Defining parameters
Level: | \( N \) | \(=\) | \( 325 = 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 325.g (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 65 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(105\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(325, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 152 | 88 | 64 |
Cusp forms | 128 | 80 | 48 |
Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(325, [\chi])\) into newform subspaces
Decomposition of \(S_{3}^{\mathrm{old}}(325, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(325, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 2}\)