L(s) = 1 | + (−2.50 − 2.50i)2-s − 5.52i·3-s + 8.55i·4-s + (−13.8 + 13.8i)6-s + (−7.45 + 7.45i)7-s + (11.4 − 11.4i)8-s − 21.5·9-s + (−0.306 − 0.306i)11-s + 47.2·12-s + (−11.9 − 5.08i)13-s + 37.3·14-s − 22.9·16-s + 15.5·17-s + (53.9 + 53.9i)18-s + (3.69 − 3.69i)19-s + ⋯ |
L(s) = 1 | + (−1.25 − 1.25i)2-s − 1.84i·3-s + 2.13i·4-s + (−2.30 + 2.30i)6-s + (−1.06 + 1.06i)7-s + (1.42 − 1.42i)8-s − 2.39·9-s + (−0.0278 − 0.0278i)11-s + 3.93·12-s + (−0.920 − 0.391i)13-s + 2.66·14-s − 1.43·16-s + 0.912·17-s + (2.99 + 2.99i)18-s + (0.194 − 0.194i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.841 + 0.540i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 325 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.841 + 0.540i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.264272 - 0.0776416i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.264272 - 0.0776416i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 13 | \( 1 + (11.9 + 5.08i)T \) |
good | 2 | \( 1 + (2.50 + 2.50i)T + 4iT^{2} \) |
| 3 | \( 1 + 5.52iT - 9T^{2} \) |
| 7 | \( 1 + (7.45 - 7.45i)T - 49iT^{2} \) |
| 11 | \( 1 + (0.306 + 0.306i)T + 121iT^{2} \) |
| 17 | \( 1 - 15.5T + 289T^{2} \) |
| 19 | \( 1 + (-3.69 + 3.69i)T - 361iT^{2} \) |
| 23 | \( 1 + 5.58T + 529T^{2} \) |
| 29 | \( 1 - 32.4T + 841T^{2} \) |
| 31 | \( 1 + (-13.2 + 13.2i)T - 961iT^{2} \) |
| 37 | \( 1 + (23.8 - 23.8i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (29.7 - 29.7i)T - 1.68e3iT^{2} \) |
| 43 | \( 1 - 64.2T + 1.84e3T^{2} \) |
| 47 | \( 1 + (20.7 - 20.7i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 - 3.22iT - 2.80e3T^{2} \) |
| 59 | \( 1 + (-37.8 - 37.8i)T + 3.48e3iT^{2} \) |
| 61 | \( 1 + 50.9T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-39.1 - 39.1i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + (86.8 - 86.8i)T - 5.04e3iT^{2} \) |
| 73 | \( 1 + (54.0 - 54.0i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 41.3T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-49.3 - 49.3i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (-44.8 - 44.8i)T + 7.92e3iT^{2} \) |
| 97 | \( 1 + (-12.6 - 12.6i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.69952458922345187001578361661, −10.28560029350602463787571295774, −9.434769558487202075447114898961, −8.499215845938327078530655108074, −7.79305227906512251963161764017, −6.82495135898286706381490465295, −5.71578499581493628377968210445, −2.98432175349431097542522563405, −2.50334794783245624218282383764, −1.09148835001438034424193333216,
0.23012029328985454317439387683, 3.36628809081512256788857388115, 4.61957659095596136048640888457, 5.68093534379080434461762768563, 6.75840884127097108522102947318, 7.76859132714231337596332924551, 8.915023722465846458499661425458, 9.609522197240662161109691507552, 10.22735270177223515689919571464, 10.58207265362344091285912123373