Properties

Label 322.2
Level 322
Weight 2
Dimension 1011
Nonzero newspaces 8
Newform subspaces 28
Sturm bound 12672
Trace bound 6

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 322 = 2 \cdot 7 \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 28 \)
Sturm bound: \(12672\)
Trace bound: \(6\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(322))\).

Total New Old
Modular forms 3432 1011 2421
Cusp forms 2905 1011 1894
Eisenstein series 527 0 527

Trace form

\( 1011 q + 3 q^{2} + 8 q^{3} - q^{4} + 6 q^{5} - q^{7} + 3 q^{8} + 11 q^{9} + 6 q^{10} + 12 q^{11} + 8 q^{12} + 22 q^{13} + 3 q^{14} - 20 q^{15} - q^{16} - 38 q^{17} - 73 q^{18} - 28 q^{19} - 38 q^{20}+ \cdots - 196 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(322))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
322.2.a \(\chi_{322}(1, \cdot)\) 322.2.a.a 1 1
322.2.a.b 1
322.2.a.c 1
322.2.a.d 1
322.2.a.e 2
322.2.a.f 2
322.2.a.g 3
322.2.c \(\chi_{322}(321, \cdot)\) 322.2.c.a 4 1
322.2.c.b 4
322.2.c.c 4
322.2.c.d 4
322.2.e \(\chi_{322}(93, \cdot)\) 322.2.e.a 8 2
322.2.e.b 8
322.2.e.c 8
322.2.e.d 8
322.2.g \(\chi_{322}(45, \cdot)\) 322.2.g.a 16 2
322.2.g.b 16
322.2.i \(\chi_{322}(29, \cdot)\) 322.2.i.a 10 10
322.2.i.b 10
322.2.i.c 20
322.2.i.d 40
322.2.i.e 40
322.2.k \(\chi_{322}(83, \cdot)\) 322.2.k.a 80 10
322.2.k.b 80
322.2.m \(\chi_{322}(9, \cdot)\) 322.2.m.a 160 20
322.2.m.b 160
322.2.o \(\chi_{322}(5, \cdot)\) 322.2.o.a 160 20
322.2.o.b 160

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(322))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(322)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(161))\)\(^{\oplus 2}\)