gp: [N,k,chi] = [322,2,Mod(5,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.5");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(66))
chi = DirichletCharacter(H, H._module([55, 3]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [160,-8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{160} - 6 T_{3}^{159} + 46 T_{3}^{158} - 204 T_{3}^{157} + 892 T_{3}^{156} - 3249 T_{3}^{155} + \cdots + 43\!\cdots\!21 \)
T3^160 - 6*T3^159 + 46*T3^158 - 204*T3^157 + 892*T3^156 - 3249*T3^155 + 10049*T3^154 - 32739*T3^153 + 81160*T3^152 - 254538*T3^151 + 603925*T3^150 - 1621959*T3^149 + 3671571*T3^148 - 4330332*T3^147 + 6063824*T3^146 + 39429114*T3^145 - 44576517*T3^144 - 146698086*T3^143 + 2764582857*T3^142 - 15233300631*T3^141 + 55136413152*T3^140 - 152806579929*T3^139 + 144746771120*T3^138 + 879089103249*T3^137 - 7262347805607*T3^136 + 30806541911295*T3^135 - 96525349398601*T3^134 + 219862254182832*T3^133 - 249363278620148*T3^132 - 515224405678290*T3^131 + 4371580545057062*T3^130 - 14955387196125723*T3^129 + 32455526713600345*T3^128 - 25066820593198635*T3^127 - 152774696075356781*T3^126 + 864692913614242422*T3^125 - 2805202340718396265*T3^124 + 5956147956357280923*T3^123 - 6350965753788808207*T3^122 - 14981550590986449087*T3^121 + 116169543533889599644*T3^120 - 421020434009109673980*T3^119 + 1174794006406561944299*T3^118 - 2587439741868362724561*T3^117 + 4539095482947157628714*T3^116 - 5150581417580177309055*T3^115 - 2405740058510552376279*T3^114 + 31002673907460839995290*T3^113 - 105386913697618781465815*T3^112 + 216952435264712930605200*T3^111 - 254084256334529425835820*T3^110 - 288296643816261137162895*T3^109 + 2862645479335923906614589*T3^108 - 9694290528269431777479918*T3^107 + 25657664157970303133033194*T3^106 - 53710747764690373114671270*T3^105 + 99001428956233081505041054*T3^104 - 158385542688061219928017536*T3^103 + 200931570972987026031484799*T3^102 - 235782830305630869842230206*T3^101 + 84540012449134709925536527*T3^100 + 39433361362884789261255882*T3^99 - 265283053812919269708010457*T3^98 + 267358270672081279179791472*T3^97 + 1632366741105509374608835327*T3^96 + 1306852191582170598226826712*T3^95 + 2180224013248568518495155650*T3^94 + 17546680685028494104701974838*T3^93 - 24945211504243230836819951471*T3^92 + 17040049843820698024798298739*T3^91 - 43161923042189860384850835316*T3^90 - 131437082072786628525126156708*T3^89 - 408550460796227493925183708820*T3^88 + 841582408641594459383120482743*T3^87 - 5067788194017749126343108446139*T3^86 + 7900528495815669700831983334905*T3^85 - 18524169600247767429237963831715*T3^84 + 17477510319248272927741324227051*T3^83 - 10587141746714277221432477838402*T3^82 + 8210536092673331442050736586230*T3^81 + 78827309772755412516594837450800*T3^80 - 18232608671621561313197869761618*T3^79 + 175936419001049734826829710288782*T3^78 - 275770918826556783975498317881830*T3^77 + 662854527389028240761599307273567*T3^76 - 1587481223207205351378479334415020*T3^75 + 2912100770763231543184981206191575*T3^74 - 3354289142456352328374356357881515*T3^73 + 6849538527847928419893694916689612*T3^72 + 16017655925781229017609947051433972*T3^71 + 40628564763976263047925165524940957*T3^70 + 127428468350157800317361644719479487*T3^69 + 193108670479970010342449464947854953*T3^68 + 346976253430405138079918452867324365*T3^67 + 574917202580051617580270504906380118*T3^66 + 960104248793521305920510166250728834*T3^65 + 1765572056371931950723512640414751030*T3^64 + 2653840969664489170770914749412716959*T3^63 + 3686506729376804970938061180929052344*T3^62 + 4313903246924030542175345657220736845*T3^61 + 7940286850799465734229060122310073920*T3^60 + 17227882374656200344732833227506993927*T3^59 + 36614136255856550048677754294731181096*T3^58 + 69094156581631161018496553817639445674*T3^57 + 115342716768570818037189602661880963728*T3^56 + 201460611369768295762387096392192908892*T3^55 + 386748052942166096725980170338705312758*T3^54 + 744554042154423036054905173427055648117*T3^53 + 1314025521838370926439453174418259457813*T3^52 + 2066042296105105763979652956498760006941*T3^51 + 2960135987871042572400183878632869181049*T3^50 + 4075865451204626987980801507687477668849*T3^49 + 5646177205133496440153297494126721263077*T3^48 + 7832357321214108003519461339411907057777*T3^47 + 10417582203746029631841967777624933297823*T3^46 + 12782744251450684993168047684798460237875*T3^45 + 14238242399804644766570201218803267630455*T3^44 + 14399638839675314583742769207036003245689*T3^43 + 13310865637191864034568601840924501968501*T3^42 + 11326340439610547802534832257101946720393*T3^41 + 8919617832418084634734137485829989597661*T3^40 + 6527001673485927441401066036571080989770*T3^39 + 4453043743877871709703584554895783149735*T3^38 + 2840945907571422498183656924760725261388*T3^37 + 1699222828114115678054954187619744519040*T3^36 + 955683647470695235186991500050860233989*T3^35 + 508312405538526265949812783045531518348*T3^34 + 258779265833541600101165044430087075997*T3^33 + 128861083842711747956134494323259455094*T3^32 + 64720837749187962775985954867989886919*T3^31 + 33784468689082765248756729987261334637*T3^30 + 18549946183285240167779008644394727841*T3^29 + 10555316933188105299401708591176284374*T3^28 + 6030735317233946831347020010972779507*T3^27 + 3350496522310638582863401484247189236*T3^26 + 1764910138900591315534271295735348351*T3^25 + 864930407767372390005738516331352291*T3^24 + 388165899240813629431121983389427188*T3^23 + 157118453538015647677002140524969421*T3^22 + 56435354779397223709783679863253268*T3^21 + 17640192361101755960976367983443645*T3^20 + 4669796938640086262376186354081582*T3^19 + 1001264712572637835834691813718946*T3^18 + 157488719684400087104872915482597*T3^17 + 12367097547030389128716100958115*T3^16 - 1663089204202487351663121209160*T3^15 - 723619338579188491290929780786*T3^14 - 106535444294882183878052474115*T3^13 - 5860026897701933659308732539*T3^12 + 54586083513492596650760877*T3^11 - 69708283751429883515246708*T3^10 + 5353431026363314069481754*T3^9 + 5425329057868504001690235*T3^8 + 69290001875234888866812*T3^7 - 4414503638024835869066*T3^6 - 402241407895503491910*T3^5 - 183279133660212257190*T3^4 + 11616933452147771559*T3^3 + 1087729414574410916*T3^2 - 137688750501685089*T3 + 4345203949621921
acting on \(S_{2}^{\mathrm{new}}(322, [\chi])\).