 0.0369317 0.999318i \(-0.488242\pi\)
−0.467675 + 0.883900i \(0.654908\pi\)
\(12\) −15.9610 −1.33008
\(13\) −10.5948 + 7.53326i −0.814986 + 0.579481i
\(14\) 4.31874 0.308482
\(15\) 0 0
\(16\) 6.97830 + 12.0868i 0.436144 + 0.755423i
\(17\) 11.0538 19.1458i 0.650226 1.12622i −0.332842 0.942983i \(-0.608007\pi\)
0.983068 0.183242i \(-0.0586592\pi\)
\(18\) −2.46654 + 2.46654i −0.137030 + 0.137030i
\(19\) −33.5167 + 8.98078i −1.76404 + 0.472672i −0.987529 0.157435i \(-0.949678\pi\)
−0.776508 + 0.630107i \(0.783011\pi\)
\(20\) 0 0
\(21\) −30.6396 + 30.6396i −1.45903 + 1.45903i
\(22\) 1.76576 + 1.01946i 0.0802620 + 0.0463393i
\(23\) −15.9694 27.6598i −0.694321 1.20260i −0.970409 0.241467i \(-0.922372\pi\)
0.276088 0.961132i \(-0.410962\pi\)
\(24\) 13.1058 + 3.51168i 0.546073 + 0.146320i
\(25\) 0 0
\(26\) 5.06417 1.88476i 0.194776 0.0724909i
\(27\) 2.53538i 0.0939028i
\(28\) 38.4106 + 10.2921i 1.37181 + 0.367574i
\(29\) 13.5241 + 23.4245i 0.466350 + 0.807742i 0.999261 0.0384292i \(-0.0122354\pi\)
−0.532911 + 0.846171i \(0.678902\pi\)
\(30\) 0 0
\(31\) 9.08360 + 9.08360i 0.293019 + 0.293019i 0.838272 0.545253i \(-0.183566\pi\)
−0.545253 + 0.838272i \(0.683566\pi\)
\(32\) −4.86966 18.1738i −0.152177 0.567932i
\(33\) −19.7600 + 5.29467i −0.598788 + 0.160445i
\(34\) −6.49775 + 6.49775i −0.191110 + 0.191110i
\(35\) 0 0
\(36\) −27.8153 + 16.0592i −0.772646 + 0.446088i
\(37\) 3.85300 14.3796i 0.104135 0.388638i −0.894110 0.447846i \(-0.852191\pi\)
0.998246 + 0.0592089i \(0.0188578\pi\)
\(38\) 14.4229 0.379550
\(39\) −22.5565 + 49.2997i −0.578373 + 1.26409i
\(40\) 0 0
\(41\) −3.69614 + 13.7942i −0.0901497 + 0.336443i −0.996240 0.0866421i \(-0.972386\pi\)
0.906090 + 0.423085i \(0.139053\pi\)
\(42\) 15.5978 9.00539i 0.371376 0.214414i
\(43\) 2.96708 5.13914i 0.0690019 0.119515i −0.829460 0.558566i \(-0.811352\pi\)
0.898462 + 0.439051i \(0.144685\pi\)
\(44\) 13.2751 + 13.2751i 0.301706 + 0.301706i
\(45\) 0 0
\(46\) 3.43597 + 12.8232i 0.0746949 + 0.278765i
\(47\) −33.5097 33.5097i −0.712973 0.712973i 0.254183 0.967156i \(-0.418193\pi\)
−0.967156 + 0.254183i \(0.918193\pi\)
\(48\) 50.4064 + 29.1022i 1.05013 + 0.606295i
\(49\) 51.0571 29.4778i 1.04198 0.601588i
\(50\) 0 0
\(51\) 92.1974i 1.80779i
\(52\) 49.5320 4.69442i 0.952539 0.0902772i
\(53\) 33.8049i 0.637829i −0.947784 0.318914i \(-0.896682\pi\)
0.947784 0.318914i \(-0.103318\pi\)
\(54\) 0.272755 1.01794i 0.00505102 0.0188507i
\(55\) 0 0
\(56\) −29.2749 16.9019i −0.522767 0.301820i
\(57\) −102.324 + 102.324i −1.79516 + 1.79516i
\(58\) −2.90985 10.8597i −0.0501699 0.187236i
\(59\) −9.82174 36.6552i −0.166470 0.621275i −0.997848 0.0655678i \(-0.979114\pi\)
0.831378 0.555707i \(-0.187553\pi\)
\(60\) 0 0
\(61\) −9.55739 + 16.5539i −0.156678 + 0.271375i −0.933669 0.358137i \(-0.883412\pi\)
0.776990 + 0.629512i \(0.216745\pi\)
\(62\) −2.66979 4.62422i −0.0430612 0.0745841i
\(63\) −22.5677 + 84.2237i −0.358217 + 1.33688i
\(64\) 48.0059i 0.750092i
\(65\) 0 0
\(66\) 8.50311 0.128835
\(67\) −43.6377 11.6927i −0.651308 0.174518i −0.0819881 0.996633i \(-0.526127\pi\)
−0.569320 + 0.822116i \(0.692794\pi\)
\(68\) −73.2755 + 42.3056i −1.07758 + 0.622141i
\(69\) −115.352 66.5984i −1.67176 0.965193i
\(70\) 0 0
\(71\) −63.4555 + 17.0028i −0.893739 + 0.239477i −0.676325 0.736603i \(-0.736429\pi\)
−0.217414 + 0.976080i \(0.569762\pi\)
\(72\) 26.3727 7.06654i 0.366288 0.0981465i
\(73\) −55.4200 55.4200i −0.759178 0.759178i 0.216995 0.976173i \(-0.430375\pi\)
−0.976173 + 0.216995i \(0.930375\pi\)
\(74\) −3.09391 + 5.35881i −0.0418096 + 0.0724163i
\(75\) 0 0
\(76\) 128.276 + 34.3715i 1.68784 + 0.452257i
\(77\) 50.9671 0.661911
\(78\) 14.3600 17.3669i 0.184102 0.222652i
\(79\) −71.0406 −0.899249 −0.449624 0.893218i \(-0.648442\pi\)
−0.449624 + 0.893218i \(0.648442\pi\)
\(80\) 0 0
\(81\) 43.0510 + 74.5665i 0.531493 + 0.920574i
\(82\) 2.96795 5.14064i 0.0361945 0.0626908i
\(83\) 54.0196 54.0196i 0.650839 0.650839i −0.302356 0.953195i \(-0.597773\pi\)
0.953195 + 0.302356i \(0.0977732\pi\)
\(84\) 160.187 42.9219i 1.90698 0.510975i
\(85\) 0 0
\(86\) −1.74413 + 1.74413i −0.0202806 + 0.0202806i
\(87\) 97.6891 + 56.4008i 1.12286 + 0.648285i
\(88\) −7.97958 13.8210i −0.0906771 0.157057i
\(89\) 66.8590 + 17.9148i 0.751225 + 0.201290i 0.614061 0.789258i \(-0.289535\pi\)
0.137164 + 0.990548i \(0.456201\pi\)
\(90\) 0 0
\(91\) 86.0727 104.096i 0.945854 1.14391i
\(92\) 122.237i 1.32866i
\(93\) 51.7478 + 13.8658i 0.556428 + 0.149094i
\(94\) 9.84896 + 17.0589i 0.104776 + 0.181478i
\(95\) 0 0
\(96\) −55.4833 55.4833i −0.577951 0.577951i
\(97\) −14.8307 55.3488i −0.152893 0.570606i −0.999277 0.0380317i \(-0.987891\pi\)
0.846383 0.532575i \(-0.178775\pi\)
\(98\) −23.6703 + 6.34244i −0.241534 + 0.0647188i
\(99\) −29.1086 + 29.1086i −0.294026 + 0.294026i
\(100\) 0 0
\(101\) 93.0587 53.7275i 0.921374 0.531955i 0.0373006 0.999304i \(-0.488124\pi\)
0.884073 + 0.467349i \(0.154791\pi\)
\(102\) −9.91859 + 37.0167i −0.0972410 + 0.362908i
\(103\) −67.5550 −0.655873 −0.327937 0.944700i \(-0.606353\pi\)
−0.327937 + 0.944700i \(0.606353\pi\)
\(104\) −41.7042 7.04320i −0.401001 0.0677231i
\(105\) 0 0
\(106\) −3.63673 + 13.5725i −0.0343088 + 0.128042i
\(107\) 139.927 80.7868i 1.30773 0.755017i 0.326012 0.945366i \(-0.394295\pi\)
0.981717 + 0.190349i \(0.0609618\pi\)
\(108\) 4.85173 8.40345i 0.0449234 0.0778097i
\(109\) 38.4204 + 38.4204i 0.352481 + 0.352481i 0.861032 0.508551i \(-0.169819\pi\)
−0.508551 + 0.861032i \(0.669819\pi\)
\(110\) 0 0
\(111\) −16.0685 59.9683i −0.144761 0.540255i
\(112\) −102.539 102.539i −0.915523 0.915523i
\(113\) −76.7296 44.2999i −0.679023 0.392034i 0.120464 0.992718i \(-0.461562\pi\)
−0.799487 + 0.600684i \(0.794895\pi\)
\(114\) 52.0905 30.0745i 0.456934 0.263811i
\(115\) 0 0
\(116\) 103.520i 0.892414i
\(117\) 10.2936 + 108.610i 0.0879791 + 0.928290i
\(118\) 15.7735i 0.133673i
\(119\) −59.4514 + 221.876i −0.499592 + 1.86450i
\(120\) 0 0
\(121\) −83.9506 48.4689i −0.693807 0.400569i
\(122\) 5.61809 5.61809i 0.0460499 0.0460499i
\(123\) 15.4143 + 57.5269i 0.125319 + 0.467699i
\(124\) −12.7249 47.4899i −0.102620 0.382983i
\(125\) 0 0
\(126\) 18.1216 31.3875i 0.143822 0.249107i
\(127\) 76.9754 + 133.325i 0.606105 + 1.04981i 0.991876 + 0.127210i \(0.0406024\pi\)
−0.385770 + 0.922595i \(0.626064\pi\)
\(128\) −24.6431 + 91.9693i −0.192524 + 0.718510i
\(129\) 24.7477i 0.191843i
\(130\) 0 0
\(131\) 144.341 1.10184 0.550919 0.834559i \(-0.314277\pi\)
0.550919 + 0.834559i \(0.314277\pi\)
\(132\) 75.6260 + 20.2639i 0.572924 + 0.153515i
\(133\) 312.227 180.265i 2.34757 1.35537i
\(134\) 16.2623 + 9.38907i 0.121361 + 0.0700677i
\(135\) 0 0
\(136\) 69.4752 18.6158i 0.510847 0.136881i
\(137\) 91.9804 24.6461i 0.671390 0.179898i 0.0930090 0.995665i \(-0.470351\pi\)
0.578381 + 0.815767i \(0.303685\pi\)
\(138\) 39.1483 + 39.1483i 0.283683 + 0.283683i
\(139\) 40.5417 70.2202i 0.291667 0.505182i −0.682537 0.730851i \(-0.739124\pi\)
0.974204 + 0.225669i \(0.0724568\pi\)
\(140\) 0 0
\(141\) −190.900 51.1514i −1.35390 0.362776i
\(142\) 27.3061 0.192297
\(143\) 59.7643 22.2428i 0.417932 0.155544i
\(144\) 117.125 0.813365
\(145\) 0 0
\(146\) 16.2887 + 28.2128i 0.111566 + 0.193239i
\(147\) 122.934 212.927i 0.836283 1.44849i
\(148\) −40.2877 + 40.2877i −0.272214 + 0.272214i
\(149\) 5.37626 1.44056i 0.0360823 0.00966821i −0.240733 0.970591i \(-0.577388\pi\)
0.276815 + 0.960923i \(0.410721\pi\)
\(150\) 0 0
\(151\) −139.922 + 139.922i −0.926637 + 0.926637i −0.997487 0.0708501i \(-0.977429\pi\)
0.0708501 + 0.997487i \(0.477429\pi\)
\(152\) −97.7667 56.4456i −0.643202 0.371353i
\(153\) −92.7644 160.673i −0.606304 1.05015i
\(154\) −20.4630 5.48304i −0.132876 0.0356041i
\(155\) 0 0
\(156\) 169.104 120.238i 1.08400 0.770758i
\(157\) 18.3651i 0.116975i 0.998288 + 0.0584877i \(0.0186278\pi\)
−0.998288 + 0.0584877i \(0.981372\pi\)
\(158\) 28.5224 + 7.64254i 0.180521 + 0.0483705i
\(159\) −70.4897 122.092i −0.443331 0.767872i
\(160\) 0 0
\(161\) 234.653 + 234.653i 1.45747 + 1.45747i
\(162\) −9.26283 34.5694i −0.0571780 0.213391i
\(163\) 61.7407 16.5434i 0.378777 0.101493i −0.0644066 0.997924i \(-0.520515\pi\)
0.443184 + 0.896431i \(0.353849\pi\)
\(164\) 38.6475 38.6475i 0.235656 0.235656i
\(165\) 0 0
\(166\) −27.5000 + 15.8771i −0.165662 + 0.0956452i
\(167\) −66.9870 + 249.999i −0.401120 + 1.49700i 0.409981 + 0.912094i \(0.365535\pi\)
−0.811101 + 0.584906i \(0.801131\pi\)
\(168\) −140.975 −0.839134
\(169\) 55.5001 159.627i 0.328403 0.944538i
\(170\) 0 0
\(171\) −75.3671 + 281.274i −0.440744 + 1.64488i
\(172\) −19.6687 + 11.3557i −0.114353 + 0.0660215i
\(173\) −141.601 + 245.260i −0.818503 + 1.41769i 0.0882824 + 0.996095i \(0.471862\pi\)
−0.906785 + 0.421593i \(0.861471\pi\)
\(174\) −33.1539 33.1539i −0.190540 0.190540i
\(175\) 0 0
\(176\) −17.7192 66.1289i −0.100677 0.375732i
\(177\) −111.906 111.906i −0.632236 0.632236i
\(178\) −24.9162 14.3854i −0.139979 0.0808167i
\(179\) −271.813 + 156.932i −1.51851 + 0.876713i −0.518748 + 0.854927i \(0.673602\pi\)
−0.999763 + 0.0217855i \(0.993065\pi\)
\(180\) 0 0
\(181\) 296.950i 1.64061i −0.571928 0.820304i \(-0.693804\pi\)
0.571928 0.820304i \(-0.306196\pi\)
\(182\) −45.7563 + 32.5342i −0.251408 + 0.178759i
\(183\) 79.7158i 0.435606i
\(184\) 26.8941 100.370i 0.146164 0.545490i
\(185\) 0 0
\(186\) −19.2847 11.1340i −0.103681 0.0598604i
\(187\) −76.6824 + 76.6824i −0.410067 + 0.410067i
\(188\) 46.9425 + 175.192i 0.249694 + 0.931872i
\(189\) −6.81807 25.4454i −0.0360744 0.134632i
\(190\) 0 0
\(191\) −156.806 + 271.595i −0.820972 + 1.42197i 0.0839866 + 0.996467i \(0.473235\pi\)
−0.904959 + 0.425499i \(0.860099\pi\)
\(192\) −100.101 173.381i −0.521361 0.903024i
\(193\) 23.3090 86.9902i 0.120772 0.450726i −0.878882 0.477039i \(-0.841710\pi\)
0.999654 + 0.0263129i \(0.00837662\pi\)
\(194\) 23.8177i 0.122771i
\(195\) 0 0
\(196\) −225.637 −1.15121
\(197\) −40.1857 10.7677i −0.203989 0.0546586i 0.155378 0.987855i \(-0.450340\pi\)
−0.359366 + 0.933197i \(0.617007\pi\)
\(198\) 14.8184 8.55540i 0.0748403 0.0432091i
\(199\) 108.739 + 62.7807i 0.546429 + 0.315481i 0.747681 0.664059i \(-0.231167\pi\)
−0.201251 + 0.979540i \(0.564501\pi\)
\(200\) 0 0
\(201\) −181.986 + 48.7629i −0.905401 + 0.242601i
\(202\) −43.1425 + 11.5600i −0.213577 + 0.0572277i
\(203\) −198.723 198.723i −0.978930 0.978930i
\(204\) −176.430 + 305.586i −0.864855 + 1.49797i
\(205\) 0 0
\(206\) 27.1229 + 7.26755i 0.131664 + 0.0352794i
\(207\) −268.032 −1.29484
\(208\) −164.987 75.4878i −0.793205 0.362922i
\(209\) 170.210 0.814402
\(210\) 0 0
\(211\) −117.742 203.935i −0.558018 0.966515i −0.997662 0.0683431i \(-0.978229\pi\)
0.439644 0.898172i \(-0.355105\pi\)
\(212\) −64.6896 + 112.046i −0.305140 + 0.528517i
\(213\) −193.725 + 193.725i −0.909507 + 0.909507i
\(214\) −64.8708 + 17.3821i −0.303134 + 0.0812246i
\(215\) 0 0
\(216\) −5.83271 + 5.83271i −0.0270033 + 0.0270033i
\(217\) −115.592 66.7368i −0.532680 0.307543i
\(218\) −11.2923 19.5588i −0.0517995 0.0897193i
\(219\) −315.719 84.5967i −1.44164 0.386286i
\(220\) 0 0
\(221\) 27.1169 + 286.118i 0.122701 + 1.29465i
\(222\) 25.8055i 0.116241i
\(223\) 203.738 + 54.5913i 0.913621 + 0.244804i 0.684857 0.728678i \(-0.259865\pi\)
0.228765 + 0.973482i \(0.426531\pi\)
\(224\) 97.7451 + 169.299i 0.436362 + 0.755801i
\(225\) 0 0
\(226\) 26.0407 + 26.0407i 0.115224 + 0.115224i
\(227\) −26.3713 98.4190i −0.116173 0.433564i 0.883199 0.468999i \(-0.155385\pi\)
−0.999372 + 0.0354349i \(0.988718\pi\)
\(228\) 534.960 143.342i 2.34632 0.628694i
\(229\) −106.435 + 106.435i −0.464784 + 0.464784i −0.900220 0.435436i \(-0.856594\pi\)
0.435436 + 0.900220i \(0.356594\pi\)
\(230\) 0 0
\(231\) 184.076 106.276i 0.796864 0.460070i
\(232\) −22.7761 + 85.0015i −0.0981728 + 0.366386i
\(233\) −339.132 −1.45550 −0.727751 0.685841i \(-0.759434\pi\)
−0.727751 + 0.685841i \(0.759434\pi\)
\(234\) 7.55145 44.7136i 0.0322712 0.191084i
\(235\) 0 0
\(236\) −37.5901 + 140.288i −0.159280 + 0.594441i
\(237\) −256.574 + 148.133i −1.08259 + 0.625034i
\(238\) 47.7387 82.6859i 0.200583 0.347420i
\(239\) 201.648 + 201.648i 0.843716 + 0.843716i 0.989340 0.145624i \(-0.0465189\pi\)
−0.145624 + 0.989340i \(0.546519\pi\)
\(240\) 0 0
\(241\) 70.3423 + 262.521i 0.291877 + 1.08930i 0.943666 + 0.330899i \(0.107352\pi\)
−0.651790 + 0.758400i \(0.725982\pi\)
\(242\) 28.4913 + 28.4913i 0.117733 + 0.117733i
\(243\) 291.209 + 168.130i 1.19839 + 0.691891i
\(244\) 63.3555 36.5783i 0.259654 0.149911i
\(245\) 0 0
\(246\) 24.7550i 0.100630i
\(247\) 287.449 347.640i 1.16376 1.40745i
\(248\) 41.7942i 0.168525i
\(249\) 82.4590 307.741i 0.331161 1.23591i
\(250\) 0 0
\(251\) −215.498 124.418i −0.858560 0.495690i 0.00497011 0.999988i \(-0.498418\pi\)
−0.863530 + 0.504298i \(0.831751\pi\)
\(252\) 235.972 235.972i 0.936396 0.936396i
\(253\) 40.5492 + 151.332i 0.160273 + 0.598148i
\(254\) −16.5620 61.8102i −0.0652047 0.243347i
\(255\) 0 0
\(256\) −76.2237 + 132.023i −0.297749 + 0.515716i
\(257\) −145.517 252.043i −0.566214 0.980712i −0.996936 0.0782267i \(-0.975074\pi\)
0.430721 0.902485i \(-0.358259\pi\)
\(258\) −2.66235 + 9.93604i −0.0103192 + 0.0385118i
\(259\) 154.677i 0.597208i
\(260\) 0 0
\(261\) 226.991 0.869696
\(262\) −57.9519 15.5282i −0.221190 0.0592678i
\(263\) 2.53571 1.46399i 0.00964148 0.00556651i −0.495172 0.868795i \(-0.664895\pi\)
0.504813 + 0.863229i \(0.331561\pi\)
\(264\) −57.6390 33.2779i −0.218329 0.126053i
\(265\) 0 0
\(266\) −144.750 + 38.7857i −0.544173 + 0.145811i
\(267\) 278.827 74.7116i 1.04430 0.279819i
\(268\) 122.261 + 122.261i 0.456197 + 0.456197i
\(269\) −66.7468 + 115.609i −0.248129 + 0.429773i −0.963007 0.269477i \(-0.913149\pi\)
0.714877 + 0.699250i \(0.246482\pi\)
\(270\) 0 0
\(271\) −450.750 120.778i −1.66329 0.445676i −0.699997 0.714145i \(-0.746816\pi\)
−0.963288 + 0.268469i \(0.913482\pi\)
\(272\) 308.548 1.13437
\(273\) 93.8049 555.437i 0.343608 2.03457i
\(274\) −39.5809 −0.144456
\(275\) 0 0
\(276\) 254.887 + 441.478i 0.923504 + 1.59956i
\(277\) −67.7968 + 117.428i −0.244754 + 0.423926i −0.962062 0.272829i \(-0.912041\pi\)
0.717308 + 0.696756i \(0.245374\pi\)
\(278\) −23.8315 + 23.8315i −0.0857248 + 0.0857248i
\(279\) 104.132 27.9021i 0.373233 0.100008i
\(280\) 0 0
\(281\) 354.240 354.240i 1.26064 1.26064i 0.309856 0.950784i \(-0.399719\pi\)
0.950784 0.309856i \(-0.100281\pi\)
\(282\) 71.1421 + 41.0739i 0.252277 + 0.145652i
\(283\) −29.2582 50.6767i −0.103386 0.179070i 0.809692 0.586856i \(-0.199634\pi\)
−0.913078 + 0.407786i \(0.866301\pi\)
\(284\) 242.859 + 65.0738i 0.855136 + 0.229133i
\(285\) 0 0
\(286\) −26.3878 + 2.50092i −0.0922652 + 0.00874447i
\(287\) 148.380i 0.517003i
\(288\) −152.516 40.8664i −0.529568 0.141897i
\(289\) −99.8751 172.989i −0.345588 0.598577i
\(290\) 0 0
\(291\) −168.976 168.976i −0.580673 0.580673i
\(292\) 77.6359 + 289.741i 0.265876 + 0.992264i
\(293\) 4.38016 1.17366i 0.0149493 0.00400566i −0.251337 0.967900i \(-0.580870\pi\)
0.266286 + 0.963894i \(0.414203\pi\)
\(294\) −72.2637 + 72.2637i −0.245795 + 0.245795i
\(295\) 0 0
\(296\) 41.9446 24.2167i 0.141705 0.0818133i
\(297\) 3.21889 12.0131i 0.0108380 0.0404480i
\(298\) −2.31351 −0.00776345
\(299\) 377.561 + 172.749i 1.26275 + 0.577755i
\(300\) 0 0
\(301\) −15.9580 + 59.5561i −0.0530166 + 0.197861i
\(302\) 71.2306 41.1250i 0.235863 0.136176i
\(303\) 224.064 388.090i 0.739485 1.28083i
\(304\) −342.438 342.438i −1.12644 1.12644i
\(305\) 0 0
\(306\) 19.9592 + 74.4886i 0.0652260 + 0.243427i
\(307\) 174.089 + 174.089i 0.567066 + 0.567066i 0.931305 0.364240i \(-0.118671\pi\)
−0.364240 + 0.931305i \(0.618671\pi\)
\(308\) −168.929 97.5315i −0.548472 0.316661i
\(309\) −243.985 + 140.865i −0.789596 + 0.455873i
\(310\) 0 0
\(311\) 162.502i 0.522513i 0.965269 + 0.261256i \(0.0841368\pi\)
−0.965269 + 0.261256i \(0.915863\pi\)
\(312\) −165.307 + 61.5234i −0.529831 + 0.197190i
\(313\) 308.073i 0.984259i 0.870522 + 0.492129i \(0.163781\pi\)
−0.870522 + 0.492129i \(0.836219\pi\)
\(314\) 1.97572 7.37348i 0.00629209 0.0234824i
\(315\) 0 0
\(316\) 235.463 + 135.944i 0.745135 + 0.430204i
\(317\) 32.2149 32.2149i 0.101624 0.101624i −0.654467 0.756091i \(-0.727107\pi\)
0.756091 + 0.654467i \(0.227107\pi\)
\(318\) 15.1665 + 56.6023i 0.0476935 + 0.177995i
\(319\) −34.3403 128.160i −0.107650 0.401754i
\(320\) 0 0
\(321\) 336.912 583.548i 1.04957 1.81791i
\(322\) −68.9676 119.455i −0.214185 0.370980i
\(323\) −198.544 + 740.977i −0.614688 + 2.29405i
\(324\) 329.532i 1.01707i
\(325\) 0 0
\(326\) −26.5682 −0.0814976
\(327\) 218.875 + 58.6474i 0.669343 + 0.179350i
\(328\) −40.2370 + 23.2308i −0.122674 + 0.0708257i
\(329\) 426.421 + 246.195i 1.29611 + 0.748312i
\(330\) 0 0
\(331\) 113.219 30.3370i 0.342053 0.0916527i −0.0837035 0.996491i \(-0.526675\pi\)
0.425756 + 0.904838i \(0.360008\pi\)
\(332\) −282.420 + 75.6741i −0.850662 + 0.227934i
\(333\) −88.3397 88.3397i −0.265284 0.265284i
\(334\) 53.7897 93.1665i 0.161047 0.278942i
\(335\) 0 0
\(336\) −584.146 156.522i −1.73853 0.465838i
\(337\) −244.800 −0.726410 −0.363205 0.931709i \(-0.618318\pi\)
−0.363205 + 0.931709i \(0.618318\pi\)
\(338\) −39.4556 + 58.1184i −0.116732 + 0.171948i
\(339\) −369.494 −1.08995
\(340\) 0 0
\(341\) −31.5072 54.5721i −0.0923966 0.160036i
\(342\) 60.5188 104.822i 0.176956 0.306496i
\(343\) −73.1436 + 73.1436i −0.213247 + 0.213247i
\(344\) 18.6486 4.99688i 0.0542110 0.0145258i
\(345\) 0 0
\(346\) 83.2369 83.2369i 0.240569 0.240569i
\(347\) −58.4467 33.7442i −0.168434 0.0972456i 0.413413 0.910544i \(-0.364337\pi\)
−0.581847 + 0.813298i \(0.697670\pi\)
\(348\) −215.859 373.879i −0.620284 1.07436i
\(349\) 410.314 + 109.943i 1.17568 + 0.315024i 0.793213 0.608944i \(-0.208407\pi\)
0.382471 + 0.923968i \(0.375073\pi\)
\(350\) 0 0
\(351\) −19.0996 26.8618i −0.0544149 0.0765294i
\(352\) 92.2932i 0.262197i
\(353\) 66.0052 + 17.6860i 0.186984 + 0.0501021i 0.351096 0.936340i \(-0.385809\pi\)
−0.164112 + 0.986442i \(0.552476\pi\)
\(354\) 32.8906 + 56.9683i 0.0929114 + 0.160927i
\(355\) 0 0
\(356\) −187.321 187.321i −0.526182 0.526182i
\(357\) 247.935 + 925.306i 0.694496 + 2.59189i
\(358\) 126.014 33.7653i 0.351994 0.0943166i
\(359\) −78.7225 + 78.7225i −0.219283 + 0.219283i −0.808196 0.588913i \(-0.799556\pi\)
0.588913 + 0.808196i \(0.299556\pi\)
\(360\) 0 0
\(361\) 730.081 421.512i 2.02238 1.16762i
\(362\) −31.9458 + 119.223i −0.0882482 + 0.329347i
\(363\) −404.267 −1.11368
\(364\) −484.486 + 180.314i −1.33101 + 0.495368i
\(365\) 0 0
\(366\) 8.57581 32.0054i 0.0234312 0.0874464i
\(367\) −161.382 + 93.1738i −0.439732 + 0.253880i −0.703484 0.710711i \(-0.748373\pi\)
0.263752 + 0.964591i \(0.415040\pi\)
\(368\) 222.878 386.037i 0.605648 1.04901i
\(369\) 84.7433 + 84.7433i 0.229657 + 0.229657i
\(370\) 0 0
\(371\) 90.9073 + 339.271i 0.245033 + 0.914476i
\(372\) −144.983 144.983i −0.389740 0.389740i
\(373\) 131.058 + 75.6663i 0.351362 + 0.202859i 0.665285 0.746590i \(-0.268310\pi\)
−0.313923 + 0.949448i \(0.601643\pi\)
\(374\) 39.0370 22.5380i 0.104377 0.0602621i
\(375\) 0 0
\(376\) 154.180i 0.410054i
\(377\) −319.749 146.297i −0.848140 0.388057i
\(378\) 10.9496i 0.0289673i
\(379\) 64.9460 242.382i 0.171362 0.639530i −0.825781 0.563990i \(-0.809265\pi\)
0.997143 0.0755394i \(-0.0240679\pi\)
\(380\) 0 0
\(381\) 556.017 + 321.016i 1.45936 + 0.842563i
\(382\) 92.1747 92.1747i 0.241295 0.241295i
\(383\) 9.26704 + 34.5851i 0.0241959 + 0.0903004i 0.976968 0.213386i \(-0.0684492\pi\)
−0.952772 + 0.303686i \(0.901782\pi\)
\(384\) 102.771 + 383.547i 0.267633 + 0.998819i
\(385\) 0 0
\(386\) −18.7168 + 32.4184i −0.0484891 + 0.0839855i
\(387\) −24.8999 43.1279i −0.0643409 0.111442i
\(388\) −56.7604 + 211.833i −0.146290 + 0.545960i
\(389\) 38.2987i 0.0984543i 0.998788 + 0.0492271i \(0.0156758\pi\)
−0.998788 + 0.0492271i \(0.984324\pi\)
\(390\) 0 0
\(391\) −706.092 −1.80586
\(392\) 185.273 + 49.6437i 0.472635 + 0.126642i
\(393\) 521.309 300.978i 1.32649 0.765847i
\(394\) 14.9759 + 8.64635i 0.0380099 + 0.0219451i
\(395\) 0 0
\(396\) 152.182 40.7771i 0.384299 0.102972i
\(397\) 160.341 42.9634i 0.403883 0.108220i −0.0511582 0.998691i \(-0.516291\pi\)
0.455041 + 0.890471i \(0.349625\pi\)
\(398\) −36.9042 36.9042i −0.0927242 0.0927242i
\(399\) 751.771 1302.11i 1.88414 3.26342i
\(400\) 0 0
\(401\) −94.1630 25.2309i −0.234820 0.0629199i 0.139490 0.990224i \(-0.455454\pi\)
−0.374310 + 0.927304i \(0.622120\pi\)
\(402\) 78.3119 0.194806
\(403\) −164.668 27.8100i −0.408606 0.0690073i
\(404\) −411.255 −1.01796
\(405\) 0 0
\(406\) 58.4073 + 101.164i 0.143860 + 0.249174i
\(407\) −36.5124 + 63.2413i −0.0897110 + 0.155384i
\(408\) 212.103 212.103i 0.519860 0.519860i
\(409\) −647.053 + 173.377i −1.58204 + 0.423905i −0.939556 0.342396i \(-0.888762\pi\)
−0.642481 + 0.766302i \(0.722095\pi\)
\(410\) 0 0
\(411\) 280.810 280.810i 0.683235 0.683235i
\(412\) 223.909 + 129.274i 0.543470 + 0.313772i
\(413\) 197.145 + 341.464i 0.477348 + 0.826790i
\(414\) 107.613 + 28.8348i 0.259935 + 0.0696493i
\(415\) 0 0
\(416\) 188.501 + 155.864i 0.453128 + 0.374672i
\(417\) 338.148i 0.810907i
\(418\) −68.3382 18.3112i −0.163489 0.0438066i
\(419\) −335.215 580.610i −0.800036 1.38570i −0.919592 0.392876i \(-0.871480\pi\)
0.119556 0.992827i \(-0.461853\pi\)
\(420\) 0 0
\(421\) 3.39650 + 3.39650i 0.00806769 + 0.00806769i 0.711129 0.703061i \(-0.248184\pi\)
−0.703061 + 0.711129i \(0.748184\pi\)
\(422\) 25.3333 + 94.5451i 0.0600315 + 0.224040i
\(423\) −384.147 + 102.932i −0.908149 + 0.243338i
\(424\) 77.7692 77.7692i 0.183418 0.183418i
\(425\) 0 0
\(426\) 98.6202 56.9384i 0.231503 0.133658i
\(427\) 51.4029 191.838i 0.120382 0.449270i
\(428\) −618.380 −1.44481
\(429\) 169.467 204.953i 0.395029 0.477746i
\(430\) 0 0
\(431\) 80.5022 300.438i 0.186780 0.697072i −0.807462 0.589919i \(-0.799160\pi\)
0.994242 0.107154i \(-0.0341736\pi\)
\(432\) −30.6445 + 17.6926i −0.0709364 + 0.0409551i
\(433\) −135.494 + 234.682i −0.312919 + 0.541992i −0.978993 0.203894i \(-0.934640\pi\)
0.666074 + 0.745886i \(0.267974\pi\)
\(434\) 39.2297 + 39.2297i 0.0903910 + 0.0903910i
\(435\) 0 0
\(436\) −53.8217 200.865i −0.123444 0.460701i
\(437\) 783.647 + 783.647i 1.79324 + 1.79324i
\(438\) 117.658 + 67.9300i 0.268626 + 0.155091i
\(439\) 387.868 223.936i 0.883526 0.510104i 0.0117065 0.999931i \(-0.496274\pi\)
0.871819 + 0.489828i \(0.162940\pi\)
\(440\) 0 0
\(441\) 494.759i 1.12190i
\(442\) 19.8932 117.792i 0.0450073 0.266497i
\(443\) 481.226i 1.08629i −0.839640 0.543144i \(-0.817234\pi\)
0.839640 0.543144i \(-0.182766\pi\)
\(444\) −61.4977 + 229.513i −0.138508 + 0.516920i
\(445\) 0 0
\(446\) −75.9264 43.8361i −0.170239 0.0982873i
\(447\) 16.4133 16.4133i 0.0367188 0.0367188i
\(448\) 129.096 + 481.793i 0.288161 + 1.07543i
\(449\) 179.105 + 668.430i 0.398898 + 1.48871i 0.815038 + 0.579408i \(0.196716\pi\)
−0.416139 + 0.909301i \(0.636617\pi\)
\(450\) 0 0
\(451\) 35.0259 60.6667i 0.0776628 0.134516i
\(452\) 169.546 + 293.662i 0.375101 + 0.649694i
\(453\) −213.586 + 797.114i −0.471493 + 1.75963i
\(454\) 42.3516i 0.0932854i
\(455\) 0 0
\(456\) −470.799 −1.03245
\(457\) 645.616 + 172.992i 1.41273 + 0.378539i 0.882897 0.469566i \(-0.155590\pi\)
0.529828 + 0.848105i \(0.322256\pi\)
\(458\) 54.1835 31.2828i 0.118305 0.0683031i
\(459\) 48.5419 + 28.0257i 0.105756 + 0.0610581i
\(460\) 0 0
\(461\) −554.352 + 148.538i −1.20250 + 0.322209i −0.803815 0.594879i \(-0.797200\pi\)
−0.398685 + 0.917088i \(0.630533\pi\)
\(462\) −85.3383 + 22.8663i −0.184715 + 0.0494942i
\(463\) −490.567 490.567i −1.05954 1.05954i −0.998111 0.0614296i \(-0.980434\pi\)
−0.0614296 0.998111i \(-0.519566\pi\)
\(464\) −188.751 + 326.927i −0.406791 + 0.704583i
\(465\) 0 0
\(466\) 136.159 + 36.4838i 0.292187 + 0.0782913i
\(467\) −660.630 −1.41463 −0.707313 0.706901i \(-0.750093\pi\)
−0.707313 + 0.706901i \(0.750093\pi\)
\(468\) 173.720 379.683i 0.371196 0.811289i
\(469\) 469.397 1.00085
\(470\) 0 0
\(471\) 38.2948 + 66.3285i 0.0813052 + 0.140825i
\(472\) 61.7312 106.922i 0.130787 0.226529i
\(473\) −20.5832 + 20.5832i −0.0435162 + 0.0435162i
\(474\) 118.949 31.8723i 0.250947 0.0672411i
\(475\) 0 0
\(476\) 621.635 621.635i 1.30596 1.30596i
\(477\) −245.685 141.846i −0.515063 0.297372i
\(478\) −59.2671 102.654i −0.123990 0.214757i
\(479\) 100.331 + 26.8837i 0.209460 + 0.0561246i 0.362023 0.932169i \(-0.382086\pi\)
−0.152563 + 0.988294i \(0.548753\pi\)
\(480\) 0 0
\(481\) 67.5033 + 181.375i 0.140340 + 0.377078i
\(482\) 112.968i 0.234373i
\(483\) 1336.78 + 358.189i 2.76766 + 0.741592i
\(484\) 185.502 + 321.298i 0.383268 + 0.663839i
\(485\) 0 0
\(486\) −98.8312 98.8312i −0.203356 0.203356i
\(487\) −166.791 622.473i −0.342487 1.27818i −0.895521 0.445020i \(-0.853197\pi\)
0.553034 0.833159i \(-0.313470\pi\)
\(488\) −60.0697 + 16.0956i −0.123094 + 0.0329829i
\(489\) 188.490 188.490i 0.385460 0.385460i
\(490\) 0 0
\(491\) −739.050 + 426.691i −1.50519 + 0.869024i −0.505213 + 0.862995i \(0.668586\pi\)
−0.999982 + 0.00602943i \(0.998081\pi\)
\(492\) 58.9941 220.169i 0.119907 0.447498i
\(493\) 597.976 1.21293
\(494\) −152.808 + 108.651i −0.309328 + 0.219942i
\(495\) 0 0
\(496\) −46.4033 + 173.179i −0.0935550 + 0.349152i
\(497\) 591.124 341.286i 1.18938 0.686691i
\(498\) −66.2135 + 114.685i −0.132959 + 0.230292i
\(499\) −295.973 295.973i −0.593133 0.593133i 0.345343 0.938476i \(-0.387763\pi\)
−0.938476 + 0.345343i \(0.887763\pi\)
\(500\) 0 0
\(501\) 279.361 + 1042.59i 0.557607 + 2.08102i
\(502\) 73.1363 + 73.1363i 0.145690 + 0.145690i
\(503\) 398.014 + 229.793i 0.791280 + 0.456846i 0.840413 0.541947i \(-0.182313\pi\)
−0.0491332 + 0.998792i \(0.515646\pi\)
\(504\) −245.677 + 141.842i −0.487454 + 0.281432i
\(505\) 0 0
\(506\) 65.1209i 0.128697i
\(507\) −132.405 692.245i −0.261154 1.36538i
\(508\) 589.205i 1.15985i
\(509\) 75.4090 281.430i 0.148151 0.552908i −0.851444 0.524446i \(-0.824272\pi\)
0.999595 0.0284619i \(-0.00906091\pi\)
\(510\) 0 0
\(511\) 705.237 + 407.169i 1.38011 + 0.796807i
\(512\) 314.111 314.111i 0.613498 0.613498i
\(513\) −22.7696 84.9775i −0.0443853 0.165648i
\(514\) 31.3094 + 116.848i 0.0609132 + 0.227331i
\(515\) 0 0
\(516\) −47.3576 + 82.0257i −0.0917783 + 0.158965i
\(517\) 116.231 + 201.319i 0.224819 + 0.389398i
\(518\) 16.6401 62.1017i 0.0321238 0.119888i
\(519\) 1181.06i 2.27564i
\(520\) 0 0
\(521\) 209.213 0.401561 0.200780 0.979636i \(-0.435652\pi\)
0.200780 + 0.979636i \(0.435652\pi\)
\(522\) −91.1353 24.4196i −0.174589 0.0467809i
\(523\) −115.597 + 66.7400i −0.221027 + 0.127610i −0.606426 0.795140i \(-0.707397\pi\)
0.385399 + 0.922750i \(0.374064\pi\)
\(524\) −478.414 276.213i −0.913004 0.527123i
\(525\) 0 0
\(526\) −1.17557 + 0.314992i −0.00223492 + 0.000598844i
\(527\) 274.322 73.5042i 0.520534 0.139477i
\(528\) −201.887 201.887i −0.382361 0.382361i
\(529\) −245.542 + 425.292i −0.464163 + 0.803954i
\(530\) 0 0
\(531\) −307.613 82.4246i −0.579308 0.155225i
\(532\) −1379.83 −2.59366
\(533\) −64.7552 173.991i −0.121492 0.326437i
\(534\) −119.985 −0.224691
\(535\) 0 0
\(536\) −73.4904 127.289i −0.137109 0.237480i
\(537\) −654.464 + 1133.56i −1.21874 + 2.11092i
\(538\) 39.2356 39.2356i 0.0729286 0.0729286i
\(539\) −279.342 + 74.8495i −0.518260 + 0.138867i
\(540\) 0 0
\(541\) −67.8052 + 67.8052i −0.125333 + 0.125333i −0.766991 0.641658i \(-0.778247\pi\)
0.641658 + 0.766991i \(0.278247\pi\)
\(542\) 167.980 + 96.9833i 0.309926 + 0.178936i
\(543\) −619.197 1072.48i −1.14033 1.97510i
\(544\) −401.781 107.657i −0.738568 0.197899i
\(545\) 0 0
\(546\) −97.4159 + 212.913i −0.178417 + 0.389950i
\(547\) 119.315i 0.218127i 0.994035 + 0.109063i \(0.0347852\pi\)
−0.994035 + 0.109063i \(0.965215\pi\)
\(548\) −352.030 94.3262i −0.642391 0.172128i
\(549\) 80.2061 + 138.921i 0.146095 + 0.253044i
\(550\) 0 0
\(551\) −663.655 663.655i −1.20446 1.20446i
\(552\) −112.159 418.581i −0.203186 0.758300i
\(553\) 712.973 191.041i 1.28928 0.345462i
\(554\) 39.8528 39.8528i 0.0719365 0.0719365i
\(555\) 0 0
\(556\) −268.749 + 155.162i −0.483362 + 0.279069i
\(557\) −25.5260 + 95.2642i −0.0458276 + 0.171031i −0.985047 0.172287i \(-0.944884\pi\)
0.939219 + 0.343318i \(0.111551\pi\)
\(558\) −44.8101 −0.0803048
\(559\) 7.27875 + 76.8000i 0.0130210 + 0.137388i
\(560\) 0 0
\(561\) −117.053 + 436.848i −0.208651 + 0.778695i
\(562\) −180.334 + 104.116i −0.320879 + 0.185260i
\(563\) −116.005 + 200.926i −0.206047 + 0.356884i −0.950466 0.310829i \(-0.899393\pi\)
0.744419 + 0.667713i \(0.232727\pi\)
\(564\) 534.848 + 534.848i 0.948313 + 0.948313i
\(565\) 0 0
\(566\) 6.29519 + 23.4940i 0.0111222 + 0.0415088i
\(567\) −632.587 632.587i −1.11567 1.11567i
\(568\) −185.097 106.866i −0.325874 0.188144i
\(569\) 426.129 246.026i 0.748909 0.432383i −0.0763909 0.997078i \(-0.524340\pi\)
0.825299 + 0.564695i \(0.191006\pi\)
\(570\) 0 0
\(571\) 10.1849i 0.0178370i −0.999960 0.00891851i \(-0.997161\pi\)
0.999960 0.00891851i \(-0.00283889\pi\)
\(572\) −240.651 40.6424i −0.420719 0.0710532i
\(573\) 1307.88i 2.28251i
\(574\) −15.9627 + 59.5735i −0.0278095 + 0.103787i
\(575\) 0 0
\(576\) −348.894 201.434i −0.605718 0.349712i
\(577\) −116.939 + 116.939i −0.202667 + 0.202667i −0.801142 0.598475i \(-0.795774\pi\)
0.598475 + 0.801142i \(0.295774\pi\)
\(578\) 21.4891 + 80.1984i 0.0371783 + 0.138751i
\(579\) −97.2071 362.782i −0.167888 0.626566i
\(580\) 0 0
\(581\) −396.880 + 687.416i −0.683098 + 1.18316i
\(582\) 49.6643 + 86.0211i 0.0853339 + 0.147803i
\(583\) −42.9184 + 160.174i −0.0736165 + 0.274741i
\(584\) 254.991i 0.436628i
\(585\) 0 0
\(586\) −1.88487 −0.00321650
\(587\) −1016.36 272.333i −1.73145 0.463940i −0.750932 0.660379i \(-0.770396\pi\)
−0.980516 + 0.196439i \(0.937062\pi\)
\(588\) −814.922 + 470.495i −1.38592 + 0.800162i
\(589\) −386.030 222.875i −0.655399 0.378395i
\(590\) 0 0
\(591\) −167.590 + 44.9055i −0.283570 + 0.0759823i
\(592\) 200.690 53.7748i 0.339004 0.0908358i
\(593\) 110.395 + 110.395i 0.186163 + 0.186163i 0.794035 0.607872i \(-0.207977\pi\)
−0.607872 + 0.794035i \(0.707977\pi\)
\(594\) −2.58473 + 4.47688i −0.00435139 + 0.00753683i
\(595\) 0 0
\(596\) −20.5762 5.51337i −0.0345238 0.00925062i
\(597\) 523.639 0.877117
\(598\) −133.004 109.975i −0.222415 0.183905i
\(599\) 213.440 0.356327 0.178163 0.984001i \(-0.442984\pi\)
0.178163 + 0.984001i \(0.442984\pi\)
\(600\) 0 0
\(601\) 373.758 + 647.369i 0.621894 + 1.07715i 0.989133 + 0.147026i \(0.0469700\pi\)
−0.367238 + 0.930127i \(0.619697\pi\)
\(602\) 12.8141 22.1946i 0.0212858 0.0368681i
\(603\) −268.084 + 268.084i −0.444584 + 0.444584i
\(604\) 731.526 196.012i 1.21114 0.324523i
\(605\) 0 0
\(606\) −131.711 + 131.711i −0.217345 + 0.217345i
\(607\) −46.3518 26.7612i −0.0763621 0.0440877i 0.461333 0.887227i \(-0.347371\pi\)
−0.537695 + 0.843140i \(0.680705\pi\)
\(608\) 326.430 + 565.393i 0.536891 + 0.929923i
\(609\) −1132.09 303.343i −1.85894 0.498100i
\(610\) 0 0
\(611\) 607.466 + 102.592i 0.994217 + 0.167908i
\(612\) 710.062i 1.16023i
\(613\) 456.180 + 122.233i 0.744176 + 0.199401i 0.610933 0.791682i \(-0.290794\pi\)
0.133243 + 0.991083i \(0.457461\pi\)
\(614\) −51.1672 88.6242i −0.0833342 0.144339i
\(615\) 0 0
\(616\) 117.251 + 117.251i 0.190343 + 0.190343i
\(617\) 11.2003 + 41.7999i 0.0181528 + 0.0677470i 0.974408 0.224786i \(-0.0721684\pi\)
−0.956255 + 0.292533i \(0.905502\pi\)
\(618\) 113.113 30.3084i 0.183030 0.0490428i
\(619\) 401.379 401.379i 0.648431 0.648431i −0.304183 0.952614i \(-0.598383\pi\)
0.952614 + 0.304183i \(0.0983833\pi\)
\(620\) 0 0
\(621\) 70.1279 40.4884i 0.112927 0.0651987i
\(622\) 17.4819 65.2433i 0.0281059 0.104893i
\(623\) −719.182 −1.15439
\(624\) −753.281 + 71.3925i −1.20718 + 0.114411i
\(625\) 0 0
\(626\) 33.1425 123.689i 0.0529432 0.197587i
\(627\) 614.740 354.920i 0.980446 0.566061i
\(628\) 35.1438 60.8708i 0.0559614 0.0969280i
\(629\) −232.719 232.719i −0.369982 0.369982i
\(630\) 0 0
\(631\) −99.4657 371.211i −0.157632 0.588290i −0.998866 0.0476184i \(-0.984837\pi\)
0.841234 0.540672i \(-0.181830\pi\)
\(632\) −163.431 163.431i −0.258593 0.258593i
\(633\) −850.485 491.028i −1.34358 0.775715i
\(634\) −16.3998 + 9.46841i −0.0258671 + 0.0149344i
\(635\) 0 0
\(636\) 539.560i 0.848365i
\(637\) −318.876 + 696.938i −0.500591 + 1.09409i
\(638\) 55.1496i 0.0864413i
\(639\) −142.689 + 532.522i −0.223300 + 0.833367i
\(640\) 0 0
\(641\) 853.969 + 493.039i 1.33224 + 0.769172i 0.985643 0.168841i \(-0.0540024\pi\)
0.346601 + 0.938013i \(0.387336\pi\)
\(642\) −198.046 + 198.046i −0.308483 + 0.308483i
\(643\) −119.238 445.003i −0.185441 0.692073i −0.994536 0.104396i \(-0.966709\pi\)
0.809095 0.587677i \(-0.199958\pi\)
\(644\) −328.716 1226.79i −0.510429 1.90495i
\(645\) 0 0
\(646\) 159.428 276.138i 0.246793 0.427458i
\(647\) −502.801 870.876i −0.777126 1.34602i −0.933592 0.358339i \(-0.883343\pi\)
0.156465 0.987683i \(-0.449990\pi\)
\(648\) −72.5023 + 270.582i −0.111886 + 0.417565i
\(649\) 186.149i 0.286824i
\(650\) 0 0
\(651\) −556.635 −0.855047
\(652\) −236.296 63.3153i −0.362417 0.0971094i
\(653\) 956.041 551.971i 1.46408 0.845285i 0.464880 0.885374i \(-0.346098\pi\)
0.999196 + 0.0400894i \(0.0127643\pi\)
\(654\) −81.5676 47.0931i −0.124721 0.0720078i
\(655\) 0 0
\(656\) −192.520 + 51.5856i −0.293475 + 0.0786365i
\(657\) −635.321 + 170.234i −0.967004 + 0.259108i
\(658\) −144.720 144.720i −0.219939 0.219939i
\(659\) −68.1072 + 117.965i −0.103349 + 0.179006i −0.913063 0.407819i \(-0.866289\pi\)
0.809713 + 0.586826i \(0.199623\pi\)
\(660\) 0 0
\(661\) −1064.36 285.195i −1.61023 0.431460i −0.662118 0.749400i \(-0.730342\pi\)
−0.948111 + 0.317940i \(0.897009\pi\)
\(662\) −48.7205 −0.0735959
\(663\) 694.547 + 976.815i 1.04758 + 1.47333i
\(664\) 248.547 0.374319
\(665\) 0 0
\(666\) 25.9642 + 44.9714i 0.0389853 + 0.0675246i
\(667\) 431.945 748.150i 0.647593 1.12166i
\(668\) 700.429 700.429i 1.04855 1.04855i
\(669\) 849.663 227.666i 1.27005 0.340309i
\(670\) 0 0
\(671\) 66.3012 66.3012i 0.0988096 0.0988096i
\(672\) 706.043 + 407.634i 1.05066 + 0.606598i
\(673\) −405.466 702.287i −0.602475 1.04352i −0.992445 0.122690i \(-0.960848\pi\)
0.389970 0.920828i \(-0.372485\pi\)
\(674\) 98.2857 + 26.3356i 0.145825 + 0.0390736i
\(675\) 0 0
\(676\) −489.418 + 422.874i −0.723992 + 0.625553i
\(677\) 991.454i 1.46448i −0.681046 0.732241i \(-0.738475\pi\)
0.681046 0.732241i \(-0.261525\pi\)
\(678\) 148.350 + 39.7501i 0.218805 + 0.0586285i
\(679\) 297.685 + 515.606i 0.438417 + 0.759361i
\(680\) 0 0
\(681\) −300.466 300.466i −0.441213 0.441213i
\(682\) 6.77909 + 25.2999i 0.00994001 + 0.0370966i
\(683\) 575.729 154.266i 0.842942 0.225866i 0.188590 0.982056i \(-0.439608\pi\)
0.654352 + 0.756190i \(0.272942\pi\)
\(684\) 788.053 788.053i 1.15212 1.15212i
\(685\) 0 0
\(686\) 37.2355 21.4979i 0.0542791 0.0313381i
\(687\) −162.470 + 606.346i −0.236492 + 0.882600i
\(688\) 82.8208 0.120379
\(689\) 254.661 + 358.157i 0.369610 + 0.519821i
\(690\) 0 0
\(691\) 217.171 810.493i 0.314285 1.17293i −0.610368 0.792118i \(-0.708979\pi\)
0.924653 0.380810i \(-0.124355\pi\)
\(692\) 938.667 541.939i 1.35645 0.783150i
\(693\) 213.859 370.415i 0.308599 0.534510i
\(694\) 19.8358 + 19.8358i 0.0285818 + 0.0285818i
\(695\) 0 0
\(696\) 94.9849 + 354.488i 0.136472 + 0.509322i
\(697\) 223.244 + 223.244i 0.320293 + 0.320293i
\(698\) −152.911 88.2830i −0.219070 0.126480i
\(699\) −1224.83 + 707.154i −1.75226 + 1.01167i
\(700\) 0 0
\(701\) 428.642i 0.611472i −0.952116 0.305736i \(-0.901097\pi\)
0.952116 0.305736i \(-0.0989026\pi\)
\(702\) 4.77858 + 12.8396i 0.00680710 + 0.0182900i
\(703\) 516.560i 0.734793i
\(704\) −60.9478 + 227.460i −0.0865736 + 0.323097i
\(705\) 0 0
\(706\) −24.5980 14.2017i −0.0348414 0.0201157i
\(707\) −789.467 + 789.467i −1.11664 + 1.11664i
\(708\) 156.765 + 585.054i 0.221419 + 0.826347i
\(709\) 70.5186 + 263.179i 0.0994620 + 0.371197i 0.997658 0.0683976i \(-0.0217887\pi\)
−0.898196 + 0.439595i \(0.855122\pi\)
\(710\) 0 0
\(711\) −298.088 + 516.304i −0.419252 + 0.726166i
\(712\) 112.598 + 195.025i 0.158143 + 0.273911i
\(713\) 106.191 396.310i 0.148935 0.555834i
\(714\) 398.177i 0.557671i
\(715\) 0 0
\(716\) 1201.23 1.67769
\(717\) 1148.76 + 307.809i 1.60217 + 0.429301i
\(718\) 40.0755 23.1376i 0.0558155 0.0322251i
\(719\) 320.554 + 185.072i 0.445833 + 0.257402i 0.706069 0.708143i \(-0.250467\pi\)
−0.260236 + 0.965545i \(0.583800\pi\)
\(720\) 0 0
\(721\) 677.991 181.667i 0.940348 0.251965i
\(722\) −338.469 + 90.6925i −0.468793 + 0.125613i
\(723\) 801.457 + 801.457i 1.10852 + 1.10852i
\(724\) −568.248 + 984.234i −0.784873 + 1.35944i
\(725\) 0 0
\(726\) 162.311 + 43.4910i 0.223568 + 0.0599050i
\(727\) 1190.04 1.63692 0.818458 0.574566i \(-0.194829\pi\)
0.818458 + 0.574566i \(0.194829\pi\)
\(728\) 437.489 41.4632i 0.600946 0.0569549i
\(729\) 627.411 0.860646
\(730\) 0 0
\(731\) −65.5954 113.614i −0.0897337 0.155423i
\(732\) 152.545 264.216i 0.208395 0.360951i
\(733\) −225.841 + 225.841i −0.308105 + 0.308105i −0.844174 0.536069i \(-0.819909\pi\)
0.536069 + 0.844174i \(0.319909\pi\)
\(734\) 74.8174 20.0472i 0.101931 0.0273123i
\(735\) 0 0
\(736\) −424.918 + 424.918i −0.577334 + 0.577334i
\(737\) 191.918 + 110.804i 0.260404 + 0.150345i
\(738\) −24.9072 43.1405i −0.0337496 0.0584560i
\(739\) 161.258 + 43.2089i 0.218211 + 0.0584694i 0.366268 0.930509i \(-0.380635\pi\)
−0.148057 + 0.988979i \(0.547302\pi\)
\(740\) 0 0
\(741\) 313.271 1854.94i 0.422768 2.50329i
\(742\) 145.995i 0.196758i
\(743\) −856.091 229.389i −1.15221 0.308734i −0.368359 0.929684i \(-0.620080\pi\)
−0.783850 + 0.620950i \(0.786747\pi\)
\(744\) 87.1487 + 150.946i 0.117135 + 0.202884i
\(745\) 0 0
\(746\) −44.4787 44.4787i −0.0596229 0.0596229i
\(747\) −165.932 619.268i −0.222132 0.829007i
\(748\) 400.903 107.422i 0.535967 0.143612i
\(749\) −1187.08 + 1187.08i −1.58488 + 1.58488i
\(750\) 0 0
\(751\) 48.7326 28.1358i 0.0648903 0.0374644i −0.467204 0.884150i \(-0.654739\pi\)
0.532094 + 0.846685i \(0.321405\pi\)
\(752\) 171.183 638.865i 0.227638 0.849555i
\(753\) −1037.74 −1.37814
\(754\) 112.638 + 93.1360i 0.149388 + 0.123523i
\(755\) 0 0
\(756\) −26.0943 + 97.3853i −0.0345163 + 0.128816i
\(757\) −386.198 + 222.971i −0.510169 + 0.294546i −0.732903 0.680333i \(-0.761835\pi\)
0.222734 + 0.974879i \(0.428502\pi\)
\(758\) −52.1508 + 90.3278i −0.0688005 + 0.119166i
\(759\) 462.004 + 462.004i 0.608701 + 0.608701i
\(760\) 0 0
\(761\) −109.741 409.560i −0.144207 0.538186i −0.999789 0.0205203i \(-0.993468\pi\)
0.855583 0.517666i \(-0.173199\pi\)
\(762\) −188.702 188.702i −0.247641 0.247641i
\(763\) −488.912 282.273i −0.640775 0.369952i
\(764\) 1039.46 600.131i 1.36055 0.785512i
\(765\) 0 0
\(766\) 14.8826i 0.0194290i
\(767\) 380.193 + 314.366i 0.495688 + 0.409864i
\(768\) 635.763i 0.827816i
\(769\) 10.4219 38.8950i 0.0135525 0.0505787i −0.958818 0.284020i \(-0.908332\pi\)
0.972371 + 0.233441i \(0.0749986\pi\)
\(770\) 0 0
\(771\) −1051.11 606.861i −1.36331 0.787109i
\(772\) −243.723 + 243.723i −0.315703 + 0.315703i
\(773\) −270.055 1007.86i −0.349360 1.30383i −0.887436 0.460932i \(-0.847515\pi\)
0.538076 0.842896i \(-0.319151\pi\)
\(774\) 5.35746 + 19.9943i 0.00692178 + 0.0258324i
\(775\) 0 0
\(776\) 93.2132 161.450i 0.120120 0.208054i
\(777\) 322.530 + 558.639i 0.415097 + 0.718969i
\(778\) 4.12017 15.3767i 0.00529585 0.0197644i
\(779\) 495.530i 0.636110i
\(780\) 0 0
\(781\) 322.250 0.412612
\(782\) 283.491 + 75.9613i 0.362521 + 0.0971372i
\(783\) −59.3899 + 34.2888i −0.0758492 + 0.0437916i
\(784\) 712.583 + 411.410i 0.908907 + 0.524758i
\(785\) 0 0
\(786\) −241.681 + 64.7583i −0.307482 + 0.0823896i
\(787\) −138.586 + 37.1339i −0.176094 + 0.0471842i −0.345788 0.938313i \(-0.612389\pi\)
0.169695 + 0.985497i \(0.445722\pi\)
\(788\) 112.589 + 112.589i 0.142880 + 0.142880i
\(789\) 6.10540 10.5749i 0.00773815 0.0134029i
\(790\) 0 0
\(791\) 889.199 + 238.260i 1.12414 + 0.301214i
\(792\) −133.930 −0.169104
\(793\) −23.4459 247.383i −0.0295660 0.311959i
\(794\) −68.9980 −0.0868993
\(795\) 0 0
\(796\) −240.276 416.171i −0.301855 0.522827i
\(797\) 80.3553 139.179i 0.100822 0.174629i −0.811201 0.584767i \(-0.801186\pi\)
0.912024 + 0.410138i \(0.134519\pi\)
\(798\) −441.912 + 441.912i −0.553774 + 0.553774i
\(799\) −1011.98 + 271.160i −1.26656 + 0.339374i
\(800\) 0 0
\(801\) 410.742 410.742i 0.512787 0.512787i
\(802\) 35.0915 + 20.2601i 0.0437550 + 0.0252619i
\(803\) 192.229 + 332.951i 0.239389 + 0.414633i
\(804\) 696.501 + 186.627i 0.866294 + 0.232123i
\(805\) 0 0
\(806\) 63.1213 + 28.8805i 0.0783143 + 0.0358319i
\(807\) 556.719i 0.689862i
\(808\) 337.686 + 90.4827i 0.417928 + 0.111984i
\(809\) −493.689 855.095i −0.610246 1.05698i −0.991199 0.132383i \(-0.957737\pi\)
0.380952 0.924595i \(-0.375596\pi\)
\(810\) 0 0
\(811\) 658.494 + 658.494i 0.811953 + 0.811953i 0.984927 0.172973i \(-0.0553374\pi\)
−0.172973 + 0.984927i \(0.555337\pi\)
\(812\) 278.383 + 1038.94i 0.342837 + 1.27948i
\(813\) −1879.80 + 503.691i −2.31218 + 0.619546i
\(814\) 21.4630 21.4630i 0.0263673 0.0263673i
\(815\) 0 0
\(816\) 1114.37 643.382i 1.36565 0.788458i
\(817\) −53.2934 + 198.894i −0.0652306 + 0.243444i
\(818\) 278.439 0.340391
\(819\) −395.379 1062.34i −0.482758 1.29712i
\(820\) 0 0
\(821\) −180.926 + 675.225i −0.220373 + 0.822442i 0.763833 + 0.645414i \(0.223315\pi\)
−0.984206 + 0.177028i \(0.943352\pi\)
\(822\) −142.953 + 82.5337i −0.173908 + 0.100406i
\(823\) −591.929 + 1025.25i −0.719233 + 1.24575i 0.242071 + 0.970259i \(0.422173\pi\)
−0.961304 + 0.275490i \(0.911160\pi\)
\(824\) −155.412 155.412i −0.188607 0.188607i
\(825\) 0 0
\(826\) −42.4176 158.305i −0.0513530 0.191652i
\(827\) 193.163 + 193.163i 0.233571 + 0.233571i 0.814182 0.580610i \(-0.197186\pi\)
−0.580610 + 0.814182i \(0.697186\pi\)
\(828\) 888.385 + 512.909i 1.07293 + 0.619456i
\(829\) 984.729 568.534i 1.18785 0.685807i 0.230034 0.973183i \(-0.426116\pi\)
0.957818 + 0.287376i \(0.0927829\pi\)
\(830\) 0 0
\(831\) 565.477i 0.680478i
\(832\) 361.641 + 508.613i 0.434664 + 0.611314i
\(833\) 1303.37i 1.56467i
\(834\) −36.3779 + 135.764i −0.0436186 + 0.162787i
\(835\) 0 0
\(836\) −564.157 325.716i −0.674830 0.389613i
\(837\) −23.0303 + 23.0303i −0.0275153 + 0.0275153i
\(838\) 72.1248 + 269.173i 0.0860677 + 0.321209i
\(839\) −418.360 1561.34i −0.498642 1.86096i −0.508596 0.861005i \(-0.669835\pi\)
0.00995455 0.999950i \(-0.496831\pi\)
\(840\) 0 0
\(841\) 54.6947 94.7341i 0.0650354 0.112645i
\(842\) −0.998277 1.72907i −0.00118560 0.00205352i
\(843\) 540.734 2018.05i 0.641440 2.39389i
\(844\) 901.249i 1.06783i
\(845\) 0 0
\(846\) 165.306 0.195397
\(847\) 972.881 + 260.683i 1.14862 + 0.307772i
\(848\) 408.593 235.901i 0.481831 0.278185i
\(849\) −211.341 122.018i −0.248929 0.143719i
\(850\) 0 0
\(851\) −459.266 + 123.060i −0.539678 + 0.144606i
\(852\) 1012.81 271.382i 1.18875 0.318524i
\(853\) −830.014 830.014i −0.973053 0.973053i 0.0265931 0.999646i \(-0.491534\pi\)
−0.999646 + 0.0265931i \(0.991534\pi\)
\(854\) −41.2759 + 71.4919i −0.0483324 + 0.0837142i
\(855\) 0 0
\(856\) 507.758 + 136.053i 0.593176 + 0.158941i
\(857\) −112.086 −0.130789 −0.0653946 0.997859i \(-0.520831\pi\)
−0.0653946 + 0.997859i \(0.520831\pi\)
\(858\) −90.0888 + 64.0561i −0.104999 + 0.0746574i
\(859\) −111.015 −0.129237 −0.0646187 0.997910i \(-0.520583\pi\)
−0.0646187 + 0.997910i \(0.520583\pi\)
\(860\) 0 0
\(861\) −309.400 535.896i −0.359349 0.622411i
\(862\) −64.6422 + 111.964i −0.0749909 + 0.129888i
\(863\) −223.632 + 223.632i −0.259134 + 0.259134i −0.824702 0.565568i \(-0.808657\pi\)
0.565568 + 0.824702i \(0.308657\pi\)
\(864\) 46.0774 12.3464i 0.0533304 0.0142898i
\(865\) 0 0
\(866\) 79.6470 79.6470i 0.0919712 0.0919712i
\(867\) −721.428 416.517i −0.832097 0.480411i
\(868\) 255.417 + 442.395i 0.294259 + 0.509672i
\(869\) 336.603 + 90.1925i 0.387345 + 0.103789i
\(870\) 0 0
\(871\) 550.417 204.852i 0.631937 0.235192i
\(872\) 176.775i 0.202723i
\(873\) −464.490 124.460i −0.532062 0.142566i
\(874\) −230.325 398.934i −0.263529 0.456446i
\(875\) 0 0
\(876\) 884.558 + 884.558i 1.00977 + 1.00977i
\(877\) −353.391 1318.88i −0.402955 1.50385i −0.807796 0.589461i \(-0.799340\pi\)
0.404842 0.914387i \(-0.367327\pi\)
\(878\) −179.817 + 48.1819i −0.204803 + 0.0548769i
\(879\) 13.3723 13.3723i 0.0152131 0.0152131i
\(880\) 0 0
\(881\) −113.969 + 65.7999i −0.129363 + 0.0746878i −0.563285 0.826263i \(-0.690463\pi\)
0.433922 + 0.900950i \(0.357129\pi\)
\(882\) −53.2261 + 198.642i −0.0603470 + 0.225218i
\(883\) −36.4439 −0.0412728 −0.0206364 0.999787i \(-0.506569\pi\)
−0.0206364 + 0.999787i \(0.506569\pi\)
\(884\) 457.641 1000.22i 0.517693 1.13147i
\(885\) 0 0
\(886\) −51.7702 + 193.209i −0.0584314 + 0.218069i
\(887\) −606.237 + 350.011i −0.683469 + 0.394601i −0.801161 0.598449i \(-0.795784\pi\)
0.117691 + 0.993050i \(0.462451\pi\)
\(888\) 100.993 174.925i 0.113731 0.196987i
\(889\) −1131.07 1131.07i −1.27229 1.27229i
\(890\) 0 0
\(891\) −109.314 407.966i −0.122687 0.457875i
\(892\) −570.817 570.817i −0.639929 0.639929i
\(893\) 1424.08 + 822.192i 1.59471 + 0.920708i
\(894\) −8.35558 + 4.82410i −0.00934629 + 0.00539608i
\(895\) 0 0
\(896\) 989.286i 1.10411i
\(897\) 1723.83 163.377i 1.92178 0.182137i
\(898\) 287.639i 0.320310i
\(899\) −89.9309 + 335.627i −0.100034 + 0.373333i
\(900\) 0 0
\(901\) −647.223 373.674i −0.718339 0.414733i
\(902\) −20.5892 + 20.5892i −0.0228262 + 0.0228262i
\(903\) 66.5509 + 248.371i 0.0736998 + 0.275051i
\(904\) −74.6056 278.432i −0.0825283 0.308000i
\(905\) 0 0
\(906\) 171.507 297.059i 0.189301 0.327879i
\(907\) −131.036 226.961i −0.144472 0.250233i 0.784704 0.619871i \(-0.212815\pi\)
−0.929176 + 0.369638i \(0.879482\pi\)
\(908\) −100.929 + 376.672i −0.111155 + 0.414837i
\(909\) 901.768i 0.992044i
\(910\) 0 0
\(911\) 498.041 0.546697 0.273349 0.961915i \(-0.411869\pi\)
0.273349 + 0.961915i \(0.411869\pi\)
\(912\) −1950.82 522.720i −2.13905 0.573158i
\(913\) −324.537 + 187.372i −0.355463 + 0.205226i
\(914\) −240.600 138.910i −0.263238 0.151981i
\(915\) 0 0
\(916\) 556.455 149.102i 0.607483 0.162775i
\(917\) −1448.62 + 388.157i −1.57974 + 0.423290i
\(918\) −16.4742 16.4742i −0.0179458 0.0179458i
\(919\) 133.939 231.989i 0.145744 0.252437i −0.783906 0.620880i \(-0.786776\pi\)
0.929650 + 0.368443i \(0.120109\pi\)
\(920\) 0 0
\(921\) 991.759 + 265.741i 1.07683 + 0.288535i
\(922\) 238.549 0.258729
\(923\) 544.212 658.168i 0.589612 0.713075i
\(924\) −813.486 −0.880396
\(925\) 0 0
\(926\) 144.184 + 249.735i 0.155707 + 0.269692i
\(927\) −283.462 + 490.971i −0.305785 + 0.529635i
\(928\) 359.855 359.855i 0.387774 0.387774i
\(929\) 530.823 142.234i 0.571392 0.153104i 0.0384570 0.999260i \(-0.487756\pi\)
0.532935 + 0.846156i \(0.321089\pi\)
\(930\) 0 0
\(931\) −1446.53 + 1446.53i −1.55374 + 1.55374i
\(932\) 1124.05 + 648.968i 1.20606 + 0.696318i
\(933\) 338.846 + 586.899i 0.363179 + 0.629045i
\(934\) 265.239 + 71.0705i 0.283982 + 0.0760926i
\(935\) 0 0
\(936\) −226.180 + 273.541i −0.241645 + 0.292245i
\(937\) 1688.18i 1.80169i 0.434143 + 0.900844i \(0.357051\pi\)
−0.434143 + 0.900844i \(0.642949\pi\)
\(938\) −188.460 50.4977i −0.200917 0.0538355i
\(939\) 642.391 + 1112.65i 0.684122 + 1.18493i
\(940\) 0 0
\(941\) 560.333 + 560.333i 0.595466 + 0.595466i 0.939103 0.343637i \(-0.111659\pi\)
−0.343637 + 0.939103i \(0.611659\pi\)
\(942\) −8.23949 30.7502i −0.00874680 0.0326435i
\(943\) 440.569 118.050i 0.467199 0.125186i
\(944\) 374.504 374.504i 0.396721 0.396721i
\(945\) 0 0
\(946\) 10.4783 6.04967i 0.0110765 0.00639500i
\(947\) −134.844 + 503.245i −0.142391 + 0.531410i 0.857467 + 0.514539i \(0.172037\pi\)
−0.999858 + 0.0168706i \(0.994630\pi\)
\(948\) 1133.88 1.19608
\(949\) 1004.66 + 169.672i 1.05865 + 0.178790i
\(950\) 0 0
\(951\) 49.1750 183.523i 0.0517087 0.192979i
\(952\) −647.201 + 373.662i −0.679833 + 0.392502i
\(953\) −373.718 + 647.298i −0.392149 + 0.679222i −0.992733 0.120340i \(-0.961601\pi\)
0.600584 + 0.799562i \(0.294935\pi\)
\(954\) 83.3811 + 83.3811i 0.0874016 + 0.0874016i
\(955\) 0 0
\(956\) −282.482 1054.24i −0.295483 1.10276i
\(957\) −391.262 391.262i −0.408842 0.408842i
\(958\) −37.3902 21.5873i −0.0390295 0.0225337i
\(959\) −856.850 + 494.703i −0.893483 + 0.515853i
\(960\) 0 0
\(961\) 795.977i 0.828280i
\(962\) −7.58987 80.0827i −0.00788968 0.0832461i
\(963\) 1355.93i 1.40803i
\(964\) 269.216 1004.73i 0.279270 1.04225i
\(965\) 0 0
\(966\) −498.174 287.621i −0.515709 0.297744i
\(967\) 578.310 578.310i 0.598045 0.598045i −0.341747 0.939792i \(-0.611019\pi\)
0.939792 + 0.341747i \(0.111019\pi\)
\(968\) −81.6267 304.635i −0.0843251 0.314706i
\(969\) 828.005 + 3090.16i 0.854494 + 3.18901i
\(970\) 0 0
\(971\) 331.204 573.662i 0.341096 0.590795i −0.643541 0.765412i \(-0.722535\pi\)
0.984636 + 0.174617i \(0.0558687\pi\)
\(972\) −643.471 1114.52i −0.662007 1.14663i
\(973\) −218.047 + 813.763i −0.224098 + 0.836345i
\(974\) 267.862i 0.275012i
\(975\) 0 0
\(976\) −266.777 −0.273337
\(977\) −540.021 144.698i −0.552734 0.148105i −0.0283677 0.999598i \(-0.509031\pi\)
−0.524366 + 0.851493i \(0.675698\pi\)
\(978\) −95.9552 + 55.3998i −0.0981137 + 0.0566460i
\(979\) −294.045 169.767i −0.300353 0.173409i
\(980\) 0 0
\(981\) 440.442 118.016i 0.448973 0.120302i
\(982\) 342.627 91.8067i 0.348908 0.0934895i
\(983\) 665.030 + 665.030i 0.676532 + 0.676532i 0.959214 0.282682i \(-0.0912242\pi\)
−0.282682 + 0.959214i \(0.591224\pi\)
\(984\) −96.8814 + 167.803i −0.0984567 + 0.170532i
\(985\) 0 0
\(986\) −240.083 64.3301i −0.243492 0.0652435i
\(987\) 2053.45 2.08050
\(988\) −1617.99 + 602.178i −1.63764 + 0.609491i
\(989\) −189.530 −0.191638
\(990\) 0 0
\(991\) −325.864 564.412i −0.328823 0.569538i 0.653456 0.756965i \(-0.273319\pi\)
−0.982279 + 0.187427i \(0.939985\pi\)
\(992\) 120.850 209.318i 0.121824 0.211006i
\(993\) 345.651 345.651i 0.348087 0.348087i
\(994\) −274.048 + 73.4309i −0.275702 + 0.0738741i
\(995\) 0 0
\(996\) −862.207 + 862.207i −0.865670 + 0.865670i
\(997\) −1171.38 676.299i −1.17491 0.678334i −0.220078 0.975482i \(-0.570631\pi\)
−0.954831 + 0.297148i \(0.903964\pi\)
\(998\) 86.9906 + 150.672i 0.0871650 + 0.150974i
\(999\) 36.4577 + 9.76880i 0.0364942 + 0.00977858i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.3.w.e.24.5 40
5.2 odd 4 65.3.p.a.11.6 yes 40
5.3 odd 4 325.3.t.d.76.5 40
5.4 even 2 325.3.w.f.24.6 40
13.6 odd 12 325.3.w.f.149.6 40
65.19 odd 12 inner 325.3.w.e.149.5 40
65.32 even 12 65.3.p.a.6.6 40
65.58 even 12 325.3.t.d.201.5 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.3.p.a.6.6 40 65.32 even 12
65.3.p.a.11.6 yes 40 5.2 odd 4
325.3.t.d.76.5 40 5.3 odd 4
325.3.t.d.201.5 40 65.58 even 12
325.3.w.e.24.5 40 1.1 even 1 trivial
325.3.w.e.149.5 40 65.19 odd 12 inner
325.3.w.f.24.6 40 5.4 even 2
325.3.w.f.149.6 40 13.6 odd 12