Properties

Label 320.10
Level 320
Weight 10
Dimension 14190
Nonzero newspaces 14
Sturm bound 61440
Trace bound 12

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 14 \)
Sturm bound: \(61440\)
Trace bound: \(12\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(320))\).

Total New Old
Modular forms 27936 14322 13614
Cusp forms 27360 14190 13170
Eisenstein series 576 132 444

Trace form

\( 14190 q - 16 q^{2} - 12 q^{3} - 16 q^{4} - 24 q^{5} - 48 q^{6} - 8 q^{7} - 16 q^{8} + 39346 q^{9} - 24 q^{10} + 131684 q^{11} - 16 q^{12} - 389248 q^{13} - 16 q^{14} + 404980 q^{15} - 48 q^{16} - 816012 q^{17}+ \cdots + 4327823996 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(320))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
320.10.a \(\chi_{320}(1, \cdot)\) 320.10.a.a 1 1
320.10.a.b 1
320.10.a.c 1
320.10.a.d 1
320.10.a.e 1
320.10.a.f 1
320.10.a.g 1
320.10.a.h 1
320.10.a.i 1
320.10.a.j 1
320.10.a.k 2
320.10.a.l 2
320.10.a.m 2
320.10.a.n 2
320.10.a.o 2
320.10.a.p 2
320.10.a.q 2
320.10.a.r 2
320.10.a.s 2
320.10.a.t 2
320.10.a.u 3
320.10.a.v 3
320.10.a.w 4
320.10.a.x 4
320.10.a.y 4
320.10.a.z 4
320.10.a.ba 4
320.10.a.bb 5
320.10.a.bc 5
320.10.a.bd 6
320.10.c \(\chi_{320}(129, \cdot)\) n/a 106 1
320.10.d \(\chi_{320}(161, \cdot)\) 320.10.d.a 12 1
320.10.d.b 12
320.10.d.c 24
320.10.d.d 24
320.10.f \(\chi_{320}(289, \cdot)\) n/a 108 1
320.10.j \(\chi_{320}(47, \cdot)\) n/a 212 2
320.10.l \(\chi_{320}(81, \cdot)\) n/a 144 2
320.10.n \(\chi_{320}(63, \cdot)\) n/a 212 2
320.10.o \(\chi_{320}(223, \cdot)\) n/a 216 2
320.10.q \(\chi_{320}(49, \cdot)\) n/a 212 2
320.10.s \(\chi_{320}(207, \cdot)\) n/a 212 2
320.10.u \(\chi_{320}(87, \cdot)\) None 0 4
320.10.x \(\chi_{320}(41, \cdot)\) None 0 4
320.10.z \(\chi_{320}(9, \cdot)\) None 0 4
320.10.ba \(\chi_{320}(7, \cdot)\) None 0 4
320.10.bd \(\chi_{320}(43, \cdot)\) n/a 3440 8
320.10.be \(\chi_{320}(21, \cdot)\) n/a 2304 8
320.10.bf \(\chi_{320}(29, \cdot)\) n/a 3440 8
320.10.bj \(\chi_{320}(3, \cdot)\) n/a 3440 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(320))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(320)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 7}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(160))\)\(^{\oplus 2}\)