Defining parameters
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.o (of order \(66\) and degree \(20\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 161 \) |
Character field: | \(\Q(\zeta_{66})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(96\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(322, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1040 | 320 | 720 |
Cusp forms | 880 | 320 | 560 |
Eisenstein series | 160 | 0 | 160 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(322, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
322.2.o.a | $160$ | $2.571$ | None | \(-8\) | \(6\) | \(0\) | \(-11\) | ||
322.2.o.b | $160$ | $2.571$ | None | \(8\) | \(-6\) | \(0\) | \(11\) |
Decomposition of \(S_{2}^{\mathrm{old}}(322, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(322, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(161, [\chi])\)\(^{\oplus 2}\)