Properties

Label 320.10.a.z
Level $320$
Weight $10$
Character orbit 320.a
Self dual yes
Analytic conductor $164.811$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,10,Mod(1,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 320.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,2500,0,0,0,23364] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(164.811467572\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 353x^{2} + 354x + 2313 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{2}\cdot 5 \)
Twist minimal: no (minimal twist has level 160)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + 625 q^{5} + (\beta_{2} - 34 \beta_1) q^{7} + (9 \beta_{3} + 5841) q^{9} + (11 \beta_{2} + 365 \beta_1) q^{11} + ( - 43 \beta_{3} - 50314) q^{13} - 625 \beta_1 q^{15} + ( - 7 \beta_{3} - 110510) q^{17}+ \cdots + ( - 77661 \beta_{2} + 12199653 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2500 q^{5} + 23364 q^{9} - 201256 q^{13} - 442040 q^{17} + 3496176 q^{21} + 1562500 q^{25} - 6719352 q^{29} - 36991008 q^{33} - 29092616 q^{37} + 49561624 q^{41} + 14602500 q^{45} + 3039028 q^{49}+ \cdots + 464919272 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 353x^{2} + 354x + 2313 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 12\nu - 6 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 16\nu^{3} - 24\nu^{2} - 5452\nu + 2730 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 16\nu^{2} - 16\nu - 2832 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 6 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{3} + 4\beta _1 + 8520 ) / 48 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 9\beta_{3} + 18\beta_{2} + 2738\beta _1 + 25536 ) / 96 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
19.1438
3.12853
−2.12853
−18.1438
0 −223.725 0 625.000 0 −7001.03 0 30370.1 0
1.2 0 −31.5423 0 625.000 0 −5763.01 0 −18688.1 0
1.3 0 31.5423 0 625.000 0 5763.01 0 −18688.1 0
1.4 0 223.725 0 625.000 0 7001.03 0 30370.1 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 320.10.a.z 4
4.b odd 2 1 inner 320.10.a.z 4
8.b even 2 1 160.10.a.c 4
8.d odd 2 1 160.10.a.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.10.a.c 4 8.b even 2 1
160.10.a.c 4 8.d odd 2 1
320.10.a.z 4 1.a even 1 1 trivial
320.10.a.z 4 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 51048T_{3}^{2} + 49798800 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(320))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 51048 T^{2} + 49798800 \) Copy content Toggle raw display
$5$ \( (T - 625)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( (T^{2} + 100628 T - 11203050908)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 221020 T + 11848483396)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 13\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 14\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{2} + \cdots - 3437979067260)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( (T^{2} + \cdots - 58121226872060)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + \cdots - 18406476732380)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 55\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 96\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( (T^{2} + \cdots + 19\!\cdots\!96)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T^{2} + \cdots - 19\!\cdots\!80)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 27\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T^{2} + \cdots - 172635344399196)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 34\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 70\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{2} + \cdots + 26\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + \cdots - 14\!\cdots\!76)^{2} \) Copy content Toggle raw display
show more
show less