Defining parameters
| Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 322.o (of order \(66\) and degree \(20\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 161 \) |
| Character field: | \(\Q(\zeta_{66})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(96\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(322, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1040 | 320 | 720 |
| Cusp forms | 880 | 320 | 560 |
| Eisenstein series | 160 | 0 | 160 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(322, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 322.2.o.a | $160$ | $2.571$ | None | \(-8\) | \(6\) | \(0\) | \(-11\) | ||
| 322.2.o.b | $160$ | $2.571$ | None | \(8\) | \(-6\) | \(0\) | \(11\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(322, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(322, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(161, [\chi])\)\(^{\oplus 2}\)