Properties

Label 325.3.g
Level $325$
Weight $3$
Character orbit 325.g
Rep. character $\chi_{325}(99,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $80$
Newform subspaces $6$
Sturm bound $105$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 325.g (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 6 \)
Sturm bound: \(105\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(325, [\chi])\).

Total New Old
Modular forms 152 88 64
Cusp forms 128 80 48
Eisenstein series 24 8 16

Trace form

\( 80 q - 20 q^{6} - 208 q^{9} + 4 q^{11} + 40 q^{14} - 360 q^{16} + 96 q^{19} + 28 q^{21} - 8 q^{24} + 112 q^{26} + 272 q^{29} - 8 q^{31} - 52 q^{34} + 28 q^{39} + 212 q^{41} - 604 q^{44} + 244 q^{46} + 52 q^{54}+ \cdots + 1708 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(325, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
325.3.g.a 325.g 65.g $4$ $8.856$ \(\Q(i, \sqrt{10})\) None 13.3.d.a \(-4\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1+\beta _{1}-\beta _{2})q^{2}+(\beta _{1}+\beta _{2}+\beta _{3})q^{3}+\cdots\)
325.3.g.b 325.g 65.g $4$ $8.856$ \(\Q(i, \sqrt{10})\) None 13.3.d.a \(4\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1+\beta _{1}+\beta _{2})q^{2}+(\beta _{1}-\beta _{2}+\beta _{3})q^{3}+\cdots\)
325.3.g.c 325.g 65.g $16$ $8.856$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 65.3.j.a \(0\) \(0\) \(0\) \(-20\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{2}q^{2}+\beta _{12}q^{3}+(\beta _{1}-\beta _{2}+\beta _{8}+\cdots)q^{4}+\cdots\)
325.3.g.d 325.g 65.g $16$ $8.856$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 65.3.j.a \(0\) \(0\) \(0\) \(20\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{1}q^{2}+\beta _{12}q^{3}+(-\beta _{1}+\beta _{2}-\beta _{8}+\cdots)q^{4}+\cdots\)
325.3.g.e 325.g 65.g $20$ $8.856$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 325.3.j.c \(0\) \(0\) \(0\) \(-20\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{6}q^{2}+\beta _{4}q^{3}+(-2\beta _{8}-\beta _{13})q^{4}+\cdots\)
325.3.g.f 325.g 65.g $20$ $8.856$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 325.3.j.c \(0\) \(0\) \(0\) \(20\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{6}q^{2}-\beta _{4}q^{3}+(-2\beta _{8}-\beta _{13})q^{4}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(325, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(325, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)