Properties

Label 320.10.a.z.1.4
Level $320$
Weight $10$
Character 320.1
Self dual yes
Analytic conductor $164.811$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,10,Mod(1,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 320.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,2500,0,0,0,23364] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(164.811467572\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 353x^{2} + 354x + 2313 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{2}\cdot 5 \)
Twist minimal: no (minimal twist has level 160)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-18.1438\) of defining polynomial
Character \(\chi\) \(=\) 320.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+223.725 q^{3} +625.000 q^{5} +7001.03 q^{7} +30370.1 q^{9} -88321.8 q^{11} -167508. q^{13} +139828. q^{15} -129588. q^{17} +411904. q^{19} +1.56631e6 q^{21} -461548. q^{23} +390625. q^{25} +2.39097e6 q^{27} -4.18180e6 q^{29} -3.97105e6 q^{31} -1.97598e7 q^{33} +4.37565e6 q^{35} -1.78098e7 q^{37} -3.74759e7 q^{39} +2.55026e7 q^{41} -4.98702e6 q^{43} +1.89813e7 q^{45} -6.37511e7 q^{47} +8.66085e6 q^{49} -2.89922e7 q^{51} -3.97959e7 q^{53} -5.52011e7 q^{55} +9.21535e7 q^{57} +3.20652e7 q^{59} +1.49458e8 q^{61} +2.12622e8 q^{63} -1.04693e8 q^{65} -1.68066e8 q^{67} -1.03260e8 q^{69} -9.59405e7 q^{71} +2.30366e7 q^{73} +8.73928e7 q^{75} -6.18343e8 q^{77} +1.24934e8 q^{79} -6.28530e7 q^{81} -5.23811e8 q^{83} -8.09926e7 q^{85} -9.35576e8 q^{87} +1.00213e9 q^{89} -1.17273e9 q^{91} -8.88426e8 q^{93} +2.57440e8 q^{95} -1.10468e9 q^{97} -2.68234e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2500 q^{5} + 23364 q^{9} - 201256 q^{13} - 442040 q^{17} + 3496176 q^{21} + 1562500 q^{25} - 6719352 q^{29} - 36991008 q^{33} - 29092616 q^{37} + 49561624 q^{41} + 14602500 q^{45} + 3039028 q^{49}+ \cdots + 464919272 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 223.725 1.59467 0.797333 0.603540i \(-0.206243\pi\)
0.797333 + 0.603540i \(0.206243\pi\)
\(4\) 0 0
\(5\) 625.000 0.447214
\(6\) 0 0
\(7\) 7001.03 1.10210 0.551050 0.834472i \(-0.314227\pi\)
0.551050 + 0.834472i \(0.314227\pi\)
\(8\) 0 0
\(9\) 30370.1 1.54296
\(10\) 0 0
\(11\) −88321.8 −1.81887 −0.909433 0.415851i \(-0.863484\pi\)
−0.909433 + 0.415851i \(0.863484\pi\)
\(12\) 0 0
\(13\) −167508. −1.62664 −0.813321 0.581816i \(-0.802342\pi\)
−0.813321 + 0.581816i \(0.802342\pi\)
\(14\) 0 0
\(15\) 139828. 0.713156
\(16\) 0 0
\(17\) −129588. −0.376310 −0.188155 0.982139i \(-0.560251\pi\)
−0.188155 + 0.982139i \(0.560251\pi\)
\(18\) 0 0
\(19\) 411904. 0.725112 0.362556 0.931962i \(-0.381904\pi\)
0.362556 + 0.931962i \(0.381904\pi\)
\(20\) 0 0
\(21\) 1.56631e6 1.75748
\(22\) 0 0
\(23\) −461548. −0.343908 −0.171954 0.985105i \(-0.555008\pi\)
−0.171954 + 0.985105i \(0.555008\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) 0 0
\(27\) 2.39097e6 0.865840
\(28\) 0 0
\(29\) −4.18180e6 −1.09793 −0.548963 0.835847i \(-0.684977\pi\)
−0.548963 + 0.835847i \(0.684977\pi\)
\(30\) 0 0
\(31\) −3.97105e6 −0.772286 −0.386143 0.922439i \(-0.626193\pi\)
−0.386143 + 0.922439i \(0.626193\pi\)
\(32\) 0 0
\(33\) −1.97598e7 −2.90048
\(34\) 0 0
\(35\) 4.37565e6 0.492874
\(36\) 0 0
\(37\) −1.78098e7 −1.56225 −0.781124 0.624375i \(-0.785354\pi\)
−0.781124 + 0.624375i \(0.785354\pi\)
\(38\) 0 0
\(39\) −3.74759e7 −2.59395
\(40\) 0 0
\(41\) 2.55026e7 1.40947 0.704736 0.709470i \(-0.251065\pi\)
0.704736 + 0.709470i \(0.251065\pi\)
\(42\) 0 0
\(43\) −4.98702e6 −0.222450 −0.111225 0.993795i \(-0.535477\pi\)
−0.111225 + 0.993795i \(0.535477\pi\)
\(44\) 0 0
\(45\) 1.89813e7 0.690033
\(46\) 0 0
\(47\) −6.37511e7 −1.90567 −0.952834 0.303492i \(-0.901847\pi\)
−0.952834 + 0.303492i \(0.901847\pi\)
\(48\) 0 0
\(49\) 8.66085e6 0.214624
\(50\) 0 0
\(51\) −2.89922e7 −0.600088
\(52\) 0 0
\(53\) −3.97959e7 −0.692783 −0.346391 0.938090i \(-0.612593\pi\)
−0.346391 + 0.938090i \(0.612593\pi\)
\(54\) 0 0
\(55\) −5.52011e7 −0.813421
\(56\) 0 0
\(57\) 9.21535e7 1.15631
\(58\) 0 0
\(59\) 3.20652e7 0.344508 0.172254 0.985053i \(-0.444895\pi\)
0.172254 + 0.985053i \(0.444895\pi\)
\(60\) 0 0
\(61\) 1.49458e8 1.38209 0.691043 0.722814i \(-0.257152\pi\)
0.691043 + 0.722814i \(0.257152\pi\)
\(62\) 0 0
\(63\) 2.12622e8 1.70050
\(64\) 0 0
\(65\) −1.04693e8 −0.727456
\(66\) 0 0
\(67\) −1.68066e8 −1.01893 −0.509463 0.860492i \(-0.670156\pi\)
−0.509463 + 0.860492i \(0.670156\pi\)
\(68\) 0 0
\(69\) −1.03260e8 −0.548418
\(70\) 0 0
\(71\) −9.59405e7 −0.448063 −0.224032 0.974582i \(-0.571922\pi\)
−0.224032 + 0.974582i \(0.571922\pi\)
\(72\) 0 0
\(73\) 2.30366e7 0.0949434 0.0474717 0.998873i \(-0.484884\pi\)
0.0474717 + 0.998873i \(0.484884\pi\)
\(74\) 0 0
\(75\) 8.73928e7 0.318933
\(76\) 0 0
\(77\) −6.18343e8 −2.00457
\(78\) 0 0
\(79\) 1.24934e8 0.360876 0.180438 0.983586i \(-0.442249\pi\)
0.180438 + 0.983586i \(0.442249\pi\)
\(80\) 0 0
\(81\) −6.28530e7 −0.162235
\(82\) 0 0
\(83\) −5.23811e8 −1.21150 −0.605750 0.795655i \(-0.707127\pi\)
−0.605750 + 0.795655i \(0.707127\pi\)
\(84\) 0 0
\(85\) −8.09926e7 −0.168291
\(86\) 0 0
\(87\) −9.35576e8 −1.75082
\(88\) 0 0
\(89\) 1.00213e9 1.69305 0.846526 0.532347i \(-0.178690\pi\)
0.846526 + 0.532347i \(0.178690\pi\)
\(90\) 0 0
\(91\) −1.17273e9 −1.79272
\(92\) 0 0
\(93\) −8.88426e8 −1.23154
\(94\) 0 0
\(95\) 2.57440e8 0.324280
\(96\) 0 0
\(97\) −1.10468e9 −1.26696 −0.633480 0.773759i \(-0.718374\pi\)
−0.633480 + 0.773759i \(0.718374\pi\)
\(98\) 0 0
\(99\) −2.68234e9 −2.80644
\(100\) 0 0
\(101\) 1.06499e9 1.01836 0.509178 0.860662i \(-0.329950\pi\)
0.509178 + 0.860662i \(0.329950\pi\)
\(102\) 0 0
\(103\) 6.97414e8 0.610553 0.305276 0.952264i \(-0.401251\pi\)
0.305276 + 0.952264i \(0.401251\pi\)
\(104\) 0 0
\(105\) 9.78943e8 0.785969
\(106\) 0 0
\(107\) 1.06119e9 0.782646 0.391323 0.920253i \(-0.372017\pi\)
0.391323 + 0.920253i \(0.372017\pi\)
\(108\) 0 0
\(109\) −1.49799e8 −0.101646 −0.0508228 0.998708i \(-0.516184\pi\)
−0.0508228 + 0.998708i \(0.516184\pi\)
\(110\) 0 0
\(111\) −3.98450e9 −2.49127
\(112\) 0 0
\(113\) 3.37225e9 1.94566 0.972830 0.231523i \(-0.0743707\pi\)
0.972830 + 0.231523i \(0.0743707\pi\)
\(114\) 0 0
\(115\) −2.88468e8 −0.153800
\(116\) 0 0
\(117\) −5.08725e9 −2.50984
\(118\) 0 0
\(119\) −9.07251e8 −0.414731
\(120\) 0 0
\(121\) 5.44279e9 2.30827
\(122\) 0 0
\(123\) 5.70557e9 2.24764
\(124\) 0 0
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) −2.92465e9 −0.997602 −0.498801 0.866717i \(-0.666226\pi\)
−0.498801 + 0.866717i \(0.666226\pi\)
\(128\) 0 0
\(129\) −1.11572e9 −0.354734
\(130\) 0 0
\(131\) 4.10577e9 1.21807 0.609037 0.793142i \(-0.291556\pi\)
0.609037 + 0.793142i \(0.291556\pi\)
\(132\) 0 0
\(133\) 2.88375e9 0.799146
\(134\) 0 0
\(135\) 1.49436e9 0.387215
\(136\) 0 0
\(137\) −5.30030e9 −1.28546 −0.642728 0.766094i \(-0.722198\pi\)
−0.642728 + 0.766094i \(0.722198\pi\)
\(138\) 0 0
\(139\) 2.26913e9 0.515577 0.257789 0.966201i \(-0.417006\pi\)
0.257789 + 0.966201i \(0.417006\pi\)
\(140\) 0 0
\(141\) −1.42627e10 −3.03890
\(142\) 0 0
\(143\) 1.47946e10 2.95864
\(144\) 0 0
\(145\) −2.61363e9 −0.491007
\(146\) 0 0
\(147\) 1.93765e9 0.342253
\(148\) 0 0
\(149\) −3.02575e9 −0.502916 −0.251458 0.967868i \(-0.580910\pi\)
−0.251458 + 0.967868i \(0.580910\pi\)
\(150\) 0 0
\(151\) −1.41916e9 −0.222145 −0.111072 0.993812i \(-0.535429\pi\)
−0.111072 + 0.993812i \(0.535429\pi\)
\(152\) 0 0
\(153\) −3.93560e9 −0.580631
\(154\) 0 0
\(155\) −2.48191e9 −0.345377
\(156\) 0 0
\(157\) −8.44736e8 −0.110962 −0.0554808 0.998460i \(-0.517669\pi\)
−0.0554808 + 0.998460i \(0.517669\pi\)
\(158\) 0 0
\(159\) −8.90336e9 −1.10476
\(160\) 0 0
\(161\) −3.23131e9 −0.379020
\(162\) 0 0
\(163\) −1.31072e10 −1.45434 −0.727171 0.686457i \(-0.759165\pi\)
−0.727171 + 0.686457i \(0.759165\pi\)
\(164\) 0 0
\(165\) −1.23499e10 −1.29714
\(166\) 0 0
\(167\) 1.89972e10 1.89001 0.945007 0.327051i \(-0.106055\pi\)
0.945007 + 0.327051i \(0.106055\pi\)
\(168\) 0 0
\(169\) 1.74546e10 1.64596
\(170\) 0 0
\(171\) 1.25096e10 1.11882
\(172\) 0 0
\(173\) −1.43419e10 −1.21731 −0.608653 0.793436i \(-0.708290\pi\)
−0.608653 + 0.793436i \(0.708290\pi\)
\(174\) 0 0
\(175\) 2.73478e9 0.220420
\(176\) 0 0
\(177\) 7.17379e9 0.549375
\(178\) 0 0
\(179\) 8.34282e9 0.607399 0.303700 0.952768i \(-0.401778\pi\)
0.303700 + 0.952768i \(0.401778\pi\)
\(180\) 0 0
\(181\) 6.84351e9 0.473942 0.236971 0.971517i \(-0.423845\pi\)
0.236971 + 0.971517i \(0.423845\pi\)
\(182\) 0 0
\(183\) 3.34376e10 2.20396
\(184\) 0 0
\(185\) −1.11311e10 −0.698659
\(186\) 0 0
\(187\) 1.14455e10 0.684456
\(188\) 0 0
\(189\) 1.67393e10 0.954242
\(190\) 0 0
\(191\) 6.44325e9 0.350312 0.175156 0.984541i \(-0.443957\pi\)
0.175156 + 0.984541i \(0.443957\pi\)
\(192\) 0 0
\(193\) −4.18680e9 −0.217207 −0.108604 0.994085i \(-0.534638\pi\)
−0.108604 + 0.994085i \(0.534638\pi\)
\(194\) 0 0
\(195\) −2.34224e10 −1.16005
\(196\) 0 0
\(197\) −1.94307e10 −0.919161 −0.459580 0.888136i \(-0.652000\pi\)
−0.459580 + 0.888136i \(0.652000\pi\)
\(198\) 0 0
\(199\) −2.45813e10 −1.11113 −0.555566 0.831473i \(-0.687498\pi\)
−0.555566 + 0.831473i \(0.687498\pi\)
\(200\) 0 0
\(201\) −3.76006e10 −1.62485
\(202\) 0 0
\(203\) −2.92769e10 −1.21002
\(204\) 0 0
\(205\) 1.59391e10 0.630335
\(206\) 0 0
\(207\) −1.40173e10 −0.530636
\(208\) 0 0
\(209\) −3.63801e10 −1.31888
\(210\) 0 0
\(211\) 4.32159e10 1.50097 0.750486 0.660886i \(-0.229819\pi\)
0.750486 + 0.660886i \(0.229819\pi\)
\(212\) 0 0
\(213\) −2.14643e10 −0.714511
\(214\) 0 0
\(215\) −3.11688e9 −0.0994827
\(216\) 0 0
\(217\) −2.78015e10 −0.851136
\(218\) 0 0
\(219\) 5.15386e9 0.151403
\(220\) 0 0
\(221\) 2.17071e10 0.612121
\(222\) 0 0
\(223\) −7.20262e9 −0.195038 −0.0975189 0.995234i \(-0.531091\pi\)
−0.0975189 + 0.995234i \(0.531091\pi\)
\(224\) 0 0
\(225\) 1.18633e10 0.308592
\(226\) 0 0
\(227\) 1.80040e10 0.450040 0.225020 0.974354i \(-0.427755\pi\)
0.225020 + 0.974354i \(0.427755\pi\)
\(228\) 0 0
\(229\) −3.33485e10 −0.801339 −0.400669 0.916223i \(-0.631222\pi\)
−0.400669 + 0.916223i \(0.631222\pi\)
\(230\) 0 0
\(231\) −1.38339e11 −3.19662
\(232\) 0 0
\(233\) −4.41281e9 −0.0980876 −0.0490438 0.998797i \(-0.515617\pi\)
−0.0490438 + 0.998797i \(0.515617\pi\)
\(234\) 0 0
\(235\) −3.98444e10 −0.852240
\(236\) 0 0
\(237\) 2.79508e10 0.575476
\(238\) 0 0
\(239\) 6.84172e10 1.35636 0.678179 0.734897i \(-0.262769\pi\)
0.678179 + 0.734897i \(0.262769\pi\)
\(240\) 0 0
\(241\) −9.25286e10 −1.76685 −0.883425 0.468573i \(-0.844768\pi\)
−0.883425 + 0.468573i \(0.844768\pi\)
\(242\) 0 0
\(243\) −6.11233e10 −1.12455
\(244\) 0 0
\(245\) 5.41303e9 0.0959827
\(246\) 0 0
\(247\) −6.89975e10 −1.17950
\(248\) 0 0
\(249\) −1.17190e11 −1.93194
\(250\) 0 0
\(251\) 5.74375e10 0.913406 0.456703 0.889619i \(-0.349030\pi\)
0.456703 + 0.889619i \(0.349030\pi\)
\(252\) 0 0
\(253\) 4.07647e10 0.625522
\(254\) 0 0
\(255\) −1.81201e10 −0.268368
\(256\) 0 0
\(257\) 1.69810e10 0.242808 0.121404 0.992603i \(-0.461260\pi\)
0.121404 + 0.992603i \(0.461260\pi\)
\(258\) 0 0
\(259\) −1.24687e11 −1.72175
\(260\) 0 0
\(261\) −1.27002e11 −1.69405
\(262\) 0 0
\(263\) 4.13075e9 0.0532388 0.0266194 0.999646i \(-0.491526\pi\)
0.0266194 + 0.999646i \(0.491526\pi\)
\(264\) 0 0
\(265\) −2.48725e10 −0.309822
\(266\) 0 0
\(267\) 2.24203e11 2.69985
\(268\) 0 0
\(269\) −9.35217e10 −1.08900 −0.544499 0.838761i \(-0.683280\pi\)
−0.544499 + 0.838761i \(0.683280\pi\)
\(270\) 0 0
\(271\) 2.54785e10 0.286954 0.143477 0.989654i \(-0.454172\pi\)
0.143477 + 0.989654i \(0.454172\pi\)
\(272\) 0 0
\(273\) −2.62370e11 −2.85879
\(274\) 0 0
\(275\) −3.45007e10 −0.363773
\(276\) 0 0
\(277\) 5.24035e10 0.534813 0.267406 0.963584i \(-0.413833\pi\)
0.267406 + 0.963584i \(0.413833\pi\)
\(278\) 0 0
\(279\) −1.20601e11 −1.19161
\(280\) 0 0
\(281\) 9.33973e10 0.893626 0.446813 0.894627i \(-0.352559\pi\)
0.446813 + 0.894627i \(0.352559\pi\)
\(282\) 0 0
\(283\) −1.32091e11 −1.22415 −0.612073 0.790801i \(-0.709664\pi\)
−0.612073 + 0.790801i \(0.709664\pi\)
\(284\) 0 0
\(285\) 5.75959e10 0.517118
\(286\) 0 0
\(287\) 1.78544e11 1.55338
\(288\) 0 0
\(289\) −1.01795e11 −0.858391
\(290\) 0 0
\(291\) −2.47145e11 −2.02038
\(292\) 0 0
\(293\) −6.94338e10 −0.550385 −0.275193 0.961389i \(-0.588742\pi\)
−0.275193 + 0.961389i \(0.588742\pi\)
\(294\) 0 0
\(295\) 2.00407e10 0.154069
\(296\) 0 0
\(297\) −2.11175e11 −1.57485
\(298\) 0 0
\(299\) 7.73132e10 0.559414
\(300\) 0 0
\(301\) −3.49143e10 −0.245162
\(302\) 0 0
\(303\) 2.38265e11 1.62394
\(304\) 0 0
\(305\) 9.34112e10 0.618087
\(306\) 0 0
\(307\) −1.68034e11 −1.07963 −0.539814 0.841784i \(-0.681505\pi\)
−0.539814 + 0.841784i \(0.681505\pi\)
\(308\) 0 0
\(309\) 1.56029e11 0.973628
\(310\) 0 0
\(311\) −2.14855e11 −1.30234 −0.651169 0.758932i \(-0.725721\pi\)
−0.651169 + 0.758932i \(0.725721\pi\)
\(312\) 0 0
\(313\) 3.03173e11 1.78542 0.892712 0.450627i \(-0.148799\pi\)
0.892712 + 0.450627i \(0.148799\pi\)
\(314\) 0 0
\(315\) 1.32889e11 0.760485
\(316\) 0 0
\(317\) −1.06468e11 −0.592177 −0.296089 0.955160i \(-0.595682\pi\)
−0.296089 + 0.955160i \(0.595682\pi\)
\(318\) 0 0
\(319\) 3.69344e11 1.99698
\(320\) 0 0
\(321\) 2.37415e11 1.24806
\(322\) 0 0
\(323\) −5.33779e10 −0.272867
\(324\) 0 0
\(325\) −6.54330e10 −0.325328
\(326\) 0 0
\(327\) −3.35138e10 −0.162091
\(328\) 0 0
\(329\) −4.46323e11 −2.10024
\(330\) 0 0
\(331\) −4.30772e11 −1.97252 −0.986260 0.165200i \(-0.947173\pi\)
−0.986260 + 0.165200i \(0.947173\pi\)
\(332\) 0 0
\(333\) −5.40884e11 −2.41049
\(334\) 0 0
\(335\) −1.05041e11 −0.455678
\(336\) 0 0
\(337\) 2.14791e10 0.0907154 0.0453577 0.998971i \(-0.485557\pi\)
0.0453577 + 0.998971i \(0.485557\pi\)
\(338\) 0 0
\(339\) 7.54458e11 3.10268
\(340\) 0 0
\(341\) 3.50730e11 1.40468
\(342\) 0 0
\(343\) −2.21882e11 −0.865563
\(344\) 0 0
\(345\) −6.45375e10 −0.245260
\(346\) 0 0
\(347\) 2.69409e11 0.997537 0.498769 0.866735i \(-0.333786\pi\)
0.498769 + 0.866735i \(0.333786\pi\)
\(348\) 0 0
\(349\) −2.16349e11 −0.780623 −0.390311 0.920683i \(-0.627633\pi\)
−0.390311 + 0.920683i \(0.627633\pi\)
\(350\) 0 0
\(351\) −4.00508e11 −1.40841
\(352\) 0 0
\(353\) −1.39649e11 −0.478688 −0.239344 0.970935i \(-0.576932\pi\)
−0.239344 + 0.970935i \(0.576932\pi\)
\(354\) 0 0
\(355\) −5.99628e10 −0.200380
\(356\) 0 0
\(357\) −2.02975e11 −0.661357
\(358\) 0 0
\(359\) 7.67571e10 0.243890 0.121945 0.992537i \(-0.461087\pi\)
0.121945 + 0.992537i \(0.461087\pi\)
\(360\) 0 0
\(361\) −1.53023e11 −0.474213
\(362\) 0 0
\(363\) 1.21769e12 3.68092
\(364\) 0 0
\(365\) 1.43978e10 0.0424600
\(366\) 0 0
\(367\) 5.15249e11 1.48259 0.741293 0.671182i \(-0.234213\pi\)
0.741293 + 0.671182i \(0.234213\pi\)
\(368\) 0 0
\(369\) 7.74515e11 2.17476
\(370\) 0 0
\(371\) −2.78613e11 −0.763516
\(372\) 0 0
\(373\) 8.21346e9 0.0219703 0.0109852 0.999940i \(-0.496503\pi\)
0.0109852 + 0.999940i \(0.496503\pi\)
\(374\) 0 0
\(375\) 5.46205e10 0.142631
\(376\) 0 0
\(377\) 7.00488e11 1.78593
\(378\) 0 0
\(379\) 2.22340e11 0.553530 0.276765 0.960938i \(-0.410738\pi\)
0.276765 + 0.960938i \(0.410738\pi\)
\(380\) 0 0
\(381\) −6.54319e11 −1.59084
\(382\) 0 0
\(383\) −7.07610e10 −0.168035 −0.0840175 0.996464i \(-0.526775\pi\)
−0.0840175 + 0.996464i \(0.526775\pi\)
\(384\) 0 0
\(385\) −3.86465e11 −0.896472
\(386\) 0 0
\(387\) −1.51456e11 −0.343232
\(388\) 0 0
\(389\) −2.07926e11 −0.460399 −0.230200 0.973143i \(-0.573938\pi\)
−0.230200 + 0.973143i \(0.573938\pi\)
\(390\) 0 0
\(391\) 5.98112e10 0.129416
\(392\) 0 0
\(393\) 9.18565e11 1.94242
\(394\) 0 0
\(395\) 7.80835e10 0.161388
\(396\) 0 0
\(397\) −1.44824e11 −0.292606 −0.146303 0.989240i \(-0.546737\pi\)
−0.146303 + 0.989240i \(0.546737\pi\)
\(398\) 0 0
\(399\) 6.45169e11 1.27437
\(400\) 0 0
\(401\) −2.66461e11 −0.514617 −0.257309 0.966329i \(-0.582836\pi\)
−0.257309 + 0.966329i \(0.582836\pi\)
\(402\) 0 0
\(403\) 6.65185e11 1.25623
\(404\) 0 0
\(405\) −3.92831e10 −0.0725535
\(406\) 0 0
\(407\) 1.57299e12 2.84152
\(408\) 0 0
\(409\) 1.35020e11 0.238585 0.119293 0.992859i \(-0.461937\pi\)
0.119293 + 0.992859i \(0.461937\pi\)
\(410\) 0 0
\(411\) −1.18581e12 −2.04987
\(412\) 0 0
\(413\) 2.24489e11 0.379682
\(414\) 0 0
\(415\) −3.27382e11 −0.541799
\(416\) 0 0
\(417\) 5.07663e11 0.822173
\(418\) 0 0
\(419\) −6.88110e11 −1.09067 −0.545337 0.838217i \(-0.683598\pi\)
−0.545337 + 0.838217i \(0.683598\pi\)
\(420\) 0 0
\(421\) −5.43848e11 −0.843739 −0.421869 0.906657i \(-0.638626\pi\)
−0.421869 + 0.906657i \(0.638626\pi\)
\(422\) 0 0
\(423\) −1.93613e12 −2.94037
\(424\) 0 0
\(425\) −5.06204e10 −0.0752619
\(426\) 0 0
\(427\) 1.04636e12 1.52320
\(428\) 0 0
\(429\) 3.30994e12 4.71805
\(430\) 0 0
\(431\) −2.40997e11 −0.336406 −0.168203 0.985752i \(-0.553796\pi\)
−0.168203 + 0.985752i \(0.553796\pi\)
\(432\) 0 0
\(433\) 7.20520e11 0.985033 0.492516 0.870303i \(-0.336077\pi\)
0.492516 + 0.870303i \(0.336077\pi\)
\(434\) 0 0
\(435\) −5.84735e11 −0.782992
\(436\) 0 0
\(437\) −1.90114e11 −0.249371
\(438\) 0 0
\(439\) −1.24147e11 −0.159531 −0.0797653 0.996814i \(-0.525417\pi\)
−0.0797653 + 0.996814i \(0.525417\pi\)
\(440\) 0 0
\(441\) 2.63031e11 0.331156
\(442\) 0 0
\(443\) −1.10043e12 −1.35752 −0.678761 0.734360i \(-0.737483\pi\)
−0.678761 + 0.734360i \(0.737483\pi\)
\(444\) 0 0
\(445\) 6.26333e11 0.757156
\(446\) 0 0
\(447\) −6.76938e11 −0.801982
\(448\) 0 0
\(449\) 2.84066e11 0.329846 0.164923 0.986306i \(-0.447262\pi\)
0.164923 + 0.986306i \(0.447262\pi\)
\(450\) 0 0
\(451\) −2.25243e12 −2.56364
\(452\) 0 0
\(453\) −3.17503e11 −0.354247
\(454\) 0 0
\(455\) −7.32958e11 −0.801729
\(456\) 0 0
\(457\) −1.41452e12 −1.51700 −0.758499 0.651674i \(-0.774067\pi\)
−0.758499 + 0.651674i \(0.774067\pi\)
\(458\) 0 0
\(459\) −3.09842e11 −0.325824
\(460\) 0 0
\(461\) −8.15481e11 −0.840930 −0.420465 0.907309i \(-0.638133\pi\)
−0.420465 + 0.907309i \(0.638133\pi\)
\(462\) 0 0
\(463\) −1.82985e11 −0.185055 −0.0925276 0.995710i \(-0.529495\pi\)
−0.0925276 + 0.995710i \(0.529495\pi\)
\(464\) 0 0
\(465\) −5.55266e11 −0.550761
\(466\) 0 0
\(467\) −1.50939e12 −1.46850 −0.734252 0.678877i \(-0.762467\pi\)
−0.734252 + 0.678877i \(0.762467\pi\)
\(468\) 0 0
\(469\) −1.17663e12 −1.12296
\(470\) 0 0
\(471\) −1.88989e11 −0.176947
\(472\) 0 0
\(473\) 4.40462e11 0.404607
\(474\) 0 0
\(475\) 1.60900e11 0.145022
\(476\) 0 0
\(477\) −1.20861e12 −1.06894
\(478\) 0 0
\(479\) 1.02887e12 0.893002 0.446501 0.894783i \(-0.352670\pi\)
0.446501 + 0.894783i \(0.352670\pi\)
\(480\) 0 0
\(481\) 2.98329e12 2.54122
\(482\) 0 0
\(483\) −7.22927e11 −0.604411
\(484\) 0 0
\(485\) −6.90424e11 −0.566602
\(486\) 0 0
\(487\) 1.17861e12 0.949489 0.474745 0.880124i \(-0.342540\pi\)
0.474745 + 0.880124i \(0.342540\pi\)
\(488\) 0 0
\(489\) −2.93242e12 −2.31919
\(490\) 0 0
\(491\) 6.83487e11 0.530718 0.265359 0.964150i \(-0.414510\pi\)
0.265359 + 0.964150i \(0.414510\pi\)
\(492\) 0 0
\(493\) 5.41912e11 0.413160
\(494\) 0 0
\(495\) −1.67646e12 −1.25508
\(496\) 0 0
\(497\) −6.71682e11 −0.493810
\(498\) 0 0
\(499\) 1.30507e12 0.942280 0.471140 0.882059i \(-0.343843\pi\)
0.471140 + 0.882059i \(0.343843\pi\)
\(500\) 0 0
\(501\) 4.25015e12 3.01394
\(502\) 0 0
\(503\) 7.41937e11 0.516786 0.258393 0.966040i \(-0.416807\pi\)
0.258393 + 0.966040i \(0.416807\pi\)
\(504\) 0 0
\(505\) 6.65619e11 0.455422
\(506\) 0 0
\(507\) 3.90504e12 2.62476
\(508\) 0 0
\(509\) 2.68908e12 1.77572 0.887858 0.460119i \(-0.152193\pi\)
0.887858 + 0.460119i \(0.152193\pi\)
\(510\) 0 0
\(511\) 1.61280e11 0.104637
\(512\) 0 0
\(513\) 9.84851e11 0.627831
\(514\) 0 0
\(515\) 4.35884e11 0.273047
\(516\) 0 0
\(517\) 5.63061e12 3.46615
\(518\) 0 0
\(519\) −3.20865e12 −1.94120
\(520\) 0 0
\(521\) 4.09113e11 0.243262 0.121631 0.992575i \(-0.461188\pi\)
0.121631 + 0.992575i \(0.461188\pi\)
\(522\) 0 0
\(523\) 3.30598e11 0.193216 0.0966078 0.995323i \(-0.469201\pi\)
0.0966078 + 0.995323i \(0.469201\pi\)
\(524\) 0 0
\(525\) 6.11840e11 0.351496
\(526\) 0 0
\(527\) 5.14601e11 0.290619
\(528\) 0 0
\(529\) −1.58813e12 −0.881728
\(530\) 0 0
\(531\) 9.73821e11 0.531562
\(532\) 0 0
\(533\) −4.27190e12 −2.29271
\(534\) 0 0
\(535\) 6.63243e11 0.350010
\(536\) 0 0
\(537\) 1.86650e12 0.968599
\(538\) 0 0
\(539\) −7.64941e11 −0.390372
\(540\) 0 0
\(541\) 1.33596e12 0.670513 0.335256 0.942127i \(-0.391177\pi\)
0.335256 + 0.942127i \(0.391177\pi\)
\(542\) 0 0
\(543\) 1.53107e12 0.755780
\(544\) 0 0
\(545\) −9.36242e10 −0.0454573
\(546\) 0 0
\(547\) 2.77719e12 1.32636 0.663181 0.748459i \(-0.269206\pi\)
0.663181 + 0.748459i \(0.269206\pi\)
\(548\) 0 0
\(549\) 4.53905e12 2.13250
\(550\) 0 0
\(551\) −1.72250e12 −0.796119
\(552\) 0 0
\(553\) 8.74664e11 0.397721
\(554\) 0 0
\(555\) −2.49031e12 −1.11413
\(556\) 0 0
\(557\) 1.79639e12 0.790775 0.395387 0.918514i \(-0.370610\pi\)
0.395387 + 0.918514i \(0.370610\pi\)
\(558\) 0 0
\(559\) 8.35367e11 0.361847
\(560\) 0 0
\(561\) 2.56064e12 1.09148
\(562\) 0 0
\(563\) 3.40712e12 1.42922 0.714611 0.699522i \(-0.246604\pi\)
0.714611 + 0.699522i \(0.246604\pi\)
\(564\) 0 0
\(565\) 2.10766e12 0.870125
\(566\) 0 0
\(567\) −4.40036e11 −0.178799
\(568\) 0 0
\(569\) −1.63595e12 −0.654281 −0.327140 0.944976i \(-0.606085\pi\)
−0.327140 + 0.944976i \(0.606085\pi\)
\(570\) 0 0
\(571\) −2.78503e12 −1.09639 −0.548197 0.836349i \(-0.684686\pi\)
−0.548197 + 0.836349i \(0.684686\pi\)
\(572\) 0 0
\(573\) 1.44152e12 0.558631
\(574\) 0 0
\(575\) −1.80292e11 −0.0687815
\(576\) 0 0
\(577\) 3.12732e12 1.17458 0.587288 0.809378i \(-0.300196\pi\)
0.587288 + 0.809378i \(0.300196\pi\)
\(578\) 0 0
\(579\) −9.36695e11 −0.346373
\(580\) 0 0
\(581\) −3.66722e12 −1.33519
\(582\) 0 0
\(583\) 3.51485e12 1.26008
\(584\) 0 0
\(585\) −3.17953e12 −1.12244
\(586\) 0 0
\(587\) 2.24503e10 0.00780460 0.00390230 0.999992i \(-0.498758\pi\)
0.00390230 + 0.999992i \(0.498758\pi\)
\(588\) 0 0
\(589\) −1.63569e12 −0.559994
\(590\) 0 0
\(591\) −4.34715e12 −1.46575
\(592\) 0 0
\(593\) −2.98315e12 −0.990671 −0.495336 0.868702i \(-0.664955\pi\)
−0.495336 + 0.868702i \(0.664955\pi\)
\(594\) 0 0
\(595\) −5.67032e11 −0.185473
\(596\) 0 0
\(597\) −5.49945e12 −1.77188
\(598\) 0 0
\(599\) 5.37802e12 1.70687 0.853437 0.521196i \(-0.174514\pi\)
0.853437 + 0.521196i \(0.174514\pi\)
\(600\) 0 0
\(601\) −3.95138e12 −1.23542 −0.617709 0.786407i \(-0.711939\pi\)
−0.617709 + 0.786407i \(0.711939\pi\)
\(602\) 0 0
\(603\) −5.10417e12 −1.57216
\(604\) 0 0
\(605\) 3.40174e12 1.03229
\(606\) 0 0
\(607\) 1.13850e12 0.340396 0.170198 0.985410i \(-0.445559\pi\)
0.170198 + 0.985410i \(0.445559\pi\)
\(608\) 0 0
\(609\) −6.55000e12 −1.92958
\(610\) 0 0
\(611\) 1.06788e13 3.09984
\(612\) 0 0
\(613\) −4.84605e12 −1.38617 −0.693083 0.720857i \(-0.743748\pi\)
−0.693083 + 0.720857i \(0.743748\pi\)
\(614\) 0 0
\(615\) 3.56598e12 1.00517
\(616\) 0 0
\(617\) 2.57919e12 0.716474 0.358237 0.933631i \(-0.383378\pi\)
0.358237 + 0.933631i \(0.383378\pi\)
\(618\) 0 0
\(619\) −6.27422e11 −0.171772 −0.0858859 0.996305i \(-0.527372\pi\)
−0.0858859 + 0.996305i \(0.527372\pi\)
\(620\) 0 0
\(621\) −1.10355e12 −0.297769
\(622\) 0 0
\(623\) 7.01597e12 1.86591
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) 0 0
\(627\) −8.13916e12 −2.10317
\(628\) 0 0
\(629\) 2.30793e12 0.587889
\(630\) 0 0
\(631\) 3.78374e12 0.950144 0.475072 0.879947i \(-0.342422\pi\)
0.475072 + 0.879947i \(0.342422\pi\)
\(632\) 0 0
\(633\) 9.66850e12 2.39355
\(634\) 0 0
\(635\) −1.82791e12 −0.446141
\(636\) 0 0
\(637\) −1.45077e12 −0.349116
\(638\) 0 0
\(639\) −2.91372e12 −0.691343
\(640\) 0 0
\(641\) 2.72795e12 0.638226 0.319113 0.947717i \(-0.396615\pi\)
0.319113 + 0.947717i \(0.396615\pi\)
\(642\) 0 0
\(643\) 6.22277e12 1.43560 0.717801 0.696248i \(-0.245149\pi\)
0.717801 + 0.696248i \(0.245149\pi\)
\(644\) 0 0
\(645\) −6.97326e11 −0.158642
\(646\) 0 0
\(647\) 8.57440e10 0.0192369 0.00961844 0.999954i \(-0.496938\pi\)
0.00961844 + 0.999954i \(0.496938\pi\)
\(648\) 0 0
\(649\) −2.83205e12 −0.626614
\(650\) 0 0
\(651\) −6.21990e12 −1.35728
\(652\) 0 0
\(653\) −1.14476e12 −0.246381 −0.123190 0.992383i \(-0.539313\pi\)
−0.123190 + 0.992383i \(0.539313\pi\)
\(654\) 0 0
\(655\) 2.56610e12 0.544739
\(656\) 0 0
\(657\) 6.99622e11 0.146494
\(658\) 0 0
\(659\) 5.51626e12 1.13936 0.569679 0.821867i \(-0.307068\pi\)
0.569679 + 0.821867i \(0.307068\pi\)
\(660\) 0 0
\(661\) 1.26891e12 0.258539 0.129269 0.991610i \(-0.458737\pi\)
0.129269 + 0.991610i \(0.458737\pi\)
\(662\) 0 0
\(663\) 4.85644e12 0.976128
\(664\) 0 0
\(665\) 1.80235e12 0.357389
\(666\) 0 0
\(667\) 1.93010e12 0.377585
\(668\) 0 0
\(669\) −1.61141e12 −0.311020
\(670\) 0 0
\(671\) −1.32004e13 −2.51383
\(672\) 0 0
\(673\) −1.86276e12 −0.350016 −0.175008 0.984567i \(-0.555995\pi\)
−0.175008 + 0.984567i \(0.555995\pi\)
\(674\) 0 0
\(675\) 9.33973e11 0.173168
\(676\) 0 0
\(677\) −2.47298e12 −0.452450 −0.226225 0.974075i \(-0.572639\pi\)
−0.226225 + 0.974075i \(0.572639\pi\)
\(678\) 0 0
\(679\) −7.73389e12 −1.39632
\(680\) 0 0
\(681\) 4.02794e12 0.717664
\(682\) 0 0
\(683\) −5.42850e12 −0.954524 −0.477262 0.878761i \(-0.658371\pi\)
−0.477262 + 0.878761i \(0.658371\pi\)
\(684\) 0 0
\(685\) −3.31268e12 −0.574874
\(686\) 0 0
\(687\) −7.46090e12 −1.27787
\(688\) 0 0
\(689\) 6.66616e12 1.12691
\(690\) 0 0
\(691\) 6.80097e12 1.13480 0.567400 0.823442i \(-0.307949\pi\)
0.567400 + 0.823442i \(0.307949\pi\)
\(692\) 0 0
\(693\) −1.87791e13 −3.09297
\(694\) 0 0
\(695\) 1.41821e12 0.230573
\(696\) 0 0
\(697\) −3.30483e12 −0.530398
\(698\) 0 0
\(699\) −9.87259e11 −0.156417
\(700\) 0 0
\(701\) −1.01070e13 −1.58085 −0.790427 0.612557i \(-0.790141\pi\)
−0.790427 + 0.612557i \(0.790141\pi\)
\(702\) 0 0
\(703\) −7.33591e12 −1.13281
\(704\) 0 0
\(705\) −8.91421e12 −1.35904
\(706\) 0 0
\(707\) 7.45603e12 1.12233
\(708\) 0 0
\(709\) 1.23040e13 1.82868 0.914342 0.404943i \(-0.132709\pi\)
0.914342 + 0.404943i \(0.132709\pi\)
\(710\) 0 0
\(711\) 3.79424e12 0.556817
\(712\) 0 0
\(713\) 1.83283e12 0.265595
\(714\) 0 0
\(715\) 9.24665e12 1.32314
\(716\) 0 0
\(717\) 1.53067e13 2.16294
\(718\) 0 0
\(719\) −8.29578e12 −1.15765 −0.578825 0.815452i \(-0.696488\pi\)
−0.578825 + 0.815452i \(0.696488\pi\)
\(720\) 0 0
\(721\) 4.88262e12 0.672890
\(722\) 0 0
\(723\) −2.07010e13 −2.81753
\(724\) 0 0
\(725\) −1.63352e12 −0.219585
\(726\) 0 0
\(727\) −7.42195e12 −0.985401 −0.492701 0.870199i \(-0.663990\pi\)
−0.492701 + 0.870199i \(0.663990\pi\)
\(728\) 0 0
\(729\) −1.24377e13 −1.63105
\(730\) 0 0
\(731\) 6.46258e11 0.0837101
\(732\) 0 0
\(733\) −7.91808e12 −1.01310 −0.506550 0.862211i \(-0.669079\pi\)
−0.506550 + 0.862211i \(0.669079\pi\)
\(734\) 0 0
\(735\) 1.21103e12 0.153060
\(736\) 0 0
\(737\) 1.48439e13 1.85329
\(738\) 0 0
\(739\) −3.03898e12 −0.374825 −0.187412 0.982281i \(-0.560010\pi\)
−0.187412 + 0.982281i \(0.560010\pi\)
\(740\) 0 0
\(741\) −1.54365e13 −1.88090
\(742\) 0 0
\(743\) −4.69140e12 −0.564746 −0.282373 0.959305i \(-0.591122\pi\)
−0.282373 + 0.959305i \(0.591122\pi\)
\(744\) 0 0
\(745\) −1.89109e12 −0.224911
\(746\) 0 0
\(747\) −1.59082e13 −1.86930
\(748\) 0 0
\(749\) 7.42941e12 0.862554
\(750\) 0 0
\(751\) 1.00434e13 1.15213 0.576063 0.817405i \(-0.304588\pi\)
0.576063 + 0.817405i \(0.304588\pi\)
\(752\) 0 0
\(753\) 1.28502e13 1.45658
\(754\) 0 0
\(755\) −8.86977e11 −0.0993462
\(756\) 0 0
\(757\) −1.57346e13 −1.74151 −0.870753 0.491721i \(-0.836368\pi\)
−0.870753 + 0.491721i \(0.836368\pi\)
\(758\) 0 0
\(759\) 9.12011e12 0.997498
\(760\) 0 0
\(761\) −6.23160e12 −0.673548 −0.336774 0.941586i \(-0.609336\pi\)
−0.336774 + 0.941586i \(0.609336\pi\)
\(762\) 0 0
\(763\) −1.04875e12 −0.112024
\(764\) 0 0
\(765\) −2.45975e12 −0.259666
\(766\) 0 0
\(767\) −5.37119e12 −0.560391
\(768\) 0 0
\(769\) −1.49345e13 −1.54001 −0.770004 0.638040i \(-0.779746\pi\)
−0.770004 + 0.638040i \(0.779746\pi\)
\(770\) 0 0
\(771\) 3.79907e12 0.387198
\(772\) 0 0
\(773\) −1.83308e13 −1.84661 −0.923303 0.384071i \(-0.874522\pi\)
−0.923303 + 0.384071i \(0.874522\pi\)
\(774\) 0 0
\(775\) −1.55119e12 −0.154457
\(776\) 0 0
\(777\) −2.78956e13 −2.74562
\(778\) 0 0
\(779\) 1.05046e13 1.02202
\(780\) 0 0
\(781\) 8.47363e12 0.814967
\(782\) 0 0
\(783\) −9.99858e12 −0.950627
\(784\) 0 0
\(785\) −5.27960e11 −0.0496235
\(786\) 0 0
\(787\) 2.36245e11 0.0219521 0.0109760 0.999940i \(-0.496506\pi\)
0.0109760 + 0.999940i \(0.496506\pi\)
\(788\) 0 0
\(789\) 9.24155e11 0.0848981
\(790\) 0 0
\(791\) 2.36092e13 2.14431
\(792\) 0 0
\(793\) −2.50355e13 −2.24816
\(794\) 0 0
\(795\) −5.56460e12 −0.494063
\(796\) 0 0
\(797\) −1.33800e13 −1.17461 −0.587305 0.809366i \(-0.699811\pi\)
−0.587305 + 0.809366i \(0.699811\pi\)
\(798\) 0 0
\(799\) 8.26139e12 0.717121
\(800\) 0 0
\(801\) 3.04349e13 2.61231
\(802\) 0 0
\(803\) −2.03463e12 −0.172689
\(804\) 0 0
\(805\) −2.01957e12 −0.169503
\(806\) 0 0
\(807\) −2.09232e13 −1.73659
\(808\) 0 0
\(809\) 2.10586e13 1.72847 0.864234 0.503090i \(-0.167803\pi\)
0.864234 + 0.503090i \(0.167803\pi\)
\(810\) 0 0
\(811\) 1.05253e13 0.854361 0.427181 0.904166i \(-0.359507\pi\)
0.427181 + 0.904166i \(0.359507\pi\)
\(812\) 0 0
\(813\) 5.70019e12 0.457595
\(814\) 0 0
\(815\) −8.19201e12 −0.650401
\(816\) 0 0
\(817\) −2.05417e12 −0.161301
\(818\) 0 0
\(819\) −3.56160e13 −2.76610
\(820\) 0 0
\(821\) 1.02235e13 0.785337 0.392668 0.919680i \(-0.371552\pi\)
0.392668 + 0.919680i \(0.371552\pi\)
\(822\) 0 0
\(823\) −2.03818e13 −1.54861 −0.774307 0.632810i \(-0.781901\pi\)
−0.774307 + 0.632810i \(0.781901\pi\)
\(824\) 0 0
\(825\) −7.71868e12 −0.580097
\(826\) 0 0
\(827\) −1.26044e13 −0.937020 −0.468510 0.883458i \(-0.655209\pi\)
−0.468510 + 0.883458i \(0.655209\pi\)
\(828\) 0 0
\(829\) 1.44545e12 0.106293 0.0531467 0.998587i \(-0.483075\pi\)
0.0531467 + 0.998587i \(0.483075\pi\)
\(830\) 0 0
\(831\) 1.17240e13 0.852848
\(832\) 0 0
\(833\) −1.12234e12 −0.0807650
\(834\) 0 0
\(835\) 1.18732e13 0.845240
\(836\) 0 0
\(837\) −9.49468e12 −0.668676
\(838\) 0 0
\(839\) 2.78805e13 1.94255 0.971273 0.237968i \(-0.0764813\pi\)
0.971273 + 0.237968i \(0.0764813\pi\)
\(840\) 0 0
\(841\) 2.98034e12 0.205439
\(842\) 0 0
\(843\) 2.08953e13 1.42504
\(844\) 0 0
\(845\) 1.09091e13 0.736096
\(846\) 0 0
\(847\) 3.81051e13 2.54395
\(848\) 0 0
\(849\) −2.95520e13 −1.95210
\(850\) 0 0
\(851\) 8.22006e12 0.537269
\(852\) 0 0
\(853\) 2.07647e13 1.34294 0.671469 0.741033i \(-0.265664\pi\)
0.671469 + 0.741033i \(0.265664\pi\)
\(854\) 0 0
\(855\) 7.81848e12 0.500351
\(856\) 0 0
\(857\) −1.47635e13 −0.934920 −0.467460 0.884014i \(-0.654831\pi\)
−0.467460 + 0.884014i \(0.654831\pi\)
\(858\) 0 0
\(859\) −3.61756e12 −0.226697 −0.113349 0.993555i \(-0.536158\pi\)
−0.113349 + 0.993555i \(0.536158\pi\)
\(860\) 0 0
\(861\) 3.99449e13 2.47712
\(862\) 0 0
\(863\) −1.01093e13 −0.620401 −0.310201 0.950671i \(-0.600396\pi\)
−0.310201 + 0.950671i \(0.600396\pi\)
\(864\) 0 0
\(865\) −8.96370e12 −0.544396
\(866\) 0 0
\(867\) −2.27741e13 −1.36885
\(868\) 0 0
\(869\) −1.10344e13 −0.656384
\(870\) 0 0
\(871\) 2.81525e13 1.65743
\(872\) 0 0
\(873\) −3.35492e13 −1.95487
\(874\) 0 0
\(875\) 1.70924e12 0.0985748
\(876\) 0 0
\(877\) −1.45609e13 −0.831170 −0.415585 0.909554i \(-0.636423\pi\)
−0.415585 + 0.909554i \(0.636423\pi\)
\(878\) 0 0
\(879\) −1.55341e13 −0.877681
\(880\) 0 0
\(881\) −9.17004e12 −0.512838 −0.256419 0.966566i \(-0.582543\pi\)
−0.256419 + 0.966566i \(0.582543\pi\)
\(882\) 0 0
\(883\) 2.49177e13 1.37938 0.689692 0.724103i \(-0.257746\pi\)
0.689692 + 0.724103i \(0.257746\pi\)
\(884\) 0 0
\(885\) 4.48362e12 0.245688
\(886\) 0 0
\(887\) −3.02449e13 −1.64057 −0.820287 0.571952i \(-0.806186\pi\)
−0.820287 + 0.571952i \(0.806186\pi\)
\(888\) 0 0
\(889\) −2.04756e13 −1.09946
\(890\) 0 0
\(891\) 5.55129e12 0.295083
\(892\) 0 0
\(893\) −2.62593e13 −1.38182
\(894\) 0 0
\(895\) 5.21426e12 0.271637
\(896\) 0 0
\(897\) 1.72969e13 0.892079
\(898\) 0 0
\(899\) 1.66062e13 0.847912
\(900\) 0 0
\(901\) 5.15708e12 0.260701
\(902\) 0 0
\(903\) −7.81121e12 −0.390952
\(904\) 0 0
\(905\) 4.27719e12 0.211953
\(906\) 0 0
\(907\) 2.65098e13 1.30069 0.650344 0.759640i \(-0.274625\pi\)
0.650344 + 0.759640i \(0.274625\pi\)
\(908\) 0 0
\(909\) 3.23438e13 1.57128
\(910\) 0 0
\(911\) 3.99211e13 1.92030 0.960152 0.279480i \(-0.0901619\pi\)
0.960152 + 0.279480i \(0.0901619\pi\)
\(912\) 0 0
\(913\) 4.62639e13 2.20356
\(914\) 0 0
\(915\) 2.08985e13 0.985643
\(916\) 0 0
\(917\) 2.87446e13 1.34244
\(918\) 0 0
\(919\) −2.47031e13 −1.14243 −0.571217 0.820799i \(-0.693529\pi\)
−0.571217 + 0.820799i \(0.693529\pi\)
\(920\) 0 0
\(921\) −3.75934e13 −1.72165
\(922\) 0 0
\(923\) 1.60708e13 0.728838
\(924\) 0 0
\(925\) −6.95694e12 −0.312450
\(926\) 0 0
\(927\) 2.11805e13 0.942058
\(928\) 0 0
\(929\) 3.37721e13 1.48760 0.743801 0.668401i \(-0.233021\pi\)
0.743801 + 0.668401i \(0.233021\pi\)
\(930\) 0 0
\(931\) 3.56744e12 0.155626
\(932\) 0 0
\(933\) −4.80686e13 −2.07680
\(934\) 0 0
\(935\) 7.15341e12 0.306098
\(936\) 0 0
\(937\) 2.88150e13 1.22121 0.610605 0.791936i \(-0.290927\pi\)
0.610605 + 0.791936i \(0.290927\pi\)
\(938\) 0 0
\(939\) 6.78276e13 2.84716
\(940\) 0 0
\(941\) −5.45811e12 −0.226929 −0.113464 0.993542i \(-0.536195\pi\)
−0.113464 + 0.993542i \(0.536195\pi\)
\(942\) 0 0
\(943\) −1.17707e13 −0.484728
\(944\) 0 0
\(945\) 1.04620e13 0.426750
\(946\) 0 0
\(947\) −2.35331e11 −0.00950832 −0.00475416 0.999989i \(-0.501513\pi\)
−0.00475416 + 0.999989i \(0.501513\pi\)
\(948\) 0 0
\(949\) −3.85882e12 −0.154439
\(950\) 0 0
\(951\) −2.38196e13 −0.944325
\(952\) 0 0
\(953\) −1.55591e13 −0.611034 −0.305517 0.952187i \(-0.598829\pi\)
−0.305517 + 0.952187i \(0.598829\pi\)
\(954\) 0 0
\(955\) 4.02703e12 0.156664
\(956\) 0 0
\(957\) 8.26317e13 3.18451
\(958\) 0 0
\(959\) −3.71075e13 −1.41670
\(960\) 0 0
\(961\) −1.06704e13 −0.403575
\(962\) 0 0
\(963\) 3.22284e13 1.20759
\(964\) 0 0
\(965\) −2.61675e12 −0.0971381
\(966\) 0 0
\(967\) 1.02802e13 0.378079 0.189040 0.981969i \(-0.439463\pi\)
0.189040 + 0.981969i \(0.439463\pi\)
\(968\) 0 0
\(969\) −1.19420e13 −0.435131
\(970\) 0 0
\(971\) −2.54088e13 −0.917271 −0.458636 0.888624i \(-0.651662\pi\)
−0.458636 + 0.888624i \(0.651662\pi\)
\(972\) 0 0
\(973\) 1.58863e13 0.568217
\(974\) 0 0
\(975\) −1.46390e13 −0.518790
\(976\) 0 0
\(977\) −5.36288e12 −0.188310 −0.0941549 0.995558i \(-0.530015\pi\)
−0.0941549 + 0.995558i \(0.530015\pi\)
\(978\) 0 0
\(979\) −8.85102e13 −3.07944
\(980\) 0 0
\(981\) −4.54940e12 −0.156835
\(982\) 0 0
\(983\) 3.51911e13 1.20210 0.601052 0.799210i \(-0.294748\pi\)
0.601052 + 0.799210i \(0.294748\pi\)
\(984\) 0 0
\(985\) −1.21442e13 −0.411061
\(986\) 0 0
\(987\) −9.98539e13 −3.34917
\(988\) 0 0
\(989\) 2.30175e12 0.0765023
\(990\) 0 0
\(991\) 3.54083e12 0.116620 0.0583100 0.998299i \(-0.481429\pi\)
0.0583100 + 0.998299i \(0.481429\pi\)
\(992\) 0 0
\(993\) −9.63746e13 −3.14551
\(994\) 0 0
\(995\) −1.53633e13 −0.496913
\(996\) 0 0
\(997\) 4.47899e13 1.43566 0.717830 0.696218i \(-0.245136\pi\)
0.717830 + 0.696218i \(0.245136\pi\)
\(998\) 0 0
\(999\) −4.25826e13 −1.35266
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.10.a.z.1.4 4
4.3 odd 2 inner 320.10.a.z.1.1 4
8.3 odd 2 160.10.a.c.1.4 yes 4
8.5 even 2 160.10.a.c.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.10.a.c.1.1 4 8.5 even 2
160.10.a.c.1.4 yes 4 8.3 odd 2
320.10.a.z.1.1 4 4.3 odd 2 inner
320.10.a.z.1.4 4 1.1 even 1 trivial