Properties

Label 325.3.g.e
Level $325$
Weight $3$
Character orbit 325.g
Analytic conductor $8.856$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,3,Mod(99,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.99"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 325.g (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,-6,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.85560859171\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 6 x^{17} + 336 x^{16} - 90 x^{15} + 18 x^{14} - 654 x^{13} + 30550 x^{12} - 9690 x^{11} + \cdots + 46656 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{6} q^{2} + \beta_{4} q^{3} + ( - \beta_{13} - 2 \beta_{8}) q^{4} + ( - \beta_{5} - \beta_1) q^{6} + ( - \beta_{8} - \beta_{2} - 1) q^{7} + (\beta_{9} - \beta_{8} + 2 \beta_1 - 1) q^{8} + ( - \beta_{17} - \beta_{11} - \beta_{6} + \cdots - 3) q^{9}+ \cdots + ( - 7 \beta_{19} - 6 \beta_{18} + \cdots + 18) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{6} - 20 q^{7} - 18 q^{8} - 72 q^{9} + 6 q^{11} + 120 q^{12} + 18 q^{13} + 24 q^{14} - 128 q^{16} + 16 q^{17} + 58 q^{18} + 20 q^{19} + 90 q^{21} - 28 q^{23} + 28 q^{24} - 278 q^{28} + 40 q^{29}+ \cdots + 410 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 6 x^{17} + 336 x^{16} - 90 x^{15} + 18 x^{14} - 654 x^{13} + 30550 x^{12} - 9690 x^{11} + \cdots + 46656 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 13\!\cdots\!64 \nu^{19} + \cdots + 18\!\cdots\!84 ) / 30\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 13\!\cdots\!96 \nu^{19} + \cdots + 20\!\cdots\!24 ) / 35\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 19\!\cdots\!77 \nu^{19} + \cdots + 11\!\cdots\!96 ) / 30\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 52\!\cdots\!28 \nu^{19} + \cdots - 12\!\cdots\!08 ) / 33\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 21\!\cdots\!73 \nu^{19} + \cdots - 16\!\cdots\!88 ) / 10\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 13\!\cdots\!45 \nu^{19} + \cdots - 42\!\cdots\!96 ) / 60\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 31\!\cdots\!57 \nu^{19} + \cdots - 21\!\cdots\!36 ) / 95\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 31\!\cdots\!61 \nu^{19} + \cdots + 75\!\cdots\!56 ) / 95\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 43\!\cdots\!41 \nu^{19} + \cdots + 43\!\cdots\!24 ) / 60\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 27\!\cdots\!43 \nu^{19} + \cdots + 69\!\cdots\!80 ) / 33\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 11\!\cdots\!55 \nu^{19} + \cdots + 20\!\cdots\!76 ) / 11\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 31\!\cdots\!57 \nu^{19} + \cdots + 21\!\cdots\!36 ) / 15\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 83\!\cdots\!96 \nu^{19} + \cdots + 95\!\cdots\!72 ) / 33\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 17\!\cdots\!62 \nu^{19} + \cdots + 40\!\cdots\!08 ) / 60\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 12\!\cdots\!81 \nu^{19} + \cdots - 86\!\cdots\!28 ) / 33\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 14\!\cdots\!09 \nu^{19} + \cdots - 50\!\cdots\!00 ) / 33\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 14\!\cdots\!85 \nu^{19} + \cdots + 10\!\cdots\!56 ) / 30\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( - 62\!\cdots\!33 \nu^{19} + \cdots - 95\!\cdots\!88 ) / 60\!\cdots\!60 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{13} + 6\beta_{8} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{14} - \beta_{8} - 11\beta_{6} + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - \beta_{18} - \beta_{17} + \beta_{14} + \beta_{12} + 2 \beta_{11} - \beta_{10} + \beta_{9} + \beta_{7} + \cdots - 62 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{17} - \beta_{16} + 2 \beta_{15} + 3 \beta_{13} - 3 \beta_{11} - 18 \beta_{9} + 24 \beta_{8} + \cdots + 24 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 20 \beta_{19} + 22 \beta_{16} - 20 \beta_{15} - 25 \beta_{14} - 187 \beta_{13} - 2 \beta_{12} + \cdots + 35 \beta_1 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 47 \beta_{19} - 25 \beta_{18} - 27 \beta_{17} - 27 \beta_{16} + 5 \beta_{15} + 281 \beta_{14} + \cdots - 491 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 10 \beta_{19} + 318 \beta_{18} + 379 \beta_{17} + 10 \beta_{15} - 484 \beta_{14} - 378 \beta_{12} + \cdots + 9734 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 175 \beta_{19} - 175 \beta_{18} - 526 \beta_{17} + 526 \beta_{16} - 843 \beta_{15} - 2116 \beta_{13} + \cdots - 9316 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 5386 \beta_{19} + 279 \beta_{18} - 6048 \beta_{16} + 5386 \beta_{15} + 8514 \beta_{14} + \cdots - 17046 \beta_1 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 13958 \beta_{19} + 8560 \beta_{18} + 9260 \beta_{17} + 9260 \beta_{16} - 4114 \beta_{15} + \cdots + 167833 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 7976 \beta_{19} - 70507 \beta_{18} - 93721 \beta_{17} - 7976 \beta_{15} + 142921 \beta_{14} + \cdots - 1907522 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 82176 \beta_{19} + 82176 \beta_{18} + 156629 \beta_{17} - 156629 \beta_{16} + 224806 \beta_{15} + \cdots + 2912892 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 1300588 \beta_{19} - 94932 \beta_{18} + 1436330 \beta_{16} - 1300588 \beta_{15} + \cdots + 5659951 \beta_1 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 3584131 \beta_{19} - 2339225 \beta_{18} - 2598471 \beta_{17} - 2598471 \beta_{16} + 1509469 \beta_{15} + \cdots - 49215691 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 2863034 \beta_{19} + 15721638 \beta_{18} + 21945611 \beta_{17} + 2863034 \beta_{15} + \cdots + 414743434 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( - 26411879 \beta_{19} - 26411879 \beta_{18} - 42610094 \beta_{17} + 42610094 \beta_{16} + \cdots - 815603744 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( 308186666 \beta_{19} + 20577123 \beta_{18} - 335505876 \beta_{16} + 308186666 \beta_{15} + \cdots - 1624246206 \beta_1 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( - 901860190 \beta_{19} + 596387684 \beta_{18} + 692961460 \beta_{17} + 692961460 \beta_{16} + \cdots + 13328434457 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(\beta_{8}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
2.50536 + 2.50536i
2.28875 + 2.28875i
1.67324 + 1.67324i
1.01991 + 1.01991i
0.375392 + 0.375392i
−0.177531 0.177531i
−0.962413 0.962413i
−1.88633 1.88633i
−2.03566 2.03566i
−2.80071 2.80071i
2.50536 2.50536i
2.28875 2.28875i
1.67324 1.67324i
1.01991 1.01991i
0.375392 0.375392i
−0.177531 + 0.177531i
−0.962413 + 0.962413i
−1.88633 + 1.88633i
−2.03566 + 2.03566i
−2.80071 + 2.80071i
−2.50536 + 2.50536i 5.52663i 8.55366i 0 −13.8462 13.8462i −7.45363 7.45363i 11.4085 + 11.4085i −21.5436 0
99.2 −2.28875 + 2.28875i 3.77733i 6.47674i 0 8.64537 + 8.64537i −4.50772 4.50772i 5.66863 + 5.66863i −5.26826 0
99.3 −1.67324 + 1.67324i 0.982234i 1.59947i 0 −1.64351 1.64351i 6.39745 + 6.39745i −4.01666 4.01666i 8.03522 0
99.4 −1.01991 + 1.01991i 1.47834i 1.91956i 0 −1.50777 1.50777i −2.86721 2.86721i −6.03743 6.03743i 6.81452 0
99.5 −0.375392 + 0.375392i 5.24224i 3.71816i 0 1.96790 + 1.96790i 7.11069 + 7.11069i −2.89734 2.89734i −18.4811 0
99.6 0.177531 0.177531i 1.31502i 3.93697i 0 −0.233457 0.233457i −4.93361 4.93361i 1.40906 + 1.40906i 7.27073 0
99.7 0.962413 0.962413i 3.84448i 2.14752i 0 3.69997 + 3.69997i −0.488874 0.488874i 5.91646 + 5.91646i −5.78000 0
99.8 1.88633 1.88633i 0.793970i 3.11650i 0 −1.49769 1.49769i 8.42514 + 8.42514i 1.66658 + 1.66658i 8.36961 0
99.9 2.03566 2.03566i 4.42402i 4.28784i 0 −9.00581 9.00581i −7.36000 7.36000i −0.585953 0.585953i −10.5719 0
99.10 2.80071 2.80071i 3.72091i 11.6880i 0 10.4212 + 10.4212i −4.32223 4.32223i −21.5319 21.5319i −4.84515 0
174.1 −2.50536 2.50536i 5.52663i 8.55366i 0 −13.8462 + 13.8462i −7.45363 + 7.45363i 11.4085 11.4085i −21.5436 0
174.2 −2.28875 2.28875i 3.77733i 6.47674i 0 8.64537 8.64537i −4.50772 + 4.50772i 5.66863 5.66863i −5.26826 0
174.3 −1.67324 1.67324i 0.982234i 1.59947i 0 −1.64351 + 1.64351i 6.39745 6.39745i −4.01666 + 4.01666i 8.03522 0
174.4 −1.01991 1.01991i 1.47834i 1.91956i 0 −1.50777 + 1.50777i −2.86721 + 2.86721i −6.03743 + 6.03743i 6.81452 0
174.5 −0.375392 0.375392i 5.24224i 3.71816i 0 1.96790 1.96790i 7.11069 7.11069i −2.89734 + 2.89734i −18.4811 0
174.6 0.177531 + 0.177531i 1.31502i 3.93697i 0 −0.233457 + 0.233457i −4.93361 + 4.93361i 1.40906 1.40906i 7.27073 0
174.7 0.962413 + 0.962413i 3.84448i 2.14752i 0 3.69997 3.69997i −0.488874 + 0.488874i 5.91646 5.91646i −5.78000 0
174.8 1.88633 + 1.88633i 0.793970i 3.11650i 0 −1.49769 + 1.49769i 8.42514 8.42514i 1.66658 1.66658i 8.36961 0
174.9 2.03566 + 2.03566i 4.42402i 4.28784i 0 −9.00581 + 9.00581i −7.36000 + 7.36000i −0.585953 + 0.585953i −10.5719 0
174.10 2.80071 + 2.80071i 3.72091i 11.6880i 0 10.4212 10.4212i −4.32223 + 4.32223i −21.5319 + 21.5319i −4.84515 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 99.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.g odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 325.3.g.e 20
5.b even 2 1 325.3.g.f 20
5.c odd 4 1 325.3.j.c 20
5.c odd 4 1 325.3.j.d yes 20
13.d odd 4 1 325.3.g.f 20
65.f even 4 1 325.3.j.c 20
65.g odd 4 1 inner 325.3.g.e 20
65.k even 4 1 325.3.j.d yes 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
325.3.g.e 20 1.a even 1 1 trivial
325.3.g.e 20 65.g odd 4 1 inner
325.3.g.f 20 5.b even 2 1
325.3.g.f 20 13.d odd 4 1
325.3.j.c 20 5.c odd 4 1
325.3.j.c 20 65.f even 4 1
325.3.j.d yes 20 5.c odd 4 1
325.3.j.d yes 20 65.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{20} + 6 T_{2}^{17} + 336 T_{2}^{16} + 90 T_{2}^{15} + 18 T_{2}^{14} + 654 T_{2}^{13} + \cdots + 46656 \) acting on \(S_{3}^{\mathrm{new}}(325, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} + 6 T^{17} + \cdots + 46656 \) Copy content Toggle raw display
$3$ \( T^{20} + \cdots + 110250000 \) Copy content Toggle raw display
$5$ \( T^{20} \) Copy content Toggle raw display
$7$ \( T^{20} + \cdots + 82\!\cdots\!76 \) Copy content Toggle raw display
$11$ \( T^{20} + \cdots + 29\!\cdots\!36 \) Copy content Toggle raw display
$13$ \( T^{20} + \cdots + 19\!\cdots\!01 \) Copy content Toggle raw display
$17$ \( (T^{10} - 8 T^{9} + \cdots - 29492667360)^{2} \) Copy content Toggle raw display
$19$ \( T^{20} + \cdots + 35\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( (T^{10} + 14 T^{9} + \cdots + 61510337640)^{2} \) Copy content Toggle raw display
$29$ \( (T^{10} + \cdots + 40470047745000)^{2} \) Copy content Toggle raw display
$31$ \( T^{20} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{20} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{20} + \cdots + 40\!\cdots\!76 \) Copy content Toggle raw display
$43$ \( (T^{10} + \cdots + 9131165078400)^{2} \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots + 16\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{20} + \cdots + 52\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 15\!\cdots\!24 \) Copy content Toggle raw display
$61$ \( (T^{10} + \cdots - 13329562266414)^{2} \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 12\!\cdots\!44 \) Copy content Toggle raw display
$71$ \( T^{20} + \cdots + 17\!\cdots\!04 \) Copy content Toggle raw display
$73$ \( T^{20} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( (T^{10} + \cdots - 69\!\cdots\!12)^{2} \) Copy content Toggle raw display
$83$ \( T^{20} + \cdots + 75\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{20} + \cdots + 58\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{20} + \cdots + 25\!\cdots\!24 \) Copy content Toggle raw display
show more
show less