Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [322,2,Mod(5,322)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(322, base_ring=CyclotomicField(66))
chi = DirichletCharacter(H, H._module([55, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("322.5");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 322 = 2 \cdot 7 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 322.o (of order \(66\), degree \(20\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.57118294509\) |
Analytic rank: | \(0\) |
Dimension: | \(160\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{66})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{66}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −0.723734 | + | 0.690079i | −0.577099 | + | 2.99428i | 0.0475819 | − | 0.998867i | 1.83118 | + | 1.44006i | −1.64862 | − | 2.56530i | −2.56146 | + | 0.662521i | 0.654861 | + | 0.755750i | −5.84754 | − | 2.34100i | −2.31904 | + | 0.221442i |
5.2 | −0.723734 | + | 0.690079i | −0.543074 | + | 2.81773i | 0.0475819 | − | 0.998867i | −2.82379 | − | 2.22065i | −1.55142 | − | 2.41405i | 1.58807 | − | 2.11613i | 0.654861 | + | 0.755750i | −4.85959 | − | 1.94549i | 3.57610 | − | 0.341476i |
5.3 | −0.723734 | + | 0.690079i | −0.347280 | + | 1.80186i | 0.0475819 | − | 0.998867i | −0.315754 | − | 0.248312i | −0.992088 | − | 1.54372i | 0.597169 | + | 2.57748i | 0.654861 | + | 0.755750i | −0.340999 | − | 0.136515i | 0.399877 | − | 0.0381836i |
5.4 | −0.723734 | + | 0.690079i | −0.0911992 | + | 0.473186i | 0.0475819 | − | 0.998867i | 3.41260 | + | 2.68370i | −0.260532 | − | 0.405396i | 0.336071 | − | 2.62432i | 0.654861 | + | 0.755750i | 2.56952 | + | 1.02868i | −4.32178 | + | 0.412680i |
5.5 | −0.723734 | + | 0.690079i | −0.0174618 | + | 0.0906004i | 0.0475819 | − | 0.998867i | −0.471311 | − | 0.370643i | −0.0498837 | − | 0.0776206i | −2.54557 | − | 0.721146i | 0.654861 | + | 0.755750i | 2.77720 | + | 1.11182i | 0.596877 | − | 0.0569948i |
5.6 | −0.723734 | + | 0.690079i | 0.101468 | − | 0.526466i | 0.0475819 | − | 0.998867i | −1.55500 | − | 1.22286i | 0.289867 | + | 0.451043i | −1.61196 | − | 2.09799i | 0.654861 | + | 0.755750i | 2.51823 | + | 1.00815i | 1.96928 | − | 0.188043i |
5.7 | −0.723734 | + | 0.690079i | 0.359896 | − | 1.86732i | 0.0475819 | − | 0.998867i | 2.44923 | + | 1.92610i | 1.02813 | + | 1.59980i | −0.00653026 | + | 2.64574i | 0.654861 | + | 0.755750i | −0.572239 | − | 0.229090i | −3.10175 | + | 0.296181i |
5.8 | −0.723734 | + | 0.690079i | 0.485721 | − | 2.52016i | 0.0475819 | − | 0.998867i | −0.469279 | − | 0.369045i | 1.38758 | + | 2.15911i | 2.39792 | − | 1.11803i | 0.654861 | + | 0.755750i | −3.33018 | − | 1.33320i | 0.594303 | − | 0.0567491i |
17.1 | 0.995472 | − | 0.0950560i | −1.61555 | − | 1.69434i | 0.981929 | − | 0.189251i | −1.08486 | − | 0.559284i | −1.76929 | − | 1.53310i | −0.926600 | − | 2.47819i | 0.959493 | − | 0.281733i | −0.118039 | + | 2.47795i | −1.13311 | − | 0.453629i |
17.2 | 0.995472 | − | 0.0950560i | −0.939050 | − | 0.984847i | 0.981929 | − | 0.189251i | 3.18388 | + | 1.64140i | −1.02841 | − | 0.891125i | −0.445049 | + | 2.60805i | 0.959493 | − | 0.281733i | 0.0546365 | − | 1.14696i | 3.32548 | + | 1.33132i |
17.3 | 0.995472 | − | 0.0950560i | −0.539036 | − | 0.565325i | 0.981929 | − | 0.189251i | −2.85594 | − | 1.47234i | −0.590333 | − | 0.511527i | −2.40085 | + | 1.11171i | 0.959493 | − | 0.281733i | 0.113714 | − | 2.38714i | −2.98297 | − | 1.19420i |
17.4 | 0.995472 | − | 0.0950560i | −0.522185 | − | 0.547652i | 0.981929 | − | 0.189251i | −0.212151 | − | 0.109371i | −0.571878 | − | 0.495536i | 2.45288 | + | 0.991667i | 0.959493 | − | 0.281733i | 0.115500 | − | 2.42465i | −0.221587 | − | 0.0887099i |
17.5 | 0.995472 | − | 0.0950560i | 0.0400565 | + | 0.0420101i | 0.981929 | − | 0.189251i | 0.891984 | + | 0.459850i | 0.0438685 | + | 0.0380122i | −0.448926 | − | 2.60739i | 0.959493 | − | 0.281733i | 0.142585 | − | 2.99324i | 0.931657 | + | 0.372979i |
17.6 | 0.995472 | − | 0.0950560i | 1.19209 | + | 1.25023i | 0.981929 | − | 0.189251i | 2.98731 | + | 1.54006i | 1.30553 | + | 1.13125i | −2.61962 | − | 0.370945i | 0.959493 | − | 0.281733i | 0.000754041 | − | 0.0158293i | 3.12017 | + | 1.24913i |
17.7 | 0.995472 | − | 0.0950560i | 1.63351 | + | 1.71318i | 0.981929 | − | 0.189251i | −0.844196 | − | 0.435213i | 1.78896 | + | 1.55014i | 2.35126 | − | 1.21309i | 0.959493 | − | 0.281733i | −0.123871 | + | 2.60037i | −0.881743 | − | 0.352997i |
17.8 | 0.995472 | − | 0.0950560i | 1.74321 | + | 1.82823i | 0.981929 | − | 0.189251i | −1.19856 | − | 0.617900i | 1.90910 | + | 1.65425i | −1.38944 | + | 2.25155i | 0.959493 | − | 0.281733i | −0.160884 | + | 3.37737i | −1.25187 | − | 0.501171i |
19.1 | 0.995472 | + | 0.0950560i | −1.61555 | + | 1.69434i | 0.981929 | + | 0.189251i | −1.08486 | + | 0.559284i | −1.76929 | + | 1.53310i | −0.926600 | + | 2.47819i | 0.959493 | + | 0.281733i | −0.118039 | − | 2.47795i | −1.13311 | + | 0.453629i |
19.2 | 0.995472 | + | 0.0950560i | −0.939050 | + | 0.984847i | 0.981929 | + | 0.189251i | 3.18388 | − | 1.64140i | −1.02841 | + | 0.891125i | −0.445049 | − | 2.60805i | 0.959493 | + | 0.281733i | 0.0546365 | + | 1.14696i | 3.32548 | − | 1.33132i |
19.3 | 0.995472 | + | 0.0950560i | −0.539036 | + | 0.565325i | 0.981929 | + | 0.189251i | −2.85594 | + | 1.47234i | −0.590333 | + | 0.511527i | −2.40085 | − | 1.11171i | 0.959493 | + | 0.281733i | 0.113714 | + | 2.38714i | −2.98297 | + | 1.19420i |
19.4 | 0.995472 | + | 0.0950560i | −0.522185 | + | 0.547652i | 0.981929 | + | 0.189251i | −0.212151 | + | 0.109371i | −0.571878 | + | 0.495536i | 2.45288 | − | 0.991667i | 0.959493 | + | 0.281733i | 0.115500 | + | 2.42465i | −0.221587 | + | 0.0887099i |
See next 80 embeddings (of 160 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.d | odd | 6 | 1 | inner |
23.d | odd | 22 | 1 | inner |
161.o | even | 66 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 322.2.o.a | ✓ | 160 |
7.d | odd | 6 | 1 | inner | 322.2.o.a | ✓ | 160 |
23.d | odd | 22 | 1 | inner | 322.2.o.a | ✓ | 160 |
161.o | even | 66 | 1 | inner | 322.2.o.a | ✓ | 160 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
322.2.o.a | ✓ | 160 | 1.a | even | 1 | 1 | trivial |
322.2.o.a | ✓ | 160 | 7.d | odd | 6 | 1 | inner |
322.2.o.a | ✓ | 160 | 23.d | odd | 22 | 1 | inner |
322.2.o.a | ✓ | 160 | 161.o | even | 66 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{160} - 6 T_{3}^{159} + 46 T_{3}^{158} - 204 T_{3}^{157} + 892 T_{3}^{156} - 3249 T_{3}^{155} + \cdots + 43\!\cdots\!21 \)
acting on \(S_{2}^{\mathrm{new}}(322, [\chi])\).