# Properties

 Label 320.10.a Level 320 Weight 10 Character orbit a Rep. character $$\chi_{320}(1,\cdot)$$ Character field $$\Q$$ Dimension 72 Newform subspaces 30 Sturm bound 480 Trace bound 9

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$320 = 2^{6} \cdot 5$$ Weight: $$k$$ $$=$$ $$10$$ Character orbit: $$[\chi]$$ $$=$$ 320.a (trivial) Character field: $$\Q$$ Newform subspaces: $$30$$ Sturm bound: $$480$$ Trace bound: $$9$$ Distinguishing $$T_p$$: $$3$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{10}(\Gamma_0(320))$$.

Total New Old
Modular forms 444 72 372
Cusp forms 420 72 348
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

$$2$$$$5$$FrickeDim.
$$+$$$$+$$$$+$$$$17$$
$$+$$$$-$$$$-$$$$19$$
$$-$$$$+$$$$-$$$$19$$
$$-$$$$-$$$$+$$$$17$$
Plus space$$+$$$$34$$
Minus space$$-$$$$38$$

## Trace form

 $$72q + 472392q^{9} + O(q^{10})$$ $$72q + 472392q^{9} - 389232q^{13} + 4075920q^{21} + 28125000q^{25} + 1266800q^{29} + 75632q^{33} - 36431872q^{37} + 16285040q^{41} + 415065672q^{49} - 149815696q^{53} - 219408016q^{57} - 508852224q^{61} + 382360176q^{69} + 412088432q^{77} + 2907318568q^{81} - 429210000q^{85} + 1031190896q^{89} - 2691890976q^{93} + O(q^{100})$$

## Decomposition of $$S_{10}^{\mathrm{new}}(\Gamma_0(320))$$ into newform subspaces

Label Dim. $$A$$ Field CM Traces A-L signs $q$-expansion
$$a_2$$ $$a_3$$ $$a_5$$ $$a_7$$ 2 5
320.10.a.a $$1$$ $$164.811$$ $$\Q$$ None $$0$$ $$-204$$ $$-625$$ $$-5432$$ $$-$$ $$+$$ $$q-204q^{3}-5^{4}q^{5}-5432q^{7}+21933q^{9}+\cdots$$
320.10.a.b $$1$$ $$164.811$$ $$\Q$$ None $$0$$ $$-174$$ $$625$$ $$4658$$ $$+$$ $$-$$ $$q-174q^{3}+5^{4}q^{5}+4658q^{7}+10593q^{9}+\cdots$$
320.10.a.c $$1$$ $$164.811$$ $$\Q$$ None $$0$$ $$-114$$ $$625$$ $$-4242$$ $$-$$ $$-$$ $$q-114q^{3}+5^{4}q^{5}-4242q^{7}-6687q^{9}+\cdots$$
320.10.a.d $$1$$ $$164.811$$ $$\Q$$ None $$0$$ $$-48$$ $$-625$$ $$532$$ $$-$$ $$+$$ $$q-48q^{3}-5^{4}q^{5}+532q^{7}-17379q^{9}+\cdots$$
320.10.a.e $$1$$ $$164.811$$ $$\Q$$ None $$0$$ $$-46$$ $$625$$ $$-10318$$ $$+$$ $$-$$ $$q-46q^{3}+5^{4}q^{5}-10318q^{7}-17567q^{9}+\cdots$$
320.10.a.f $$1$$ $$164.811$$ $$\Q$$ None $$0$$ $$46$$ $$625$$ $$10318$$ $$-$$ $$-$$ $$q+46q^{3}+5^{4}q^{5}+10318q^{7}-17567q^{9}+\cdots$$
320.10.a.g $$1$$ $$164.811$$ $$\Q$$ None $$0$$ $$48$$ $$-625$$ $$-532$$ $$+$$ $$+$$ $$q+48q^{3}-5^{4}q^{5}-532q^{7}-17379q^{9}+\cdots$$
320.10.a.h $$1$$ $$164.811$$ $$\Q$$ None $$0$$ $$114$$ $$625$$ $$4242$$ $$+$$ $$-$$ $$q+114q^{3}+5^{4}q^{5}+4242q^{7}-6687q^{9}+\cdots$$
320.10.a.i $$1$$ $$164.811$$ $$\Q$$ None $$0$$ $$174$$ $$625$$ $$-4658$$ $$-$$ $$-$$ $$q+174q^{3}+5^{4}q^{5}-4658q^{7}+10593q^{9}+\cdots$$
320.10.a.j $$1$$ $$164.811$$ $$\Q$$ None $$0$$ $$204$$ $$-625$$ $$5432$$ $$+$$ $$+$$ $$q+204q^{3}-5^{4}q^{5}+5432q^{7}+21933q^{9}+\cdots$$
320.10.a.k $$2$$ $$164.811$$ $$\Q(\sqrt{1009})$$ None $$0$$ $$-260$$ $$-1250$$ $$1700$$ $$+$$ $$+$$ $$q+(-130-\beta )q^{3}-5^{4}q^{5}+(850+107\beta )q^{7}+\cdots$$
320.10.a.l $$2$$ $$164.811$$ $$\Q(\sqrt{79})$$ None $$0$$ $$-260$$ $$1250$$ $$380$$ $$-$$ $$-$$ $$q+(-130+\beta )q^{3}+5^{4}q^{5}+(190-69\beta )q^{7}+\cdots$$
320.10.a.m $$2$$ $$164.811$$ $$\Q(\sqrt{22})$$ None $$0$$ $$-116$$ $$1250$$ $$-11284$$ $$-$$ $$-$$ $$q+(-58+\beta )q^{3}+5^{4}q^{5}+(-5642+\cdots)q^{7}+\cdots$$
320.10.a.n $$2$$ $$164.811$$ $$\Q(\sqrt{46})$$ None $$0$$ $$-108$$ $$1250$$ $$-908$$ $$+$$ $$-$$ $$q+(-54+\beta )q^{3}+5^{4}q^{5}+(-454-13\beta )q^{7}+\cdots$$
320.10.a.o $$2$$ $$164.811$$ $$\Q(\sqrt{6049})$$ None $$0$$ $$-92$$ $$-1250$$ $$6908$$ $$-$$ $$+$$ $$q+(-46-\beta )q^{3}-5^{4}q^{5}+(3454-37\beta )q^{7}+\cdots$$
320.10.a.p $$2$$ $$164.811$$ $$\Q(\sqrt{6049})$$ None $$0$$ $$92$$ $$-1250$$ $$-6908$$ $$+$$ $$+$$ $$q+(46-\beta )q^{3}-5^{4}q^{5}+(-3454-37\beta )q^{7}+\cdots$$
320.10.a.q $$2$$ $$164.811$$ $$\Q(\sqrt{46})$$ None $$0$$ $$108$$ $$1250$$ $$908$$ $$-$$ $$-$$ $$q+(54+\beta )q^{3}+5^{4}q^{5}+(454-13\beta )q^{7}+\cdots$$
320.10.a.r $$2$$ $$164.811$$ $$\Q(\sqrt{22})$$ None $$0$$ $$116$$ $$1250$$ $$11284$$ $$+$$ $$-$$ $$q+(58+\beta )q^{3}+5^{4}q^{5}+(5642+35\beta )q^{7}+\cdots$$
320.10.a.s $$2$$ $$164.811$$ $$\Q(\sqrt{1009})$$ None $$0$$ $$260$$ $$-1250$$ $$-1700$$ $$-$$ $$+$$ $$q+(130-\beta )q^{3}-5^{4}q^{5}+(-850+107\beta )q^{7}+\cdots$$
320.10.a.t $$2$$ $$164.811$$ $$\Q(\sqrt{79})$$ None $$0$$ $$260$$ $$1250$$ $$-380$$ $$+$$ $$-$$ $$q+(130+\beta )q^{3}+5^{4}q^{5}+(-190-69\beta )q^{7}+\cdots$$
320.10.a.u $$3$$ $$164.811$$ 3.3.7117.1 None $$0$$ $$-84$$ $$-1875$$ $$-5520$$ $$+$$ $$+$$ $$q+(-28-\beta _{1})q^{3}-5^{4}q^{5}+(-1840+\cdots)q^{7}+\cdots$$
320.10.a.v $$3$$ $$164.811$$ 3.3.7117.1 None $$0$$ $$84$$ $$-1875$$ $$5520$$ $$-$$ $$+$$ $$q+(28+\beta _{1})q^{3}-5^{4}q^{5}+(1840-17\beta _{1}+\cdots)q^{7}+\cdots$$
320.10.a.w $$4$$ $$164.811$$ $$\mathbb{Q}[x]/(x^{4} - \cdots)$$ None $$0$$ $$-176$$ $$-2500$$ $$1392$$ $$+$$ $$+$$ $$q+(-44-\beta _{1})q^{3}-5^{4}q^{5}+(348-14\beta _{1}+\cdots)q^{7}+\cdots$$
320.10.a.x $$4$$ $$164.811$$ $$\Q(\sqrt{7}, \sqrt{418})$$ None $$0$$ $$0$$ $$-2500$$ $$0$$ $$-$$ $$+$$ $$q+\beta _{1}q^{3}-5^{4}q^{5}+(8\beta _{1}-9\beta _{2})q^{7}+\cdots$$
320.10.a.y $$4$$ $$164.811$$ $$\mathbb{Q}[x]/(x^{4} - \cdots)$$ None $$0$$ $$0$$ $$2500$$ $$0$$ $$-$$ $$-$$ $$q-\beta _{1}q^{3}+5^{4}q^{5}+(14\beta _{1}+7\beta _{2})q^{7}+\cdots$$
320.10.a.z $$4$$ $$164.811$$ $$\mathbb{Q}[x]/(x^{4} - \cdots)$$ None $$0$$ $$0$$ $$2500$$ $$0$$ $$-$$ $$-$$ $$q-\beta _{1}q^{3}+5^{4}q^{5}+(-34\beta _{1}+\beta _{2})q^{7}+\cdots$$
320.10.a.ba $$4$$ $$164.811$$ $$\mathbb{Q}[x]/(x^{4} - \cdots)$$ None $$0$$ $$176$$ $$-2500$$ $$-1392$$ $$+$$ $$+$$ $$q+(44+\beta _{1})q^{3}-5^{4}q^{5}+(-348+14\beta _{1}+\cdots)q^{7}+\cdots$$
320.10.a.bb $$5$$ $$164.811$$ $$\mathbb{Q}[x]/(x^{5} - \cdots)$$ None $$0$$ $$-14$$ $$3125$$ $$-3410$$ $$+$$ $$-$$ $$q+(-3+\beta _{1})q^{3}+5^{4}q^{5}+(-683+3\beta _{1}+\cdots)q^{7}+\cdots$$
320.10.a.bc $$5$$ $$164.811$$ $$\mathbb{Q}[x]/(x^{5} - \cdots)$$ None $$0$$ $$14$$ $$3125$$ $$3410$$ $$+$$ $$-$$ $$q+(3-\beta _{1})q^{3}+5^{4}q^{5}+(683-3\beta _{1}+\cdots)q^{7}+\cdots$$
320.10.a.bd $$6$$ $$164.811$$ $$\mathbb{Q}[x]/(x^{6} - \cdots)$$ None $$0$$ $$0$$ $$-3750$$ $$0$$ $$-$$ $$+$$ $$q+\beta _{1}q^{3}-5^{4}q^{5}+(-3\beta _{1}+\beta _{2})q^{7}+\cdots$$

## Decomposition of $$S_{10}^{\mathrm{old}}(\Gamma_0(320))$$ into lower level spaces

$$S_{10}^{\mathrm{old}}(\Gamma_0(320)) \cong$$ $$S_{10}^{\mathrm{new}}(\Gamma_0(2))$$$$^{\oplus 12}$$$$\oplus$$$$S_{10}^{\mathrm{new}}(\Gamma_0(4))$$$$^{\oplus 10}$$$$\oplus$$$$S_{10}^{\mathrm{new}}(\Gamma_0(5))$$$$^{\oplus 7}$$$$\oplus$$$$S_{10}^{\mathrm{new}}(\Gamma_0(8))$$$$^{\oplus 8}$$$$\oplus$$$$S_{10}^{\mathrm{new}}(\Gamma_0(10))$$$$^{\oplus 6}$$$$\oplus$$$$S_{10}^{\mathrm{new}}(\Gamma_0(16))$$$$^{\oplus 6}$$$$\oplus$$$$S_{10}^{\mathrm{new}}(\Gamma_0(20))$$$$^{\oplus 5}$$$$\oplus$$$$S_{10}^{\mathrm{new}}(\Gamma_0(32))$$$$^{\oplus 4}$$$$\oplus$$$$S_{10}^{\mathrm{new}}(\Gamma_0(40))$$$$^{\oplus 4}$$$$\oplus$$$$S_{10}^{\mathrm{new}}(\Gamma_0(64))$$$$^{\oplus 2}$$$$\oplus$$$$S_{10}^{\mathrm{new}}(\Gamma_0(80))$$$$^{\oplus 3}$$$$\oplus$$$$S_{10}^{\mathrm{new}}(\Gamma_0(160))$$$$^{\oplus 2}$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ ($$1 + 204 T + 19683 T^{2}$$)($$1 + 174 T + 19683 T^{2}$$)($$1 + 114 T + 19683 T^{2}$$)($$1 + 48 T + 19683 T^{2}$$)($$1 + 46 T + 19683 T^{2}$$)($$1 - 46 T + 19683 T^{2}$$)($$1 - 48 T + 19683 T^{2}$$)($$1 - 114 T + 19683 T^{2}$$)($$1 - 174 T + 19683 T^{2}$$)($$1 - 204 T + 19683 T^{2}$$)($$1 + 260 T + 52230 T^{2} + 5117580 T^{3} + 387420489 T^{4}$$)($$1 + 260 T + 36042 T^{2} + 5117580 T^{3} + 387420489 T^{4}$$)($$1 + 116 T + 7530 T^{2} + 2283228 T^{3} + 387420489 T^{4}$$)($$1 + 108 T + 15786 T^{2} + 2125764 T^{3} + 387420489 T^{4}$$)($$1 + 92 T + 17286 T^{2} + 1810836 T^{3} + 387420489 T^{4}$$)($$1 - 92 T + 17286 T^{2} - 1810836 T^{3} + 387420489 T^{4}$$)($$1 - 108 T + 15786 T^{2} - 2125764 T^{3} + 387420489 T^{4}$$)($$1 - 116 T + 7530 T^{2} - 2283228 T^{3} + 387420489 T^{4}$$)($$1 - 260 T + 52230 T^{2} - 5117580 T^{3} + 387420489 T^{4}$$)($$1 - 260 T + 36042 T^{2} - 5117580 T^{3} + 387420489 T^{4}$$)($$1 + 84 T + 9513 T^{2} + 2615544 T^{3} + 187244379 T^{4} + 32543321076 T^{5} + 7625597484987 T^{6}$$)($$1 - 84 T + 9513 T^{2} - 2615544 T^{3} + 187244379 T^{4} - 32543321076 T^{5} + 7625597484987 T^{6}$$)($$1 + 176 T + 51324 T^{2} + 6873264 T^{3} + 1440655254 T^{4} + 135286455312 T^{5} + 19883969177436 T^{6} + 1342105157357712 T^{7} + 150094635296999121 T^{8}$$)($$1 + 31484 T^{2} + 875836566 T^{4} + 12197546675676 T^{6} + 150094635296999121 T^{8}$$)($$1 + 32612 T^{2} + 785187414 T^{4} + 12634556987268 T^{6} + 150094635296999121 T^{8}$$)($$1 + 27684 T^{2} + 364766166 T^{4} + 10725348817476 T^{6} + 150094635296999121 T^{8}$$)($$1 - 176 T + 51324 T^{2} - 6873264 T^{3} + 1440655254 T^{4} - 135286455312 T^{5} + 19883969177436 T^{6} - 1342105157357712 T^{7} + 150094635296999121 T^{8}$$)($$1 + 14 T + 38695 T^{2} + 2316984 T^{3} + 867738978 T^{4} + 66853409076 T^{5} + 17079706303974 T^{6} + 897647074285176 T^{7} + 295072494681571965 T^{8} + 2101324894157987694 T^{9} +$$$$29\!\cdots\!43$$$$T^{10}$$)($$1 - 14 T + 38695 T^{2} - 2316984 T^{3} + 867738978 T^{4} - 66853409076 T^{5} + 17079706303974 T^{6} - 897647074285176 T^{7} + 295072494681571965 T^{8} - 2101324894157987694 T^{9} +$$$$29\!\cdots\!43$$$$T^{10}$$)($$1 + 23290 T^{2} - 213211161 T^{4} - 14825350118772 T^{6} - 82602372254877729 T^{8} +$$$$34\!\cdots\!90$$$$T^{10} +$$$$58\!\cdots\!69$$$$T^{12}$$)
$5$ ($$1 + 625 T$$)($$1 - 625 T$$)($$1 - 625 T$$)($$1 + 625 T$$)($$1 - 625 T$$)($$1 - 625 T$$)($$1 + 625 T$$)($$1 - 625 T$$)($$1 - 625 T$$)($$1 + 625 T$$)($$( 1 + 625 T )^{2}$$)($$( 1 - 625 T )^{2}$$)($$( 1 - 625 T )^{2}$$)($$( 1 - 625 T )^{2}$$)($$( 1 + 625 T )^{2}$$)($$( 1 + 625 T )^{2}$$)($$( 1 - 625 T )^{2}$$)($$( 1 - 625 T )^{2}$$)($$( 1 + 625 T )^{2}$$)($$( 1 - 625 T )^{2}$$)($$( 1 + 625 T )^{3}$$)($$( 1 + 625 T )^{3}$$)($$( 1 + 625 T )^{4}$$)($$( 1 + 625 T )^{4}$$)($$( 1 - 625 T )^{4}$$)($$( 1 - 625 T )^{4}$$)($$( 1 + 625 T )^{4}$$)($$( 1 - 625 T )^{5}$$)($$( 1 - 625 T )^{5}$$)($$( 1 + 625 T )^{6}$$)
$7$ ($$1 + 5432 T + 40353607 T^{2}$$)($$1 - 4658 T + 40353607 T^{2}$$)($$1 + 4242 T + 40353607 T^{2}$$)($$1 - 532 T + 40353607 T^{2}$$)($$1 + 10318 T + 40353607 T^{2}$$)($$1 - 10318 T + 40353607 T^{2}$$)($$1 + 532 T + 40353607 T^{2}$$)($$1 - 4242 T + 40353607 T^{2}$$)($$1 + 4658 T + 40353607 T^{2}$$)($$1 - 5432 T + 40353607 T^{2}$$)($$1 - 1700 T + 35221550 T^{2} - 68601131900 T^{3} + 1628413597910449 T^{4}$$)($$1 - 380 T - 15543150 T^{2} - 15334370660 T^{3} + 1628413597910449 T^{4}$$)($$1 + 11284 T + 69419378 T^{2} + 455350101388 T^{3} + 1628413597910449 T^{4}$$)($$1 + 908 T + 76435506 T^{2} + 36641075156 T^{3} + 1628413597910449 T^{4}$$)($$1 - 6908 T + 59513006 T^{2} - 278762717156 T^{3} + 1628413597910449 T^{4}$$)($$1 + 6908 T + 59513006 T^{2} + 278762717156 T^{3} + 1628413597910449 T^{4}$$)($$1 - 908 T + 76435506 T^{2} - 36641075156 T^{3} + 1628413597910449 T^{4}$$)($$1 - 11284 T + 69419378 T^{2} - 455350101388 T^{3} + 1628413597910449 T^{4}$$)($$1 + 1700 T + 35221550 T^{2} + 68601131900 T^{3} + 1628413597910449 T^{4}$$)($$1 + 380 T - 15543150 T^{2} + 15334370660 T^{3} + 1628413597910449 T^{4}$$)($$1 + 5520 T + 62218149 T^{2} + 328164567136 T^{3} + 2510726733013443 T^{4} + 8988843060465678480 T^{5} +$$$$65\!\cdots\!43$$$$T^{6}$$)($$1 - 5520 T + 62218149 T^{2} - 328164567136 T^{3} + 2510726733013443 T^{4} - 8988843060465678480 T^{5} +$$$$65\!\cdots\!43$$$$T^{6}$$)($$1 - 1392 T + 33902092 T^{2} + 142651124560 T^{3} + 1770509266277766 T^{4} + 5756487418602287920 T^{5} +$$$$55\!\cdots\!08$$$$T^{6} -$$$$91\!\cdots\!56$$$$T^{7} +$$$$26\!\cdots\!01$$$$T^{8}$$)($$1 + 73077900 T^{2} + 4448319251783302 T^{4} +$$$$11\!\cdots\!00$$$$T^{6} +$$$$26\!\cdots\!01$$$$T^{8}$$)($$1 + 121287348 T^{2} + 6860242888115974 T^{4} +$$$$19\!\cdots\!52$$$$T^{6} +$$$$26\!\cdots\!01$$$$T^{8}$$)($$1 + 79187700 T^{2} + 4762072941812102 T^{4} +$$$$12\!\cdots\!00$$$$T^{6} +$$$$26\!\cdots\!01$$$$T^{8}$$)($$1 + 1392 T + 33902092 T^{2} - 142651124560 T^{3} + 1770509266277766 T^{4} - 5756487418602287920 T^{5} +$$$$55\!\cdots\!08$$$$T^{6} +$$$$91\!\cdots\!56$$$$T^{7} +$$$$26\!\cdots\!01$$$$T^{8}$$)($$1 + 3410 T + 78956315 T^{2} + 536604615400 T^{3} + 3028702014739730 T^{4} + 30142100611605336172 T^{5} +$$$$12\!\cdots\!10$$$$T^{6} +$$$$87\!\cdots\!00$$$$T^{7} +$$$$51\!\cdots\!45$$$$T^{8} +$$$$90\!\cdots\!10$$$$T^{9} +$$$$10\!\cdots\!07$$$$T^{10}$$)($$1 - 3410 T + 78956315 T^{2} - 536604615400 T^{3} + 3028702014739730 T^{4} - 30142100611605336172 T^{5} +$$$$12\!\cdots\!10$$$$T^{6} -$$$$87\!\cdots\!00$$$$T^{7} +$$$$51\!\cdots\!45$$$$T^{8} -$$$$90\!\cdots\!10$$$$T^{9} +$$$$10\!\cdots\!07$$$$T^{10}$$)($$1 + 166748754 T^{2} + 13527288010947711 T^{4} +$$$$67\!\cdots\!48$$$$T^{6} +$$$$22\!\cdots\!39$$$$T^{8} +$$$$44\!\cdots\!54$$$$T^{10} +$$$$43\!\cdots\!49$$$$T^{12}$$)
$11$ ($$1 - 73932 T + 2357947691 T^{2}$$)($$1 + 28992 T + 2357947691 T^{2}$$)($$1 + 46208 T + 2357947691 T^{2}$$)($$1 + 33180 T + 2357947691 T^{2}$$)($$1 - 5568 T + 2357947691 T^{2}$$)($$1 + 5568 T + 2357947691 T^{2}$$)($$1 - 33180 T + 2357947691 T^{2}$$)($$1 - 46208 T + 2357947691 T^{2}$$)($$1 - 28992 T + 2357947691 T^{2}$$)($$1 + 73932 T + 2357947691 T^{2}$$)($$1 + 23984 T + 1217213446 T^{2} + 56553017420944 T^{3} + 5559917313492231481 T^{4}$$)($$1 - 102720 T + 7335543382 T^{2} - 242208386819520 T^{3} + 5559917313492231481 T^{4}$$)($$1 + 101408 T + 6891283798 T^{2} + 239114759448928 T^{3} + 5559917313492231481 T^{4}$$)($$1 + 25120 T + 4397886806 T^{2} + 59231645997920 T^{3} + 5559917313492231481 T^{4}$$)($$1 + 8080 T + 4065472006 T^{2} + 19052217343280 T^{3} + 5559917313492231481 T^{4}$$)($$1 - 8080 T + 4065472006 T^{2} - 19052217343280 T^{3} + 5559917313492231481 T^{4}$$)($$1 - 25120 T + 4397886806 T^{2} - 59231645997920 T^{3} + 5559917313492231481 T^{4}$$)($$1 - 101408 T + 6891283798 T^{2} - 239114759448928 T^{3} + 5559917313492231481 T^{4}$$)($$1 - 23984 T + 1217213446 T^{2} - 56553017420944 T^{3} + 5559917313492231481 T^{4}$$)($$1 + 102720 T + 7335543382 T^{2} + 242208386819520 T^{3} + 5559917313492231481 T^{4}$$)($$1 + 5556 T + 2594856177 T^{2} + 72877014191416 T^{3} + 6118535131034237307 T^{4} +$$$$30\!\cdots\!36$$$$T^{5} +$$$$13\!\cdots\!71$$$$T^{6}$$)($$1 - 5556 T + 2594856177 T^{2} - 72877014191416 T^{3} + 6118535131034237307 T^{4} -$$$$30\!\cdots\!36$$$$T^{5} +$$$$13\!\cdots\!71$$$$T^{6}$$)($$1 + 73344 T + 7389094124 T^{2} + 361998346858112 T^{3} + 23176949445522440406 T^{4} +$$$$85\!\cdots\!92$$$$T^{5} +$$$$41\!\cdots\!44$$$$T^{6} +$$$$96\!\cdots\!24$$$$T^{7} +$$$$30\!\cdots\!61$$$$T^{8}$$)($$1 + 6667531372 T^{2} + 20762858315549494742 T^{4} +$$$$37\!\cdots\!32$$$$T^{6} +$$$$30\!\cdots\!61$$$$T^{8}$$)($$1 + 8208620044 T^{2} + 27952873504235972246 T^{4} +$$$$45\!\cdots\!64$$$$T^{6} +$$$$30\!\cdots\!61$$$$T^{8}$$)($$1 + 24386572 T^{2} + 1528383739927982742 T^{4} +$$$$13\!\cdots\!32$$$$T^{6} +$$$$30\!\cdots\!61$$$$T^{8}$$)($$1 - 73344 T + 7389094124 T^{2} - 361998346858112 T^{3} + 23176949445522440406 T^{4} -$$$$85\!\cdots\!92$$$$T^{5} +$$$$41\!\cdots\!44$$$$T^{6} -$$$$96\!\cdots\!24$$$$T^{7} +$$$$30\!\cdots\!61$$$$T^{8}$$)($$1 + 21980 T + 4670684599 T^{2} + 81070533145680 T^{3} + 12718870263515095322 T^{4} +$$$$97\!\cdots\!00$$$$T^{5} +$$$$29\!\cdots\!02$$$$T^{6} +$$$$45\!\cdots\!80$$$$T^{7} +$$$$61\!\cdots\!29$$$$T^{8} +$$$$67\!\cdots\!80$$$$T^{9} +$$$$72\!\cdots\!51$$$$T^{10}$$)($$1 - 21980 T + 4670684599 T^{2} - 81070533145680 T^{3} + 12718870263515095322 T^{4} -$$$$97\!\cdots\!00$$$$T^{5} +$$$$29\!\cdots\!02$$$$T^{6} -$$$$45\!\cdots\!80$$$$T^{7} +$$$$61\!\cdots\!29$$$$T^{8} -$$$$67\!\cdots\!80$$$$T^{9} +$$$$72\!\cdots\!51$$$$T^{10}$$)($$1 + 1964451234 T^{2} + 6341506057743216087 T^{4} +$$$$16\!\cdots\!68$$$$T^{6} +$$$$35\!\cdots\!47$$$$T^{8} +$$$$60\!\cdots\!74$$$$T^{10} +$$$$17\!\cdots\!41$$$$T^{12}$$)
$13$ ($$1 - 114514 T + 10604499373 T^{2}$$)($$1 - 164446 T + 10604499373 T^{2}$$)($$1 - 115934 T + 10604499373 T^{2}$$)($$1 - 99682 T + 10604499373 T^{2}$$)($$1 + 45986 T + 10604499373 T^{2}$$)($$1 + 45986 T + 10604499373 T^{2}$$)($$1 - 99682 T + 10604499373 T^{2}$$)($$1 - 115934 T + 10604499373 T^{2}$$)($$1 - 164446 T + 10604499373 T^{2}$$)($$1 - 114514 T + 10604499373 T^{2}$$)($$1 + 115020 T + 22672043710 T^{2} + 1219729517882460 T^{3} +$$$$11\!\cdots\!29$$$$T^{4}$$)($$1 + 179140 T + 22798610142 T^{2} + 1899690017679220 T^{3} +$$$$11\!\cdots\!29$$$$T^{4}$$)($$1 - 21372 T + 21196469342 T^{2} - 226639360599756 T^{3} +$$$$11\!\cdots\!29$$$$T^{4}$$)($$1 + 146948 T + 18650572638 T^{2} + 1558309973863604 T^{3} +$$$$11\!\cdots\!29$$$$T^{4}$$)($$1 + 111948 T + 22805544638 T^{2} + 1187152495808604 T^{3} +$$$$11\!\cdots\!29$$$$T^{4}$$)($$1 + 111948 T + 22805544638 T^{2} + 1187152495808604 T^{3} +$$$$11\!\cdots\!29$$$$T^{4}$$)($$1 + 146948 T + 18650572638 T^{2} + 1558309973863604 T^{3} +$$$$11\!\cdots\!29$$$$T^{4}$$)($$1 - 21372 T + 21196469342 T^{2} - 226639360599756 T^{3} +$$$$11\!\cdots\!29$$$$T^{4}$$)($$1 + 115020 T + 22672043710 T^{2} + 1219729517882460 T^{3} +$$$$11\!\cdots\!29$$$$T^{4}$$)($$1 + 179140 T + 22798610142 T^{2} + 1899690017679220 T^{3} +$$$$11\!\cdots\!29$$$$T^{4}$$)($$1 - 83094 T + 20077033299 T^{2} - 754871996338436 T^{3} +$$$$21\!\cdots\!27$$$$T^{4} -$$$$93\!\cdots\!26$$$$T^{5} +$$$$11\!\cdots\!17$$$$T^{6}$$)($$1 - 83094 T + 20077033299 T^{2} - 754871996338436 T^{3} +$$$$21\!\cdots\!27$$$$T^{4} -$$$$93\!\cdots\!26$$$$T^{5} +$$$$11\!\cdots\!17$$$$T^{6}$$)($$1 + 112376 T + 32920281292 T^{2} + 3025884312984744 T^{3} +$$$$46\!\cdots\!74$$$$T^{4} +$$$$32\!\cdots\!12$$$$T^{5} +$$$$37\!\cdots\!68$$$$T^{6} +$$$$13\!\cdots\!92$$$$T^{7} +$$$$12\!\cdots\!41$$$$T^{8}$$)($$( 1 - 66372 T + 11161359838 T^{2} - 703841832384756 T^{3} +$$$$11\!\cdots\!29$$$$T^{4} )^{2}$$)($$( 1 - 1452 T + 14821045822 T^{2} - 15397733089596 T^{3} +$$$$11\!\cdots\!29$$$$T^{4} )^{2}$$)($$( 1 + 100628 T + 10005947838 T^{2} + 1067109562906244 T^{3} +$$$$11\!\cdots\!29$$$$T^{4} )^{2}$$)($$1 + 112376 T + 32920281292 T^{2} + 3025884312984744 T^{3} +$$$$46\!\cdots\!74$$$$T^{4} +$$$$32\!\cdots\!12$$$$T^{5} +$$$$37\!\cdots\!68$$$$T^{6} +$$$$13\!\cdots\!92$$$$T^{7} +$$$$12\!\cdots\!41$$$$T^{8}$$)($$1 - 72190 T + 15750107849 T^{2} - 2393539135926280 T^{3} +$$$$24\!\cdots\!86$$$$T^{4} -$$$$26\!\cdots\!60$$$$T^{5} +$$$$26\!\cdots\!78$$$$T^{6} -$$$$26\!\cdots\!20$$$$T^{7} +$$$$18\!\cdots\!33$$$$T^{8} -$$$$91\!\cdots\!90$$$$T^{9} +$$$$13\!\cdots\!93$$$$T^{10}$$)($$1 - 72190 T + 15750107849 T^{2} - 2393539135926280 T^{3} +$$$$24\!\cdots\!86$$$$T^{4} -$$$$26\!\cdots\!60$$$$T^{5} +$$$$26\!\cdots\!78$$$$T^{6} -$$$$26\!\cdots\!20$$$$T^{7} +$$$$18\!\cdots\!33$$$$T^{8} -$$$$91\!\cdots\!90$$$$T^{9} +$$$$13\!\cdots\!93$$$$T^{10}$$)($$( 1 + 121626 T + 8446497939 T^{2} - 81913320511076 T^{3} + 89570882098171292247 T^{4} +$$$$13\!\cdots\!54$$$$T^{5} +$$$$11\!\cdots\!17$$$$T^{6} )^{2}$$)
$17$ ($$1 - 41682 T + 118587876497 T^{2}$$)($$1 + 594822 T + 118587876497 T^{2}$$)($$1 - 494842 T + 118587876497 T^{2}$$)($$1 + 443454 T + 118587876497 T^{2}$$)($$1 + 381318 T + 118587876497 T^{2}$$)($$1 + 381318 T + 118587876497 T^{2}$$)($$1 + 443454 T + 118587876497 T^{2}$$)($$1 - 494842 T + 118587876497 T^{2}$$)($$1 + 594822 T + 118587876497 T^{2}$$)($$1 - 41682 T + 118587876497 T^{2}$$)($$1 - 412820 T + 113016614470 T^{2} - 48955447175491540 T^{3} +$$$$14\!\cdots\!09$$$$T^{4}$$)($$1 - 316020 T + 259693705798 T^{2} - 37476140730581940 T^{3} +$$$$14\!\cdots\!09$$$$T^{4}$$)($$1 + 296780 T + 144639901894 T^{2} + 35194509986779660 T^{3} +$$$$14\!\cdots\!09$$$$T^{4}$$)($$1 - 169268 T + 244287370694 T^{2} - 20073132678894196 T^{3} +$$$$14\!\cdots\!09$$$$T^{4}$$)($$1 + 327532 T + 241881460294 T^{2} + 38841324364815404 T^{3} +$$$$14\!\cdots\!09$$$$T^{4}$$)($$1 + 327532 T + 241881460294 T^{2} + 38841324364815404 T^{3} +$$$$14\!\cdots\!09$$$$T^{4}$$)($$1 - 169268 T + 244287370694 T^{2} - 20073132678894196 T^{3} +$$$$14\!\cdots\!09$$$$T^{4}$$)($$1 + 296780 T + 144639901894 T^{2} + 35194509986779660 T^{3} +$$$$14\!\cdots\!09$$$$T^{4}$$)($$1 - 412820 T + 113016614470 T^{2} - 48955447175491540 T^{3} +$$$$14\!\cdots\!09$$$$T^{4}$$)($$1 - 316020 T + 259693705798 T^{2} - 37476140730581940 T^{3} +$$$$14\!\cdots\!09$$$$T^{4}$$)($$1 - 367062 T + 268505189631 T^{2} - 69711192496917428 T^{3} +$$$$31\!\cdots\!07$$$$T^{4} -$$$$51\!\cdots\!58$$$$T^{5} +$$$$16\!\cdots\!73$$$$T^{6}$$)($$1 - 367062 T + 268505189631 T^{2} - 69711192496917428 T^{3} +$$$$31\!\cdots\!07$$$$T^{4} -$$$$51\!\cdots\!58$$$$T^{5} +$$$$16\!\cdots\!73$$$$T^{6}$$)($$1 - 173448 T + 349761359708 T^{2} - 47292952848422968 T^{3} +$$$$56\!\cdots\!34$$$$T^{4} -$$$$56\!\cdots\!96$$$$T^{5} +$$$$49\!\cdots\!72$$$$T^{6} -$$$$28\!\cdots\!04$$$$T^{7} +$$$$19\!\cdots\!81$$$$T^{8}$$)($$( 1 + 391420 T + 217588113190 T^{2} + 46417666618455740 T^{3} +$$$$14\!\cdots\!09$$$$T^{4} )^{2}$$)($$( 1 - 1636 T + 101996185318 T^{2} - 194009765949092 T^{3} +$$$$14\!\cdots\!09$$$$T^{4} )^{2}$$)($$( 1 + 221020 T + 249024236390 T^{2} + 26210292463366940 T^{3} +$$$$14\!\cdots\!09$$$$T^{4} )^{2}$$)($$1 - 173448 T + 349761359708 T^{2} - 47292952848422968 T^{3} +$$$$56\!\cdots\!34$$$$T^{4} -$$$$56\!\cdots\!96$$$$T^{5} +$$$$49\!\cdots\!72$$$$T^{6} -$$$$28\!\cdots\!04$$$$T^{7} +$$$$19\!\cdots\!81$$$$T^{8}$$)($$1 - 340490 T + 218135137021 T^{2} - 6694716931098360 T^{3} +$$$$36\!\cdots\!66$$$$T^{4} +$$$$78\!\cdots\!80$$$$T^{5} +$$$$43\!\cdots\!02$$$$T^{6} -$$$$94\!\cdots\!40$$$$T^{7} +$$$$36\!\cdots\!33$$$$T^{8} -$$$$67\!\cdots\!90$$$$T^{9} +$$$$23\!\cdots\!57$$$$T^{10}$$)($$1 - 340490 T + 218135137021 T^{2} - 6694716931098360 T^{3} +$$$$36\!\cdots\!66$$$$T^{4} +$$$$78\!\cdots\!80$$$$T^{5} +$$$$43\!\cdots\!02$$$$T^{6} -$$$$94\!\cdots\!40$$$$T^{7} +$$$$36\!\cdots\!33$$$$T^{8} -$$$$67\!\cdots\!90$$$$T^{9} +$$$$23\!\cdots\!57$$$$T^{10}$$)($$( 1 - 339078 T + 164878548927 T^{2} - 22643670408630740 T^{3} +$$$$19\!\cdots\!19$$$$T^{4} -$$$$47\!\cdots\!02$$$$T^{5} +$$$$16\!\cdots\!73$$$$T^{6} )^{2}$$)
$19$ ($$1 - 1057460 T + 322687697779 T^{2}$$)($$1 - 295780 T + 322687697779 T^{2}$$)($$1 + 1008740 T + 322687697779 T^{2}$$)($$1 + 357244 T + 322687697779 T^{2}$$)($$1 + 610460 T + 322687697779 T^{2}$$)($$1 - 610460 T + 322687697779 T^{2}$$)($$1 - 357244 T + 322687697779 T^{2}$$)($$1 - 1008740 T + 322687697779 T^{2}$$)($$1 + 295780 T + 322687697779 T^{2}$$)($$1 + 1057460 T + 322687697779 T^{2}$$)($$1 - 296520 T + 659218232758 T^{2} - 95683356145429080 T^{3} +$$$$10\!\cdots\!41$$$$T^{4}$$)($$1 - 137272 T + 111610161654 T^{2} - 44295985649518888 T^{3} +$$$$10\!\cdots\!41$$$$T^{4}$$)($$1 - 275832 T + 612347527414 T^{2} - 89007593053777128 T^{3} +$$$$10\!\cdots\!41$$$$T^{4}$$)($$1 - 25480 T + 371498689782 T^{2} - 8222082539408920 T^{3} +$$$$10\!\cdots\!41$$$$T^{4}$$)($$1 + 1156680 T + 686155308982 T^{2} + 373246406267013720 T^{3} +$$$$10\!\cdots\!41$$$$T^{4}$$)($$1 - 1156680 T + 686155308982 T^{2} - 373246406267013720 T^{3} +$$$$10\!\cdots\!41$$$$T^{4}$$)($$1 + 25480 T + 371498689782 T^{2} + 8222082539408920 T^{3} +$$$$10\!\cdots\!41$$$$T^{4}$$)($$1 + 275832 T + 612347527414 T^{2} + 89007593053777128 T^{3} +$$$$10\!\cdots\!41$$$$T^{4}$$)($$1 + 296520 T + 659218232758 T^{2} + 95683356145429080 T^{3} +$$$$10\!\cdots\!41$$$$T^{4}$$)($$1 + 137272 T + 111610161654 T^{2} + 44295985649518888 T^{3} +$$$$10\!\cdots\!41$$$$T^{4}$$)($$1 + 1489116 T + 1342580105481 T^{2} + 830560424045529832 T^{3} +$$$$43\!\cdots\!99$$$$T^{4} +$$$$15\!\cdots\!56$$$$T^{5} +$$$$33\!\cdots\!39$$$$T^{6}$$)($$1 - 1489116 T + 1342580105481 T^{2} - 830560424045529832 T^{3} +$$$$43\!\cdots\!99$$$$T^{4} -$$$$15\!\cdots\!56$$$$T^{5} +$$$$33\!\cdots\!39$$$$T^{6}$$)($$1 - 125728 T + 643550181196 T^{2} - 101011957946402336 T^{3} +$$$$28\!\cdots\!86$$$$T^{4} -$$$$32\!\cdots\!44$$$$T^{5} +$$$$67\!\cdots\!36$$$$T^{6} -$$$$42\!\cdots\!92$$$$T^{7} +$$$$10\!\cdots\!81$$$$T^{8}$$)($$1 + 486146387916 T^{2} +$$$$14\!\cdots\!46$$$$T^{4} +$$$$50\!\cdots\!56$$$$T^{6} +$$$$10\!\cdots\!81$$$$T^{8}$$)($$1 + 1144086181836 T^{2} +$$$$53\!\cdots\!06$$$$T^{4} +$$$$11\!\cdots\!76$$$$T^{6} +$$$$10\!\cdots\!81$$$$T^{8}$$)($$1 + 307672928716 T^{2} +$$$$12\!\cdots\!46$$$$T^{4} +$$$$32\!\cdots\!56$$$$T^{6} +$$$$10\!\cdots\!81$$$$T^{8}$$)($$1 + 125728 T + 643550181196 T^{2} + 101011957946402336 T^{3} +$$$$28\!\cdots\!86$$$$T^{4} +$$$$32\!\cdots\!44$$$$T^{5} +$$$$67\!\cdots\!36$$$$T^{6} +$$$$42\!\cdots\!92$$$$T^{7} +$$$$10\!\cdots\!81$$$$T^{8}$$)($$1 + 600840 T + 1364710657471 T^{2} + 695788121705014880 T^{3} +$$$$82\!\cdots\!22$$$$T^{4} +$$$$32\!\cdots\!60$$$$T^{5} +$$$$26\!\cdots\!38$$$$T^{6} +$$$$72\!\cdots\!80$$$$T^{7} +$$$$45\!\cdots\!69$$$$T^{8} +$$$$65\!\cdots\!40$$$$T^{9} +$$$$34\!\cdots\!99$$$$T^{10}$$)($$1 - 600840 T + 1364710657471 T^{2} - 695788121705014880 T^{3} +$$$$82\!\cdots\!22$$$$T^{4} -$$$$32\!\cdots\!60$$$$T^{5} +$$$$26\!\cdots\!38$$$$T^{6} -$$$$72\!\cdots\!80$$$$T^{7} +$$$$45\!\cdots\!69$$$$T^{8} -$$$$65\!\cdots\!40$$$$T^{9} +$$$$34\!\cdots\!99$$$$T^{10}$$)($$1 + 559455497394 T^{2} +$$$$35\!\cdots\!35$$$$T^{4} +$$$$10\!\cdots\!00$$$$T^{6} +$$$$37\!\cdots\!35$$$$T^{8} +$$$$60\!\cdots\!14$$$$T^{10} +$$$$11\!\cdots\!21$$$$T^{12}$$)
$23$ ($$1 + 1599336 T + 1801152661463 T^{2}$$)($$1 - 2544534 T + 1801152661463 T^{2}$$)($$1 - 532554 T + 1801152661463 T^{2}$$)($$1 - 142956 T + 1801152661463 T^{2}$$)($$1 + 1447914 T + 1801152661463 T^{2}$$)($$1 - 1447914 T + 1801152661463 T^{2}$$)($$1 + 142956 T + 1801152661463 T^{2}$$)($$1 + 532554 T + 1801152661463 T^{2}$$)($$1 + 2544534 T + 1801152661463 T^{2}$$)($$1 - 1599336 T + 1801152661463 T^{2}$$)($$1 + 1049220 T + 3497852029390 T^{2} + 1889805395460208860 T^{3} +$$$$32\!\cdots\!69$$$$T^{4}$$)($$1 - 665460 T + 2886450615250 T^{2} - 1198595050097167980 T^{3} +$$$$32\!\cdots\!69$$$$T^{4}$$)($$1 - 585284 T + 3430385383090 T^{2} - 1054185834311710492 T^{3} +$$$$32\!\cdots\!69$$$$T^{4}$$)($$1 - 1782748 T + 3965893132658 T^{2} - 3211001304917840324 T^{3} +$$$$32\!\cdots\!69$$$$T^{4}$$)($$1 - 1057252 T + 1690239470158 T^{2} - 1904272253637079676 T^{3} +$$$$32\!\cdots\!69$$$$T^{4}$$)($$1 + 1057252 T + 1690239470158 T^{2} + 1904272253637079676 T^{3} +$$$$32\!\cdots\!69$$$$T^{4}$$)($$1 + 1782748 T + 3965893132658 T^{2} + 3211001304917840324 T^{3} +$$$$32\!\cdots\!69$$$$T^{4}$$)($$1 + 585284 T + 3430385383090 T^{2} + 1054185834311710492 T^{3} +$$$$32\!\cdots\!69$$$$T^{4}$$)($$1 - 1049220 T + 3497852029390 T^{2} - 1889805395460208860 T^{3} +$$$$32\!\cdots\!69$$$$T^{4}$$)($$1 + 665460 T + 2886450615250 T^{2} + 1198595050097167980 T^{3} +$$$$32\!\cdots\!69$$$$T^{4}$$)($$1 + 499920 T - 191246545323 T^{2} - 4150866877865471776 T^{3} -$$$$34\!\cdots\!49$$$$T^{4} +$$$$16\!\cdots\!80$$$$T^{5} +$$$$58\!\cdots\!47$$$$T^{6}$$)($$1 - 499920 T - 191246545323 T^{2} + 4150866877865471776 T^{3} -$$$$34\!\cdots\!49$$$$T^{4} -$$$$16\!\cdots\!80$$$$T^{5} +$$$$58\!\cdots\!47$$$$T^{6}$$)($$1 - 2859152 T + 6727477421132 T^{2} - 11738783046643035216 T^{3} +$$$$17\!\cdots\!78$$$$T^{4} -$$$$21\!\cdots\!08$$$$T^{5} +$$$$21\!\cdots\!08$$$$T^{6} -$$$$16\!\cdots\!44$$$$T^{7} +$$$$10\!\cdots\!61$$$$T^{8}$$)($$1 + 6404579366604 T^{2} +$$$$16\!\cdots\!66$$$$T^{4} +$$$$20\!\cdots\!76$$$$T^{6} +$$$$10\!\cdots\!61$$$$T^{8}$$)($$1 - 2815310673228 T^{2} +$$$$55\!\cdots\!34$$$$T^{4} -$$$$91\!\cdots\!32$$$$T^{6} +$$$$10\!\cdots\!61$$$$T^{8}$$)($$1 + 6923522204404 T^{2} +$$$$18\!\cdots\!66$$$$T^{4} +$$$$22\!\cdots\!76$$$$T^{6} +$$$$10\!\cdots\!61$$$$T^{8}$$)($$1 + 2859152 T + 6727477421132 T^{2} + 11738783046643035216 T^{3} +$$$$17\!\cdots\!78$$$$T^{4} +$$$$21\!\cdots\!08$$$$T^{5} +$$$$21\!\cdots\!08$$$$T^{6} +$$$$16\!\cdots\!44$$$$T^{7} +$$$$10\!\cdots\!61$$$$T^{8}$$)($$1 - 1520906 T + 7406477477803 T^{2} - 8804658078011515720 T^{3} +$$$$24\!\cdots\!58$$$$T^{4} -$$$$22\!\cdots\!28$$$$T^{5} +$$$$43\!\cdots\!54$$$$T^{6} -$$$$28\!\cdots\!80$$$$T^{7} +$$$$43\!\cdots\!41$$$$T^{8} -$$$$16\!\cdots\!66$$$$T^{9} +$$$$18\!\cdots\!43$$$$T^{10}$$)($$1 + 1520906 T + 7406477477803 T^{2} + 8804658078011515720 T^{3} +$$$$24\!\cdots\!58$$$$T^{4} +$$$$22\!\cdots\!28$$$$T^{5} +$$$$43\!\cdots\!54$$$$T^{6} +$$$$28\!\cdots\!80$$$$T^{7} +$$$$43\!\cdots\!41$$$$T^{8} +$$$$16\!\cdots\!66$$$$T^{9} +$$$$18\!\cdots\!43$$$$T^{10}$$)($$1 + 5860930518450 T^{2} +$$$$13\!\cdots\!19$$$$T^{4} +$$$$23\!\cdots\!88$$$$T^{6} +$$$$44\!\cdots\!11$$$$T^{8} +$$$$61\!\cdots\!50$$$$T^{10} +$$$$34\!\cdots\!09$$$$T^{12}$$)
$29$ ($$1 + 2184510 T + 14507145975869 T^{2}$$)($$1 - 3722970 T + 14507145975869 T^{2}$$)($$1 + 4196390 T + 14507145975869 T^{2}$$)($$1 + 1527966 T + 14507145975869 T^{2}$$)($$1 + 5385510 T + 14507145975869 T^{2}$$)($$1 + 5385510 T + 14507145975869 T^{2}$$)($$1 + 1527966 T + 14507145975869 T^{2}$$)($$1 + 4196390 T + 14507145975869 T^{2}$$)($$1 - 3722970 T + 14507145975869 T^{2}$$)($$1 + 2184510 T + 14507145975869 T^{2}$$)($$1 - 3666980 T + 20832571957438 T^{2} - 53197414150592105620 T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 - 6893748 T + 40195999658014 T^{2} -$$$$10\!\cdots\!12$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 - 9928756 T + 50878662529822 T^{2} -$$$$14\!\cdots\!64$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 + 7323340 T + 29495257443614 T^{2} +$$$$10\!\cdots\!60$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 - 4212260 T + 32604383130814 T^{2} - 61107870708313953940 T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 - 4212260 T + 32604383130814 T^{2} - 61107870708313953940 T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 + 7323340 T + 29495257443614 T^{2} +$$$$10\!\cdots\!60$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 - 9928756 T + 50878662529822 T^{2} -$$$$14\!\cdots\!64$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 - 3666980 T + 20832571957438 T^{2} - 53197414150592105620 T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 - 6893748 T + 40195999658014 T^{2} -$$$$10\!\cdots\!12$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 + 5234682 T + 42736985914563 T^{2} +$$$$14\!\cdots\!08$$$$T^{3} +$$$$61\!\cdots\!47$$$$T^{4} +$$$$11\!\cdots\!02$$$$T^{5} +$$$$30\!\cdots\!09$$$$T^{6}$$)($$1 + 5234682 T + 42736985914563 T^{2} +$$$$14\!\cdots\!08$$$$T^{3} +$$$$61\!\cdots\!47$$$$T^{4} +$$$$11\!\cdots\!02$$$$T^{5} +$$$$30\!\cdots\!09$$$$T^{6}$$)($$1 + 3191320 T + 28127632061900 T^{2} +$$$$15\!\cdots\!28$$$$T^{3} +$$$$45\!\cdots\!70$$$$T^{4} +$$$$22\!\cdots\!32$$$$T^{5} +$$$$59\!\cdots\!00$$$$T^{6} +$$$$97\!\cdots\!80$$$$T^{7} +$$$$44\!\cdots\!21$$$$T^{8}$$)($$( 1 - 4492724 T + 8618309698078 T^{2} - 65176602897290077156 T^{3} +$$$$21\!\cdots\!61$$$$T^{4} )^{2}$$)($$( 1 + 3511100 T + 17621485309438 T^{2} + 50936040235873645900 T^{3} +$$$$21\!\cdots\!61$$$$T^{4} )^{2}$$)($$( 1 + 3359676 T + 25576312884478 T^{2} + 48739310163623658444 T^{3} +$$$$21\!\cdots\!61$$$$T^{4} )^{2}$$)($$1 + 3191320 T + 28127632061900 T^{2} +$$$$15\!\cdots\!28$$$$T^{3} +$$$$45\!\cdots\!70$$$$T^{4} +$$$$22\!\cdots\!32$$$$T^{5} +$$$$59\!\cdots\!00$$$$T^{6} +$$$$97\!\cdots\!80$$$$T^{7} +$$$$44\!\cdots\!21$$$$T^{8}$$)($$1 - 3547242 T + 55433414947929 T^{2} -$$$$19\!\cdots\!92$$$$T^{3} +$$$$14\!\cdots\!34$$$$T^{4} -$$$$40\!\cdots\!76$$$$T^{5} +$$$$20\!\cdots\!46$$$$T^{6} -$$$$40\!\cdots\!12$$$$T^{7} +$$$$16\!\cdots\!61$$$$T^{8} -$$$$15\!\cdots\!82$$$$T^{9} +$$$$64\!\cdots\!49$$$$T^{10}$$)($$1 - 3547242 T + 55433414947929 T^{2} -$$$$19\!\cdots\!92$$$$T^{3} +$$$$14\!\cdots\!34$$$$T^{4} -$$$$40\!\cdots\!76$$$$T^{5} +$$$$20\!\cdots\!46$$$$T^{6} -$$$$40\!\cdots\!12$$$$T^{7} +$$$$16\!\cdots\!61$$$$T^{8} -$$$$15\!\cdots\!82$$$$T^{9} +$$$$64\!\cdots\!49$$$$T^{10}$$)($$( 1 - 83214 T + 18360066815907 T^{2} - 554287020038043732 T^{3} +$$$$26\!\cdots\!83$$$$T^{4} -$$$$17\!\cdots\!54$$$$T^{5} +$$$$30\!\cdots\!09$$$$T^{6} )^{2}$$)
$31$ ($$1 - 9619648 T + 26439622160671 T^{2}$$)($$1 - 2335772 T + 26439622160671 T^{2}$$)($$1 - 3365028 T + 26439622160671 T^{2}$$)($$1 + 7323416 T + 26439622160671 T^{2}$$)($$1 - 3053852 T + 26439622160671 T^{2}$$)($$1 + 3053852 T + 26439622160671 T^{2}$$)($$1 - 7323416 T + 26439622160671 T^{2}$$)($$1 + 3365028 T + 26439622160671 T^{2}$$)($$1 + 2335772 T + 26439622160671 T^{2}$$)($$1 + 9619648 T + 26439622160671 T^{2}$$)($$1 - 1613144 T + 29382323902526 T^{2} - 42650917850753459624 T^{3} +$$$$69\!\cdots\!41$$$$T^{4}$$)($$1 + 291832 T + 38964935800398 T^{2} + 7715927814392939272 T^{3} +$$$$69\!\cdots\!41$$$$T^{4}$$)($$1 + 5131480 T + 36749057608142 T^{2} +$$$$13\!\cdots\!80$$$$T^{3} +$$$$69\!\cdots\!41$$$$T^{4}$$)($$1 - 10677272 T + 73017326150862 T^{2} -$$$$28\!\cdots\!12$$$$T^{3} +$$$$69\!\cdots\!41$$$$T^{4}$$)($$1 - 11361128 T + 71055092544062 T^{2} -$$$$30\!\cdots\!88$$$$T^{3} +$$$$69\!\cdots\!41$$$$T^{4}$$)($$1 + 11361128 T + 71055092544062 T^{2} +$$$$30\!\cdots\!88$$$$T^{3} +$$$$69\!\cdots\!41$$$$T^{4}$$)($$1 + 10677272 T + 73017326150862 T^{2} +$$$$28\!\cdots\!12$$$$T^{3} +$$$$69\!\cdots\!41$$$$T^{4}$$)($$1 - 5131480 T + 36749057608142 T^{2} -$$$$13\!\cdots\!80$$$$T^{3} +$$$$69\!\cdots\!41$$$$T^{4}$$)($$1 + 1613144 T + 29382323902526 T^{2} + 42650917850753459624 T^{3} +$$$$69\!\cdots\!41$$$$T^{4}$$)($$1 - 291832 T + 38964935800398 T^{2} - 7715927814392939272 T^{3} +$$$$69\!\cdots\!41$$$$T^{4}$$)($$1 - 12708912 T + 128130963574173 T^{2} -$$$$72\!\cdots\!04$$$$T^{3} +$$$$33\!\cdots\!83$$$$T^{4} -$$$$88\!\cdots\!92$$$$T^{5} +$$$$18\!\cdots\!11$$$$T^{6}$$)($$1 + 12708912 T + 128130963574173 T^{2} +$$$$72\!\cdots\!04$$$$T^{3} +$$$$33\!\cdots\!83$$$$T^{4} +$$$$88\!\cdots\!92$$$$T^{5} +$$$$18\!\cdots\!11$$$$T^{6}$$)($$1 - 3857056 T + 93008361339964 T^{2} -$$$$28\!\cdots\!28$$$$T^{3} +$$$$35\!\cdots\!06$$$$T^{4} -$$$$76\!\cdots\!88$$$$T^{5} +$$$$65\!\cdots\!24$$$$T^{6} -$$$$71\!\cdots\!16$$$$T^{7} +$$$$48\!\cdots\!81$$$$T^{8}$$)($$1 + 24358263624252 T^{2} +$$$$67\!\cdots\!02$$$$T^{4} +$$$$17\!\cdots\!32$$$$T^{6} +$$$$48\!\cdots\!81$$$$T^{8}$$)($$1 + 7628646455004 T^{2} -$$$$75\!\cdots\!14$$$$T^{4} +$$$$53\!\cdots\!64$$$$T^{6} +$$$$48\!\cdots\!81$$$$T^{8}$$)($$1 + 21940672217052 T^{2} +$$$$83\!\cdots\!02$$$$T^{4} +$$$$15\!\cdots\!32$$$$T^{6} +$$$$48\!\cdots\!81$$$$T^{8}$$)($$1 + 3857056 T + 93008361339964 T^{2} +$$$$28\!\cdots\!28$$$$T^{3} +$$$$35\!\cdots\!06$$$$T^{4} +$$$$76\!\cdots\!88$$$$T^{5} +$$$$65\!\cdots\!24$$$$T^{6} +$$$$71\!\cdots\!16$$$$T^{7} +$$$$48\!\cdots\!81$$$$T^{8}$$)($$1 - 6107940 T + 101178781014139 T^{2} -$$$$44\!\cdots\!80$$$$T^{3} +$$$$46\!\cdots\!02$$$$T^{4} -$$$$16\!\cdots\!80$$$$T^{5} +$$$$12\!\cdots\!42$$$$T^{6} -$$$$30\!\cdots\!80$$$$T^{7} +$$$$18\!\cdots\!29$$$$T^{8} -$$$$29\!\cdots\!40$$$$T^{9} +$$$$12\!\cdots\!51$$$$T^{10}$$)($$1 + 6107940 T + 101178781014139 T^{2} +$$$$44\!\cdots\!80$$$$T^{3} +$$$$46\!\cdots\!02$$$$T^{4} +$$$$16\!\cdots\!80$$$$T^{5} +$$$$12\!\cdots\!42$$$$T^{6} +$$$$30\!\cdots\!80$$$$T^{7} +$$$$18\!\cdots\!29$$$$T^{8} +$$$$29\!\cdots\!40$$$$T^{9} +$$$$12\!\cdots\!51$$$$T^{10}$$)($$1 + 119954050623834 T^{2} +$$$$68\!\cdots\!47$$$$T^{4} +$$$$22\!\cdots\!08$$$$T^{6} +$$$$47\!\cdots\!27$$$$T^{8} +$$$$58\!\cdots\!54$$$$T^{10} +$$$$34\!\cdots\!21$$$$T^{12}$$)
$37$ ($$1 + 4799942 T + 129961739795077 T^{2}$$)($$1 + 10840418 T + 129961739795077 T^{2}$$)($$1 - 14931358 T + 129961739795077 T^{2}$$)($$1 - 2666842 T + 129961739795077 T^{2}$$)($$1 + 12889442 T + 129961739795077 T^{2}$$)($$1 + 12889442 T + 129961739795077 T^{2}$$)($$1 - 2666842 T + 129961739795077 T^{2}$$)($$1 - 14931358 T + 129961739795077 T^{2}$$)($$1 + 10840418 T + 129961739795077 T^{2}$$)($$1 + 4799942 T + 129961739795077 T^{2}$$)($$1 - 21121940 T + 328931801286510 T^{2} -$$$$27\!\cdots\!80$$$$T^{3} +$$$$16\!\cdots\!29$$$$T^{4}$$)($$1 + 11261380 T + 218879982937230 T^{2} +$$$$14\!\cdots\!60$$$$T^{3} +$$$$16\!\cdots\!29$$$$T^{4}$$)($$1 - 11007932 T + 240473943386510 T^{2} -$$$$14\!\cdots\!64$$$$T^{3} +$$$$16\!\cdots\!29$$$$T^{4}$$)($$1 - 5750460 T + 104099098360718 T^{2} -$$$$74\!\cdots\!20$$$$T^{3} +$$$$16\!\cdots\!29$$$$T^{4}$$)($$1 - 7251860 T + 207906306187118 T^{2} -$$$$94\!\cdots\!20$$$$T^{3} +$$$$16\!\cdots\!29$$$$T^{4}$$)($$1 - 7251860 T + 207906306187118 T^{2} -$$$$94\!\cdots\!20$$$$T^{3} +$$$$16\!\cdots\!29$$$$T^{4}$$)($$1 - 5750460 T + 104099098360718 T^{2} -$$$$74\!\cdots\!20$$$$T^{3} +$$$$16\!\cdots\!29$$$$T^{4}$$)($$1 - 11007932 T + 240473943386510 T^{2} -$$$$14\!\cdots\!64$$$$T^{3} +$$$$16\!\cdots\!29$$$$T^{4}$$)($$1 - 21121940 T + 328931801286510 T^{2} -$$$$27\!\cdots\!80$$$$T^{3} +$$$$16\!\cdots\!29$$$$T^{4}$$)($$1 + 11261380 T + 218879982937230 T^{2} +$$$$14\!\cdots\!60$$$$T^{3} +$$$$16\!\cdots\!29$$$$T^{4}$$)($$1 + 21724434 T + 286542561812475 T^{2} +$$$$28\!\cdots\!32$$$$T^{3} +$$$$37\!\cdots\!75$$$$T^{4} +$$$$36\!\cdots\!86$$$$T^{5} +$$$$21\!\cdots\!33$$$$T^{6}$$)($$1 + 21724434 T + 286542561812475 T^{2} +$$$$28\!\cdots\!32$$$$T^{3} +$$$$37\!\cdots\!75$$$$T^{4} +$$$$36\!\cdots\!86$$$$T^{5} +$$$$21\!\cdots\!33$$$$T^{6}$$)($$1 + 6213208 T + 348415870869868 T^{2} +$$$$23\!\cdots\!48$$$$T^{3} +$$$$61\!\cdots\!14$$$$T^{4} +$$$$30\!\cdots\!96$$$$T^{5} +$$$$58\!\cdots\!72$$$$T^{6} +$$$$13\!\cdots\!64$$$$T^{7} +$$$$28\!\cdots\!41$$$$T^{8}$$)($$( 1 + 13169708 T + 97768211386094 T^{2} +$$$$17\!\cdots\!16$$$$T^{3} +$$$$16\!\cdots\!29$$$$T^{4} )^{2}$$)($$( 1 - 561916 T + 195605516431118 T^{2} - 73027580978690487532 T^{3} +$$$$16\!\cdots\!29$$$$T^{4} )^{2}$$)($$( 1 + 14546308 T + 201802252718094 T^{2} +$$$$18\!\cdots\!16$$$$T^{3} +$$$$16\!\cdots\!29$$$$T^{4} )^{2}$$)($$1 + 6213208 T + 348415870869868 T^{2} +$$$$23\!\cdots\!48$$$$T^{3} +$$$$61\!\cdots\!14$$$$T^{4} +$$$$30\!\cdots\!96$$$$T^{5} +$$$$58\!\cdots\!72$$$$T^{6} +$$$$13\!\cdots\!64$$$$T^{7} +$$$$28\!\cdots\!41$$$$T^{8}$$)($$1 - 15995670 T + 339043304080321 T^{2} -$$$$32\!\cdots\!40$$$$T^{3} +$$$$59\!\cdots\!06$$$$T^{4} -$$$$54\!\cdots\!00$$$$T^{5} +$$$$77\!\cdots\!62$$$$T^{6} -$$$$54\!\cdots\!60$$$$T^{7} +$$$$74\!\cdots\!93$$$$T^{8} -$$$$45\!\cdots\!70$$$$T^{9} +$$$$37\!\cdots\!57$$$$T^{10}$$)($$1 - 15995670 T + 339043304080321 T^{2} -$$$$32\!\cdots\!40$$$$T^{3} +$$$$59\!\cdots\!06$$$$T^{4} -$$$$54\!\cdots\!00$$$$T^{5} +$$$$77\!\cdots\!62$$$$T^{6} -$$$$54\!\cdots\!60$$$$T^{7} +$$$$74\!\cdots\!93$$$$T^{8} -$$$$45\!\cdots\!70$$$$T^{9} +$$$$37\!\cdots\!57$$$$T^{10}$$)($$( 1 + 2059074 T + 227582550743355 T^{2} +$$$$12\!\cdots\!56$$$$T^{3} +$$$$29\!\cdots\!35$$$$T^{4} +$$$$34\!\cdots\!46$$$$T^{5} +$$$$21\!\cdots\!33$$$$T^{6} )^{2}$$)
$41$ ($$1 - 9531882 T + 327381934393961 T^{2}$$)($$1 - 21593862 T + 327381934393961 T^{2}$$)($$1 - 11056262 T + 327381934393961 T^{2}$$)($$1 + 7939014 T + 327381934393961 T^{2}$$)($$1 + 33786618 T + 327381934393961 T^{2}$$)($$1 + 33786618 T + 327381934393961 T^{2}$$)($$1 + 7939014 T + 327381934393961 T^{2}$$)($$1 - 11056262 T + 327381934393961 T^{2}$$)($$1 - 21593862 T + 327381934393961 T^{2}$$)($$1 - 9531882 T + 327381934393961 T^{2}$$)($$1 + 26957276 T + 811945448362966 T^{2} +$$$$88\!\cdots\!36$$$$T^{3} +$$$$10\!\cdots\!21$$$$T^{4}$$)($$1 - 29773452 T + 771012402449398 T^{2} -$$$$97\!\cdots\!72$$$$T^{3} +$$$$10\!\cdots\!21$$$$T^{4}$$)($$1 + 41835956 T + 1084325213081206 T^{2} +$$$$13\!\cdots\!16$$$$T^{3} +$$$$10\!\cdots\!21$$$$T^{4}$$)($$1 + 7795764 T + 505248245475190 T^{2} +$$$$25\!\cdots\!04$$$$T^{3} +$$$$10\!\cdots\!21$$$$T^{4}$$)($$1 - 13030436 T - 112698304084010 T^{2} -$$$$42\!\cdots\!96$$$$T^{3} +$$$$10\!\cdots\!21$$$$T^{4}$$)($$1 - 13030436 T - 112698304084010 T^{2} -$$$$42\!\cdots\!96$$$$T^{3} +$$$$10\!\cdots\!21$$$$T^{4}$$)($$1 + 7795764 T + 505248245475190 T^{2} +$$$$25\!\cdots\!04$$$$T^{3} +$$$$10\!\cdots\!21$$$$T^{4}$$)($$1 + 41835956 T + 1084325213081206 T^{2} +$$$$13\!\cdots\!16$$$$T^{3} +$$$$10\!\cdots\!21$$$$T^{4}$$)($$1 + 26957276 T + 811945448362966 T^{2} +$$$$88\!\cdots\!36$$$$T^{3} +$$$$10\!\cdots\!21$$$$T^{4}$$)($$1 - 29773452 T + 771012402449398 T^{2} -$$$$97\!\cdots\!72$$$$T^{3} +$$$$10\!\cdots\!21$$$$T^{4}$$)($$1 - 27440478 T + 1215792148252263 T^{2} -$$$$18\!\cdots\!72$$$$T^{3} +$$$$39\!\cdots\!43$$$$T^{4} -$$$$29\!\cdots\!38$$$$T^{5} +$$$$35\!\cdots\!81$$$$T^{6}$$)($$1 - 27440478 T + 1215792148252263 T^{2} -$$$$18\!\cdots\!72$$$$T^{3} +$$$$39\!\cdots\!43$$$$T^{4} -$$$$29\!\cdots\!38$$$$T^{5} +$$$$35\!\cdots\!81$$$$T^{6}$$)($$1 - 7425800 T + 542029194422204 T^{2} +$$$$14\!\cdots\!00$$$$T^{3} +$$$$13\!\cdots\!46$$$$T^{4} +$$$$49\!\cdots\!00$$$$T^{5} +$$$$58\!\cdots\!84$$$$T^{6} -$$$$26\!\cdots\!00$$$$T^{7} +$$$$11\!\cdots\!41$$$$T^{8}$$)($$( 1 + 20910588 T + 602345636886742 T^{2} +$$$$68\!\cdots\!68$$$$T^{3} +$$$$10\!\cdots\!21$$$$T^{4} )^{2}$$)($$( 1 + 11846580 T + 630234748783222 T^{2} +$$$$38\!\cdots\!80$$$$T^{3} +$$$$10\!\cdots\!21$$$$T^{4} )^{2}$$)($$( 1 - 24780812 T + 636357392055542 T^{2} -$$$$81\!\cdots\!32$$$$T^{3} +$$$$10\!\cdots\!21$$$$T^{4} )^{2}$$)($$1 - 7425800 T + 542029194422204 T^{2} +$$$$14\!\cdots\!00$$$$T^{3} +$$$$13\!\cdots\!46$$$$T^{4} +$$$$49\!\cdots\!00$$$$T^{5} +$$$$58\!\cdots\!84$$$$T^{6} -$$$$26\!\cdots\!00$$$$T^{7} +$$$$11\!\cdots\!41$$$$T^{8}$$)($$1 - 12131790 T + 1179031606578165 T^{2} -$$$$11\!\cdots\!60$$$$T^{3} +$$$$61\!\cdots\!90$$$$T^{4} -$$$$51\!\cdots\!40$$$$T^{5} +$$$$20\!\cdots\!90$$$$T^{6} -$$$$12\!\cdots\!60$$$$T^{7} +$$$$41\!\cdots\!65$$$$T^{8} -$$$$13\!\cdots\!90$$$$T^{9} +$$$$37\!\cdots\!01$$$$T^{10}$$)($$1 - 12131790 T + 1179031606578165 T^{2} -$$$$11\!\cdots\!60$$$$T^{3} +$$$$61\!\cdots\!90$$$$T^{4} -$$$$51\!\cdots\!40$$$$T^{5} +$$$$20\!\cdots\!90$$$$T^{6} -$$$$12\!\cdots\!60$$$$T^{7} +$$$$41\!\cdots\!65$$$$T^{8} -$$$$13\!\cdots\!90$$$$T^{9} +$$$$37\!\cdots\!01$$$$T^{10}$$)($$( 1 - 2449542 T + 435795834372423 T^{2} +$$$$24\!\cdots\!76$$$$T^{3} +$$$$14\!\cdots\!03$$$$T^{4} -$$$$26\!\cdots\!82$$$$T^{5} +$$$$35\!\cdots\!81$$$$T^{6} )^{2}$$)
$43$ ($$1 + 13464484 T + 502592611936843 T^{2}$$)($$1 + 10832294 T + 502592611936843 T^{2}$$)($$1 + 6396794 T + 502592611936843 T^{2}$$)($$1 + 21174520 T + 502592611936843 T^{2}$$)($$1 - 36886234 T + 502592611936843 T^{2}$$)($$1 + 36886234 T + 502592611936843 T^{2}$$)($$1 - 21174520 T + 502592611936843 T^{2}$$)($$1 - 6396794 T + 502592611936843 T^{2}$$)($$1 - 10832294 T + 502592611936843 T^{2}$$)($$1 - 13464484 T + 502592611936843 T^{2}$$)($$1 + 52889700 T + 1703843788760950 T^{2} +$$$$26\!\cdots\!00$$$$T^{3} +$$$$25\!\cdots\!49$$$$T^{4}$$)($$1 + 11708180 T + 838769843899386 T^{2} +$$$$58\!\cdots\!40$$$$T^{3} +$$$$25\!\cdots\!49$$$$T^{4}$$)($$1 + 23394052 T + 925906061281562 T^{2} +$$$$11\!\cdots\!36$$$$T^{3} +$$$$25\!\cdots\!49$$$$T^{4}$$)($$1 + 16770524 T + 1074543668703834 T^{2} +$$$$84\!\cdots\!32$$$$T^{3} +$$$$25\!\cdots\!49$$$$T^{4}$$)($$1 + 47934076 T + 1577772318092534 T^{2} +$$$$24\!\cdots\!68$$$$T^{3} +$$$$25\!\cdots\!49$$$$T^{4}$$)($$1 - 47934076 T + 1577772318092534 T^{2} -$$$$24\!\cdots\!68$$$$T^{3} +$$$$25\!\cdots\!49$$$$T^{4}$$)($$1 - 16770524 T + 1074543668703834 T^{2} -$$$$84\!\cdots\!32$$$$T^{3} +$$$$25\!\cdots\!49$$$$T^{4}$$)($$1 - 23394052 T + 925906061281562 T^{2} -$$$$11\!\cdots\!36$$$$T^{3} +$$$$25\!\cdots\!49$$$$T^{4}$$)($$1 - 52889700 T + 1703843788760950 T^{2} -$$$$26\!\cdots\!00$$$$T^{3} +$$$$25\!\cdots\!49$$$$T^{4}$$)($$1 - 11708180 T + 838769843899386 T^{2} -$$$$58\!\cdots\!40$$$$T^{3} +$$$$25\!\cdots\!49$$$$T^{4}$$)($$1 - 23218260 T + 251755624778721 T^{2} -$$$$25\!\cdots\!68$$$$T^{3} +$$$$12\!\cdots\!03$$$$T^{4} -$$$$58\!\cdots\!40$$$$T^{5} +$$$$12\!\cdots\!07$$$$T^{6}$$)($$1 + 23218260 T + 251755624778721 T^{2} +$$$$25\!\cdots\!68$$$$T^{3} +$$$$12\!\cdots\!03$$$$T^{4} +$$$$58\!\cdots\!40$$$$T^{5} +$$$$12\!\cdots\!07$$$$T^{6}$$)($$1 + 12899120 T + 1377498577492636 T^{2} +$$$$18\!\cdots\!48$$$$T^{3} +$$$$90\!\cdots\!70$$$$T^{4} +$$$$91\!\cdots\!64$$$$T^{5} +$$$$34\!\cdots\!64$$$$T^{6} +$$$$16\!\cdots\!40$$$$T^{7} +$$$$63\!\cdots\!01$$$$T^{8}$$)($$1 + 1319065280049180 T^{2} +$$$$89\!\cdots\!82$$$$T^{4} +$$$$33\!\cdots\!20$$$$T^{6} +$$$$63\!\cdots\!01$$$$T^{8}$$)($$1 + 219081042090372 T^{2} +$$$$16\!\cdots\!94$$$$T^{4} +$$$$55\!\cdots\!28$$$$T^{6} +$$$$63\!\cdots\!01$$$$T^{8}$$)($$1 + 1963289360506180 T^{2} +$$$$14\!\cdots\!82$$$$T^{4} +$$$$49\!\cdots\!20$$$$T^{6} +$$$$63\!\cdots\!01$$$$T^{8}$$)($$1 - 12899120 T + 1377498577492636 T^{2} -$$$$18\!\cdots\!48$$$$T^{3} +$$$$90\!\cdots\!70$$$$T^{4} -$$$$91\!\cdots\!64$$$$T^{5} +$$$$34\!\cdots\!64$$$$T^{6} -$$$$16\!\cdots\!40$$$$T^{7} +$$$$63\!\cdots\!01$$$$T^{8}$$)($$1 - 48060082 T + 1782985239534639 T^{2} -$$$$42\!\cdots\!64$$$$T^{3} +$$$$10\!\cdots\!22$$$$T^{4} -$$$$20\!\cdots\!12$$$$T^{5} +$$$$52\!\cdots\!46$$$$T^{6} -$$$$10\!\cdots\!36$$$$T^{7} +$$$$22\!\cdots\!73$$$$T^{8} -$$$$30\!\cdots\!82$$$$T^{9} +$$$$32\!\cdots\!43$$$$T^{10}$$)($$1 + 48060082 T + 1782985239534639 T^{2} +$$$$42\!\cdots\!64$$$$T^{3} +$$$$10\!\cdots\!22$$$$T^{4} +$$$$20\!\cdots\!12$$$$T^{5} +$$$$52\!\cdots\!46$$$$T^{6} +$$$$10\!\cdots\!36$$$$T^{7} +$$$$22\!\cdots\!73$$$$T^{8} +$$$$30\!\cdots\!82$$$$T^{9} +$$$$32\!\cdots\!43$$$$T^{10}$$)($$1 - 42500461366614 T^{2} +$$$$40\!\cdots\!51$$$$T^{4} -$$$$95\!\cdots\!28$$$$T^{6} +$$$$10\!\cdots\!99$$$$T^{8} -$$$$27\!\cdots\!14$$$$T^{10} +$$$$16\!\cdots\!49$$$$T^{12}$$)
$47$ ($$1 + 11441952 T + 1119130473102767 T^{2}$$)($$1 - 5172138 T + 1119130473102767 T^{2}$$)($$1 - 35559158 T + 1119130473102767 T^{2}$$)($$1 + 16059636 T + 1119130473102767 T^{2}$$)($$1 + 44163798 T + 1119130473102767 T^{2}$$)($$1 - 44163798 T + 1119130473102767 T^{2}$$)($$1 - 16059636 T + 1119130473102767 T^{2}$$)($$1 + 35559158 T + 1119130473102767 T^{2}$$)($$1 + 5172138 T + 1119130473102767 T^{2}$$)($$1 - 11441952 T + 1119130473102767 T^{2}$$)($$1 - 58412180 T + 2814913257457630 T^{2} -$$$$65\!\cdots\!60$$$$T^{3} +$$$$12\!\cdots\!89$$$$T^{4}$$)($$1 + 62493300 T + 3177958884734338 T^{2} +$$$$69\!\cdots\!00$$$$T^{3} +$$$$12\!\cdots\!89$$$$T^{4}$$)($$1 + 11711748 T - 733120788879390 T^{2} +$$$$13\!\cdots\!16$$$$T^{3} +$$$$12\!\cdots\!89$$$$T^{4}$$)($$1 - 15393892 T + 1097719682118050 T^{2} -$$$$17\!\cdots\!64$$$$T^{3} +$$$$12\!\cdots\!89$$$$T^{4}$$)($$1 + 30914292 T + 2034610190905950 T^{2} +$$$$34\!\cdots\!64$$$$T^{3} +$$$$12\!\cdots\!89$$$$T^{4}$$)($$1 - 30914292 T + 2034610190905950 T^{2} -$$$$34\!\cdots\!64$$$$T^{3} +$$$$12\!\cdots\!89$$$$T^{4}$$)($$1 + 15393892 T + 1097719682118050 T^{2} +$$$$17\!\cdots\!64$$$$T^{3} +$$$$12\!\cdots\!89$$$$T^{4}$$)($$1 - 11711748 T - 733120788879390 T^{2} -$$$$13\!\cdots\!16$$$$T^{3} +$$$$12\!\cdots\!89$$$$T^{4}$$)($$1 + 58412180 T + 2814913257457630 T^{2} +$$$$65\!\cdots\!60$$$$T^{3} +$$$$12\!\cdots\!89$$$$T^{4}$$)($$1 - 62493300 T + 3177958884734338 T^{2} -$$$$69\!\cdots\!00$$$$T^{3} +$$$$12\!\cdots\!89$$$$T^{4}$$)($$1 + 28701528 T + 2689800471894429 T^{2} +$$$$45\!\cdots\!28$$$$T^{3} +$$$$30\!\cdots\!43$$$$T^{4} +$$$$35\!\cdots\!92$$$$T^{5} +$$$$14\!\cdots\!63$$$$T^{6}$$)($$1 - 28701528 T + 2689800471894429 T^{2} -$$$$45\!\cdots\!28$$$$T^{3} +$$$$30\!\cdots\!43$$$$T^{4} -$$$$35\!\cdots\!92$$$$T^{5} +$$$$14\!\cdots\!63$$$$T^{6}$$)($$1 + 7730896 T + 4375909771618988 T^{2} +$$$$25\!\cdots\!72$$$$T^{3} +$$$$72\!\cdots\!98$$$$T^{4} +$$$$28\!\cdots\!24$$$$T^{5} +$$$$54\!\cdots\!32$$$$T^{6} +$$$$10\!\cdots\!48$$$$T^{7} +$$$$15\!\cdots\!21$$$$T^{8}$$)($$1 + 972855230747180 T^{2} +$$$$95\!\cdots\!42$$$$T^{4} +$$$$12\!\cdots\!20$$$$T^{6} +$$$$15\!\cdots\!21$$$$T^{8}$$)($$1 + 4083963115873748 T^{2} +$$$$66\!\cdots\!54$$$$T^{4} +$$$$51\!\cdots\!72$$$$T^{6} +$$$$15\!\cdots\!21$$$$T^{8}$$)($$1 + 409943196143380 T^{2} -$$$$15\!\cdots\!58$$$$T^{4} +$$$$51\!\cdots\!20$$$$T^{6} +$$$$15\!\cdots\!21$$$$T^{8}$$)($$1 - 7730896 T + 4375909771618988 T^{2} -$$$$25\!\cdots\!72$$$$T^{3} +$$$$72\!\cdots\!98$$$$T^{4} -$$$$28\!\cdots\!24$$$$T^{5} +$$$$54\!\cdots\!32$$$$T^{6} -$$$$10\!\cdots\!48$$$$T^{7} +$$$$15\!\cdots\!21$$$$T^{8}$$)($$1 + 61261458 T + 4208911276579107 T^{2} +$$$$17\!\cdots\!60$$$$T^{3} +$$$$77\!\cdots\!58$$$$T^{4} +$$$$25\!\cdots\!24$$$$T^{5} +$$$$86\!\cdots\!86$$$$T^{6} +$$$$21\!\cdots\!40$$$$T^{7} +$$$$58\!\cdots\!41$$$$T^{8} +$$$$96\!\cdots\!18$$$$T^{9} +$$$$17\!\cdots\!07$$$$T^{10}$$)($$1 - 61261458 T + 4208911276579107 T^{2} -$$$$17\!\cdots\!60$$$$T^{3} +$$$$77\!\cdots\!58$$$$T^{4} -$$$$25\!\cdots\!24$$$$T^{5} +$$$$86\!\cdots\!86$$$$T^{6} -$$$$21\!\cdots\!40$$$$T^{7} +$$$$58\!\cdots\!41$$$$T^{8} -$$$$96\!\cdots\!18$$$$T^{9} +$$$$17\!\cdots\!07$$$$T^{10}$$)($$1 + 1532243992000194 T^{2} +$$$$22\!\cdots\!51$$$$T^{4} +$$$$16\!\cdots\!28$$$$T^{6} +$$$$27\!\cdots\!39$$$$T^{8} +$$$$24\!\cdots\!74$$$$T^{10} +$$$$19\!\cdots\!69$$$$T^{12}$$)
$53$ ($$1 + 53615766 T + 3299763591802133 T^{2}$$)($$1 + 98179674 T + 3299763591802133 T^{2}$$)($$1 + 39738586 T + 3299763591802133 T^{2}$$)($$1 - 87822234 T + 3299763591802133 T^{2}$$)($$1 + 29746266 T + 3299763591802133 T^{2}$$)($$1 + 29746266 T + 3299763591802133 T^{2}$$)($$1 - 87822234 T + 3299763591802133 T^{2}$$)($$1 + 39738586 T + 3299763591802133 T^{2}$$)($$1 + 98179674 T + 3299763591802133 T^{2}$$)($$1 + 53615766 T + 3299763591802133 T^{2}$$)($$1 - 39035140 T + 5675030678030830 T^{2} -$$$$12\!\cdots\!20$$$$T^{3} +$$$$10\!\cdots\!89$$$$T^{4}$$)($$1 + 9417780 T + 5708185761526990 T^{2} +$$$$31\!\cdots\!40$$$$T^{3} +$$$$10\!\cdots\!89$$$$T^{4}$$)($$1 - 46384268 T + 6816046668377422 T^{2} -$$$$15\!\cdots\!44$$$$T^{3} +$$$$10\!\cdots\!89$$$$T^{4}$$)($$1 - 58529292 T + 3439533688251982 T^{2} -$$$$19\!\cdots\!36$$$$T^{3} +$$$$10\!\cdots\!89$$$$T^{4}$$)($$1 + 100922108 T + 9120851179993582 T^{2} +$$$$33\!\cdots\!64$$$$T^{3} +$$$$10\!\cdots\!89$$$$T^{4}$$)($$1 + 100922108 T + 9120851179993582 T^{2} +$$$$33\!\cdots\!64$$$$T^{3} +$$$$10\!\cdots\!89$$$$T^{4}$$)($$1 - 58529292 T + 3439533688251982 T^{2} -$$$$19\!\cdots\!36$$$$T^{3} +$$$$10\!\cdots\!89$$$$T^{4}$$)($$1 - 46384268 T + 6816046668377422 T^{2} -$$$$15\!\cdots\!44$$$$T^{3} +$$$$10\!\cdots\!89$$$$T^{4}$$)($$1 - 39035140 T + 5675030678030830 T^{2} -$$$$12\!\cdots\!20$$$$T^{3} +$$$$10\!\cdots\!89$$$$T^{4}$$)($$1 + 9417780 T + 5708185761526990 T^{2} +$$$$31\!\cdots\!40$$$$T^{3} +$$$$10\!\cdots\!89$$$$T^{4}$$)($$1 - 45629982 T + 7541283402476907 T^{2} -$$$$30\!\cdots\!96$$$$T^{3} +$$$$24\!\cdots\!31$$$$T^{4} -$$$$49\!\cdots\!98$$$$T^{5} +$$$$35\!\cdots\!37$$$$T^{6}$$)($$1 - 45629982 T + 7541283402476907 T^{2} -$$$$30\!\cdots\!96$$$$T^{3} +$$$$24\!\cdots\!31$$$$T^{4} -$$$$49\!\cdots\!98$$$$T^{5} +$$$$35\!\cdots\!37$$$$T^{6}$$)($$1 - 101217512 T + 5332932068245292 T^{2} -$$$$46\!\cdots\!88$$$$T^{3} +$$$$35\!\cdots\!94$$$$T^{4} -$$$$15\!\cdots\!04$$$$T^{5} +$$$$58\!\cdots\!88$$$$T^{6} -$$$$36\!\cdots\!44$$$$T^{7} +$$$$11\!\cdots\!21$$$$T^{8}$$)($$( 1 + 46634828 T + 3246087687885262 T^{2} +$$$$15\!\cdots\!24$$$$T^{3} +$$$$10\!\cdots\!89$$$$T^{4} )^{2}$$)($$( 1 - 21939548 T + 6245130321170542 T^{2} -$$$$72\!\cdots\!84$$$$T^{3} +$$$$10\!\cdots\!89$$$$T^{4} )^{2}$$)($$( 1 + 89376228 T + 8572621205466862 T^{2} +$$$$29\!\cdots\!24$$$$T^{3} +$$$$10\!\cdots\!89$$$$T^{4} )^{2}$$)($$1 - 101217512 T + 5332932068245292 T^{2} -$$$$46\!\cdots\!88$$$$T^{3} +$$$$35\!\cdots\!94$$$$T^{4} -$$$$15\!\cdots\!04$$$$T^{5} +$$$$58\!\cdots\!88$$$$T^{6} -$$$$36\!\cdots\!44$$$$T^{7} +$$$$11\!\cdots\!21$$$$T^{8}$$)($$1 - 39440150 T + 9811811759912081 T^{2} -$$$$40\!\cdots\!80$$$$T^{3} +$$$$53\!\cdots\!74$$$$T^{4} -$$$$17\!\cdots\!80$$$$T^{5} +$$$$17\!\cdots\!42$$$$T^{6} -$$$$44\!\cdots\!20$$$$T^{7} +$$$$35\!\cdots\!97$$$$T^{8} -$$$$46\!\cdots\!50$$$$T^{9} +$$$$39\!\cdots\!93$$$$T^{10}$$)($$1 - 39440150 T + 9811811759912081 T^{2} -$$$$40\!\cdots\!80$$$$T^{3} +$$$$53\!\cdots\!74$$$$T^{4} -$$$$17\!\cdots\!80$$$$T^{5} +$$$$17\!\cdots\!42$$$$T^{6} -$$$$44\!\cdots\!20$$$$T^{7} +$$$$35\!\cdots\!97$$$$T^{8} -$$$$46\!\cdots\!50$$$$T^{9} +$$$$39\!\cdots\!93$$$$T^{10}$$)($$( 1 + 47274738 T + 3826908126139947 T^{2} +$$$$48\!\cdots\!44$$$$T^{3} +$$$$12\!\cdots\!51$$$$T^{4} +$$$$51\!\cdots\!82$$$$T^{5} +$$$$35\!\cdots\!37$$$$T^{6} )^{2}$$)
$59$ ($$1 - 81862620 T + 8662995818654939 T^{2}$$)($$1 + 16162860 T + 8662995818654939 T^{2}$$)($$1 + 85185620 T + 8662995818654939 T^{2}$$)($$1 - 120625212 T + 8662995818654939 T^{2}$$)($$1 - 65575380 T + 8662995818654939 T^{2}$$)($$1 + 65575380 T + 8662995818654939 T^{2}$$)($$1 + 120625212 T + 8662995818654939 T^{2}$$)($$1 - 85185620 T + 8662995818654939 T^{2}$$)($$1 - 16162860 T + 8662995818654939 T^{2}$$)($$1 + 81862620 T + 8662995818654939 T^{2}$$)($$1 - 54995560 T + 15674484224932678 T^{2} -$$$$47\!\cdots\!40$$$$T^{3} +$$$$75\!\cdots\!21$$$$T^{4}$$)($$1 + 92930856 T + 16656477955483462 T^{2} +$$$$80\!\cdots\!84$$$$T^{3} +$$$$75\!\cdots\!21$$$$T^{4}$$)($$1 - 178239576 T + 18856238015031622 T^{2} -$$$$15\!\cdots\!64$$$$T^{3} +$$$$75\!\cdots\!21$$$$T^{4}$$)($$1 + 59618264 T + 11433756193805126 T^{2} +$$$$51\!\cdots\!96$$$$T^{3} +$$$$75\!\cdots\!21$$$$T^{4}$$)($$1 + 47362536 T + 6051611540480326 T^{2} +$$$$41\!\cdots\!04$$$$T^{3} +$$$$75\!\cdots\!21$$$$T^{4}$$)($$1 - 47362536 T + 6051611540480326 T^{2} -$$$$41\!\cdots\!04$$$$T^{3} +$$$$75\!\cdots\!21$$$$T^{4}$$)($$1 - 59618264 T + 11433756193805126 T^{2} -$$$$51\!\cdots\!96$$$$T^{3} +$$$$75\!\cdots\!21$$$$T^{4}$$)($$1 + 178239576 T + 18856238015031622 T^{2} +$$$$15\!\cdots\!64$$$$T^{3} +$$$$75\!\cdots\!21$$$$T^{4}$$)($$1 + 54995560 T + 15674484224932678 T^{2} +$$$$47\!\cdots\!40$$$$T^{3} +$$$$75\!\cdots\!21$$$$T^{4}$$)($$1 - 92930856 T + 16656477955483462 T^{2} -$$$$80\!\cdots\!84$$$$T^{3} +$$$$75\!\cdots\!21$$$$T^{4}$$)($$1 - 268721868 T + 46457702853914817 T^{2} -$$$$50\!\cdots\!40$$$$T^{3} +$$$$40\!\cdots\!63$$$$T^{4} -$$$$20\!\cdots\!28$$$$T^{5} +$$$$65\!\cdots\!19$$$$T^{6}$$)($$1 + 268721868 T + 46457702853914817 T^{2} +$$$$50\!\cdots\!40$$$$T^{3} +$$$$40\!\cdots\!63$$$$T^{4} +$$$$20\!\cdots\!28$$$$T^{5} +$$$$65\!\cdots\!19$$$$T^{6}$$)($$1 + 98371040 T + 16697738628491756 T^{2} +$$$$28\!\cdots\!80$$$$T^{3} +$$$$77\!\cdots\!26$$$$T^{4} +$$$$24\!\cdots\!20$$$$T^{5} +$$$$12\!\cdots\!76$$$$T^{6} +$$$$63\!\cdots\!60$$$$T^{7} +$$$$56\!\cdots\!41$$$$T^{8}$$)($$1 + 15921146638904428 T^{2} +$$$$12\!\cdots\!42$$$$T^{4} +$$$$11\!\cdots\!88$$$$T^{6} +$$$$56\!\cdots\!41$$$$T^{8}$$)($$1 + 16130533485440236 T^{2} +$$$$13\!\cdots\!66$$$$T^{4} +$$$$12\!\cdots\!56$$$$T^{6} +$$$$56\!\cdots\!41$$$$T^{8}$$)($$1 + 11832941466171628 T^{2} +$$$$77\!\cdots\!42$$$$T^{4} +$$$$88\!\cdots\!88$$$$T^{6} +$$$$56\!\cdots\!41$$$$T^{8}$$)($$1 - 98371040 T + 16697738628491756 T^{2} -$$$$28\!\cdots\!80$$$$T^{3} +$$$$77\!\cdots\!26$$$$T^{4} -$$$$24\!\cdots\!20$$$$T^{5} +$$$$12\!\cdots\!76$$$$T^{6} -$$$$63\!\cdots\!60$$$$T^{7} +$$$$56\!\cdots\!41$$$$T^{8}$$)($$1 - 103581760 T + 40301975545274695 T^{2} -$$$$30\!\cdots\!60$$$$T^{3} +$$$$65\!\cdots\!10$$$$T^{4} -$$$$36\!\cdots\!60$$$$T^{5} +$$$$57\!\cdots\!90$$$$T^{6} -$$$$22\!\cdots\!60$$$$T^{7} +$$$$26\!\cdots\!05$$$$T^{8} -$$$$58\!\cdots\!60$$$$T^{9} +$$$$48\!\cdots\!99$$$$T^{10}$$)($$1 + 103581760 T + 40301975545274695 T^{2} +$$$$30\!\cdots\!60$$$$T^{3} +$$$$65\!\cdots\!10$$$$T^{4} +$$$$36\!\cdots\!60$$$$T^{5} +$$$$57\!\cdots\!90$$$$T^{6} +$$$$22\!\cdots\!60$$$$T^{7} +$$$$26\!\cdots\!05$$$$T^{8} +$$$$58\!\cdots\!60$$$$T^{9} +$$$$48\!\cdots\!99$$$$T^{10}$$)($$1 + 21998865333944226 T^{2} +$$$$14\!\cdots\!27$$$$T^{4} +$$$$57\!\cdots\!52$$$$T^{6} +$$$$11\!\cdots\!67$$$$T^{8} +$$$$12\!\cdots\!66$$$$T^{10} +$$$$42\!\cdots\!61$$$$T^{12}$$)
$61$ ($$1 - 104691298 T + 11694146092834141 T^{2}$$)($$1 - 43928158 T + 11694146092834141 T^{2}$$)($$1 + 45748642 T + 11694146092834141 T^{2}$$)($$1 + 93576542 T + 11694146092834141 T^{2}$$)($$1 + 40183202 T + 11694146092834141 T^{2}$$)($$1 + 40183202 T + 11694146092834141 T^{2}$$)($$1 + 93576542 T + 11694146092834141 T^{2}$$)($$1 + 45748642 T + 11694146092834141 T^{2}$$)($$1 - 43928158 T + 11694146092834141 T^{2}$$)($$1 - 104691298 T + 11694146092834141 T^{2}$$)($$1 - 274579716 T + 41753623519328446 T^{2} -$$$$32\!\cdots\!56$$$$T^{3} +$$$$13\!\cdots\!81$$$$T^{4}$$)($$1 + 195673924 T + 22434263296171326 T^{2} +$$$$22\!\cdots\!84$$$$T^{3} +$$$$13\!\cdots\!81$$$$T^{4}$$)($$1 + 31825220 T + 17079149243685182 T^{2} +$$$$37\!\cdots\!20$$$$T^{3} +$$$$13\!\cdots\!81$$$$T^{4}$$)($$1 - 188163772 T + 22324076261167422 T^{2} -$$$$22\!\cdots\!52$$$$T^{3} +$$$$13\!\cdots\!81$$$$T^{4}$$)($$1 + 203634428 T + 30920737906297022 T^{2} +$$$$23\!\cdots\!48$$$$T^{3} +$$$$13\!\cdots\!81$$$$T^{4}$$)($$1 + 203634428 T + 30920737906297022 T^{2} +$$$$23\!\cdots\!48$$$$T^{3} +$$$$13\!\cdots\!81$$$$T^{4}$$)($$1 - 188163772 T + 22324076261167422 T^{2} -$$$$22\!\cdots\!52$$$$T^{3} +$$$$13\!\cdots\!81$$$$T^{4}$$)($$1 + 31825220 T + 17079149243685182 T^{2} +$$$$37\!\cdots\!20$$$$T^{3} +$$$$13\!\cdots\!81$$$$T^{4}$$)($$1 - 274579716 T + 41753623519328446 T^{2} -$$$$32\!\cdots\!56$$$$T^{3} +$$$$13\!\cdots\!81$$$$T^{4}$$)($$1 + 195673924 T + 22434263296171326 T^{2} +$$$$22\!\cdots\!84$$$$T^{3} +$$$$13\!\cdots\!81$$$$T^{4}$$)($$1 + 155970138 T + 27601780143557283 T^{2} +$$$$34\!\cdots\!16$$$$T^{3} +$$$$32\!\cdots\!03$$$$T^{4} +$$$$21\!\cdots\!78$$$$T^{5} +$$$$15\!\cdots\!21$$$$T^{6}$$)($$1 + 155970138 T + 27601780143557283 T^{2} +$$$$34\!\cdots\!16$$$$T^{3} +$$$$32\!\cdots\!03$$$$T^{4} +$$$$21\!\cdots\!78$$$$T^{5} +$$$$15\!\cdots\!21$$$$T^{6}$$)($$1 + 42840952 T + 31203788817373324 T^{2} +$$$$10\!\cdots\!76$$$$T^{3} +$$$$49\!\cdots\!06$$$$T^{4} +$$$$11\!\cdots\!16$$$$T^{5} +$$$$42\!\cdots\!44$$$$T^{6} +$$$$68\!\cdots\!92$$$$T^{7} +$$$$18\!\cdots\!61$$$$T^{8}$$)($$( 1 - 55091012 T + 14334281700547902 T^{2} -$$$$64\!\cdots\!92$$$$T^{3} +$$$$13\!\cdots\!81$$$$T^{4} )^{2}$$)($$( 1 + 41007940 T - 11531753094490818 T^{2} +$$$$47\!\cdots\!40$$$$T^{3} +$$$$13\!\cdots\!81$$$$T^{4} )^{2}$$)($$( 1 - 17998012 T + 3740553671875902 T^{2} -$$$$21\!\cdots\!92$$$$T^{3} +$$$$13\!\cdots\!81$$$$T^{4} )^{2}$$)($$1 + 42840952 T + 31203788817373324 T^{2} +$$$$10\!\cdots\!76$$$$T^{3} +$$$$49\!\cdots\!06$$$$T^{4} +$$$$11\!\cdots\!16$$$$T^{5} +$$$$42\!\cdots\!44$$$$T^{6} +$$$$68\!\cdots\!92$$$$T^{7} +$$$$18\!\cdots\!61$$$$T^{8}$$)($$1 - 84407766 T + 43306968648436729 T^{2} -$$$$29\!\cdots\!24$$$$T^{3} +$$$$84\!\cdots\!22$$$$T^{4} -$$$$47\!\cdots\!76$$$$T^{5} +$$$$99\!\cdots\!02$$$$T^{6} -$$$$41\!\cdots\!44$$$$T^{7} +$$$$69\!\cdots\!09$$$$T^{8} -$$$$15\!\cdots\!26$$$$T^{9} +$$$$21\!\cdots\!01$$$$T^{10}$$)($$1 - 84407766 T + 43306968648436729 T^{2} -$$$$29\!\cdots\!24$$$$T^{3} +$$$$84\!\cdots\!22$$$$T^{4} -$$$$47\!\cdots\!76$$$$T^{5} +$$$$99\!\cdots\!02$$$$T^{6} -$$$$41\!\cdots\!44$$$$T^{7} +$$$$69\!\cdots\!09$$$$T^{8} -$$$$15\!\cdots\!26$$$$T^{9} +$$$$21\!\cdots\!01$$$$T^{10}$$)($$( 1 + 172824858 T + 32312469657870243 T^{2} +$$$$29\!\cdots\!56$$$$T^{3} +$$$$37\!\cdots\!63$$$$T^{4} +$$$$23\!\cdots\!98$$$$T^{5} +$$$$15\!\cdots\!21$$$$T^{6} )^{2}$$)
$67$ ($$1 - 140571092 T + 27206534396294947 T^{2}$$)($$1 - 81557422 T + 27206534396294947 T^{2}$$)($$1 + 45286158 T + 27206534396294947 T^{2}$$)($$1 - 193621688 T + 27206534396294947 T^{2}$$)($$1 - 115706158 T + 27206534396294947 T^{2}$$)($$1 + 115706158 T + 27206534396294947 T^{2}$$)($$1 + 193621688 T + 27206534396294947 T^{2}$$)($$1 - 45286158 T + 27206534396294947 T^{2}$$)($$1 + 81557422 T + 27206534396294947 T^{2}$$)($$1 + 140571092 T + 27206534396294947 T^{2}$$)($$1 - 318580 T + 48520062064444070 T^{2} -$$$$86\!\cdots\!60$$$$T^{3} +$$$$74\!\cdots\!09$$$$T^{4}$$)($$1 + 219767420 T + 65652945987990090 T^{2} +$$$$59\!\cdots\!40$$$$T^{3} +$$$$74\!\cdots\!09$$$$T^{4}$$)($$1 - 89480628 T + 42050726086531690 T^{2} -$$$$24\!\cdots\!16$$$$T^{3} +$$$$74\!\cdots\!09$$$$T^{4}$$)($$1 - 105998252 T + 21995694557368746 T^{2} -$$$$28\!\cdots\!44$$$$T^{3} +$$$$74\!\cdots\!09$$$$T^{4}$$)($$1 + 58872852 T + 54767076047787046 T^{2} +$$$$16\!\cdots\!44$$$$T^{3} +$$$$74\!\cdots\!09$$$$T^{4}$$)($$1 - 58872852 T + 54767076047787046 T^{2} -$$$$16\!\cdots\!44$$$$T^{3} +$$$$74\!\cdots\!09$$$$T^{4}$$)($$1 + 105998252 T + 21995694557368746 T^{2} +$$$$28\!\cdots\!44$$$$T^{3} +$$$$74\!\cdots\!09$$$$T^{4}$$)($$1 + 89480628 T + 42050726086531690 T^{2} +$$$$24\!\cdots\!16$$$$T^{3} +$$$$74\!\cdots\!09$$$$T^{4}$$)($$1 + 318580 T + 48520062064444070 T^{2} +$$$$86\!\cdots\!60$$$$T^{3} +$$$$74\!\cdots\!09$$$$T^{4}$$)($$1 - 219767420 T + 65652945987990090 T^{2} -$$$$59\!\cdots\!40$$$$T^{3} +$$$$74\!\cdots\!09$$$$T^{4}$$)($$1 - 526916604 T + 169230786613422441 T^{2} -$$$$33\!\cdots\!48$$$$T^{3} +$$$$46\!\cdots\!27$$$$T^{4} -$$$$39\!\cdots\!36$$$$T^{5} +$$$$20\!\cdots\!23$$$$T^{6}$$)($$1 + 526916604 T + 169230786613422441 T^{2} +$$$$33\!\cdots\!48$$$$T^{3} +$$$$46\!\cdots\!27$$$$T^{4} +$$$$39\!\cdots\!36$$$$T^{5} +$$$$20\!\cdots\!23$$$$T^{6}$$)($$1 + 72829968 T + 58358414462910076 T^{2} +$$$$88\!\cdots\!88$$$$T^{3} +$$$$16\!\cdots\!14$$$$T^{4} +$$$$24\!\cdots\!36$$$$T^{5} +$$$$43\!\cdots\!84$$$$T^{6} +$$$$14\!\cdots\!64$$$$T^{7} +$$$$54\!\cdots\!81$$$$T^{8}$$)($$1 + 47197986082694140 T^{2} +$$$$16\!\cdots\!42$$$$T^{4} +$$$$34\!\cdots\!60$$$$T^{6} +$$$$54\!\cdots\!81$$$$T^{8}$$)($$1 + 76473456824924068 T^{2} +$$$$28\!\cdots\!74$$$$T^{4} +$$$$56\!\cdots\!12$$$$T^{6} +$$$$54\!\cdots\!81$$$$T^{8}$$)($$1 - 17724296610261660 T^{2} +$$$$33\!\cdots\!42$$$$T^{4} -$$$$13\!\cdots\!40$$$$T^{6} +$$$$54\!\cdots\!81$$$$T^{8}$$)($$1 - 72829968 T + 58358414462910076 T^{2} -$$$$88\!\cdots\!88$$$$T^{3} +$$$$16\!\cdots\!14$$$$T^{4} -$$$$24\!\cdots\!36$$$$T^{5} +$$$$43\!\cdots\!84$$$$T^{6} -$$$$14\!\cdots\!64$$$$T^{7} +$$$$54\!\cdots\!81$$$$T^{8}$$)($$1 - 318739158 T + 71047955099734055 T^{2} -$$$$57\!\cdots\!92$$$$T^{3} +$$$$32\!\cdots\!98$$$$T^{4} +$$$$76\!\cdots\!08$$$$T^{5} +$$$$89\!\cdots\!06$$$$T^{6} -$$$$42\!\cdots\!28$$$$T^{7} +$$$$14\!\cdots\!65$$$$T^{8} -$$$$17\!\cdots\!98$$$$T^{9} +$$$$14\!\cdots\!07$$$$T^{10}$$)($$1 + 318739158 T + 71047955099734055 T^{2} +$$$$57\!\cdots\!92$$$$T^{3} +$$$$32\!\cdots\!98$$$$T^{4} -$$$$76\!\cdots\!08$$$$T^{5} +$$$$89\!\cdots\!06$$$$T^{6} +$$$$42\!\cdots\!28$$$$T^{7} +$$$$14\!\cdots\!65$$$$T^{8} +$$$$17\!\cdots\!98$$$$T^{9} +$$$$14\!\cdots\!07$$$$T^{10}$$)($$1 + 130520825417485434 T^{2} +$$$$77\!\cdots\!71$$$$T^{4} +$$$$27\!\cdots\!08$$$$T^{6} +$$$$57\!\cdots\!39$$$$T^{8} +$$$$71\!\cdots\!54$$$$T^{10} +$$$$40\!\cdots\!29$$$$T^{12}$$)
$71$ ($$1 + 97098792 T + 45848500718449031 T^{2}$$)($$1 - 161307732 T + 45848500718449031 T^{2}$$)($$1 - 189967468 T + 45848500718449031 T^{2}$$)($$1 + 417763488 T + 45848500718449031 T^{2}$$)($$1 + 231681708 T + 45848500718449031 T^{2}$$)($$1 - 231681708 T + 45848500718449031 T^{2}$$)($$1 - 417763488 T + 45848500718449031 T^{2}$$)($$1 + 189967468 T + 45848500718449031 T^{2}$$)($$1 + 161307732 T + 45848500718449031 T^{2}$$)($$1 - 97098792 T + 45848500718449031 T^{2}$$)($$1 + 7130936 T + 51935375688707086 T^{2} +$$$$32\!\cdots\!16$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 + 311207016 T + 76405636625293726 T^{2} +$$$$14\!\cdots\!96$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 + 112319176 T + 82264334516632606 T^{2} +$$$$51\!\cdots\!56$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 + 168665592 T + 68474091725761822 T^{2} +$$$$77\!\cdots\!52$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 - 349900792 T + 118671349360183822 T^{2} -$$$$16\!\cdots\!52$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 + 349900792 T + 118671349360183822 T^{2} +$$$$16\!\cdots\!52$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 - 168665592 T + 68474091725761822 T^{2} -$$$$77\!\cdots\!52$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 - 112319176 T + 82264334516632606 T^{2} -$$$$51\!\cdots\!56$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 - 7130936 T + 51935375688707086 T^{2} -$$$$32\!\cdots\!16$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 - 311207016 T + 76405636625293726 T^{2} -$$$$14\!\cdots\!96$$$$T^{3} +$$$$21\!\cdots\!61$$$$T^{4}$$)($$1 + 239894424 T + 117827037562982037 T^{2} +$$$$16\!\cdots\!88$$$$T^{3} +$$$$54\!\cdots\!47$$$$T^{4} +$$$$50\!\cdots\!64$$$$T^{5} +$$$$96\!\cdots\!91$$$$T^{6}$$)($$1 - 239894424 T + 117827037562982037 T^{2} -$$$$16\!\cdots\!88$$$$T^{3} +$$$$54\!\cdots\!47$$$$T^{4} -$$$$50\!\cdots\!64$$$$T^{5} +$$$$96\!\cdots\!91$$$$T^{6}$$)($$1 - 728351072 T + 272499383306293724 T^{2} -$$$$78\!\cdots\!96$$$$T^{3} +$$$$19\!\cdots\!66$$$$T^{4} -$$$$36\!\cdots\!76$$$$T^{5} +$$$$57\!\cdots\!64$$$$T^{6} -$$$$70\!\cdots\!52$$$$T^{7} +$$$$44\!\cdots\!21$$$$T^{8}$$)($$1 + 182376066250882012 T^{2} +$$$$12\!\cdots\!22$$$$T^{4} +$$$$38\!\cdots\!32$$$$T^{6} +$$$$44\!\cdots\!21$$$$T^{8}$$)($$1 + 60169037220833404 T^{2} +$$$$14\!\cdots\!26$$$$T^{4} +$$$$12\!\cdots\!44$$$$T^{6} +$$$$44\!\cdots\!21$$$$T^{8}$$)($$1 + 153715601907641212 T^{2} +$$$$10\!\cdots\!22$$$$T^{4} +$$$$32\!\cdots\!32$$$$T^{6} +$$$$44\!\cdots\!21$$$$T^{8}$$)($$1 + 728351072 T + 272499383306293724 T^{2} +$$$$78\!\cdots\!96$$$$T^{3} +$$$$19\!\cdots\!66$$$$T^{4} +$$$$36\!\cdots\!76$$$$T^{5} +$$$$57\!\cdots\!64$$$$T^{6} +$$$$70\!\cdots\!52$$$$T^{7} +$$$$44\!\cdots\!21$$$$T^{8}$$)($$1 + 55605100 T + 172629069893162371 T^{2} +$$$$86\!\cdots\!00$$$$T^{3} +$$$$13\!\cdots\!98$$$$T^{4} +$$$$55\!\cdots\!00$$$$T^{5} +$$$$63\!\cdots\!38$$$$T^{6} +$$$$18\!\cdots\!00$$$$T^{7} +$$$$16\!\cdots\!61$$$$T^{8} +$$$$24\!\cdots\!00$$$$T^{9} +$$$$20\!\cdots\!51$$$$T^{10}$$)($$1 - 55605100 T + 172629069893162371 T^{2} -$$$$86\!\cdots\!00$$$$T^{3} +$$$$13\!\cdots\!98$$$$T^{4} -$$$$55\!\cdots\!00$$$$T^{5} +$$$$63\!\cdots\!38$$$$T^{6} -$$$$18\!\cdots\!00$$$$T^{7} +$$$$16\!\cdots\!61$$$$T^{8} -$$$$24\!\cdots\!00$$$$T^{9} +$$$$20\!\cdots\!51$$$$T^{10}$$)($$1 + 52896347301331914 T^{2} +$$$$56\!\cdots\!27$$$$T^{4} +$$$$20\!\cdots\!48$$$$T^{6} +$$$$11\!\cdots\!47$$$$T^{8} +$$$$23\!\cdots\!94$$$$T^{10} +$$$$92\!\cdots\!81$$$$T^{12}$$)
$73$ ($$1 - 171848906 T + 58871586708267913 T^{2}$$)($$1 + 247147966 T + 58871586708267913 T^{2}$$)($$1 - 412170946 T + 58871586708267913 T^{2}$$)($$1 + 450372742 T + 58871586708267913 T^{2}$$)($$1 - 358691906 T + 58871586708267913 T^{2}$$)($$1 - 358691906 T + 58871586708267913 T^{2}$$)($$1 + 450372742 T + 58871586708267913 T^{2}$$)($$1 - 412170946 T + 58871586708267913 T^{2}$$)($$1 + 247147966 T + 58871586708267913 T^{2}$$)($$1 - 171848906 T + 58871586708267913 T^{2}$$)($$1 - 120858180 T + 42707263689423190 T^{2} -$$$$71\!\cdots\!40$$$$T^{3} +$$$$34\!\cdots\!69$$$$T^{4}$$)($$1 + 99224060 T + 35402447061205782 T^{2} +$$$$58\!\cdots\!80$$$$T^{3} +$$$$34\!\cdots\!69$$$$T^{4}$$)($$1 + 93294524 T + 109959841455461270 T^{2} +$$$$54\!\cdots\!12$$$$T^{3} +$$$$34\!\cdots\!69$$$$T^{4}$$)($$1 + 390212412 T + 130694746296409238 T^{2} +$$$$22\!\cdots\!56$$$$T^{3} +$$$$34\!\cdots\!69$$$$T^{4}$$)($$1 - 71160388 T - 50883178339169962 T^{2} -$$$$41\!\cdots\!44$$$$T^{3} +$$$$34\!\cdots\!69$$$$T^{4}$$)($$1 - 71160388 T - 50883178339169962 T^{2} -$$$$41\!\cdots\!44$$$$T^{3} +$$$$34\!\cdots\!69$$$$T^{4}$$)($$1 + 390212412 T + 130694746296409238 T^{2} +$$$$22\!\cdots\!56$$$$T^{3} +$$$$34\!\cdots\!69$$$$T^{4}$$)($$1 + 93294524 T + 109959841455461270 T^{2} +$$$$54\!\cdots\!12$$$$T^{3} +$$$$34\!\cdots\!69$$$$T^{4}$$)($$1 - 120858180 T + 42707263689423190 T^{2} -$$$$71\!\cdots\!40$$$$T^{3} +$$$$34\!\cdots\!69$$$$T^{4}$$)($$1 + 99224060 T + 35402447061205782 T^{2} +$$$$58\!\cdots\!80$$$$T^{3} +$$$$34\!\cdots\!69$$$$T^{4}$$)($$1 - 198362430 T + 177547240540777287 T^{2} -$$$$22\!\cdots\!56$$$$T^{3} +$$$$10\!\cdots\!31$$$$T^{4} -$$$$68\!\cdots\!70$$$$T^{5} +$$$$20\!\cdots\!97$$$$T^{6}$$)($$1 - 198362430 T + 177547240540777287 T^{2} -$$$$22\!\cdots\!56$$$$T^{3} +$$$$10\!\cdots\!31$$$$T^{4} -$$$$68\!\cdots\!70$$$$T^{5} +$$$$20\!\cdots\!97$$$$T^{6}$$)($$1 + 135883160 T + 125372580970067452 T^{2} +$$$$25\!\cdots\!40$$$$T^{3} +$$$$92\!\cdots\!14$$$$T^{4} +$$$$14\!\cdots\!20$$$$T^{5} +$$$$43\!\cdots\!88$$$$T^{6} +$$$$27\!\cdots\!20$$$$T^{7} +$$$$12\!\cdots\!61$$$$T^{8}$$)($$( 1 + 281793420 T + 137585595041944630 T^{2} +$$$$16\!\cdots\!60$$$$T^{3} +$$$$34\!\cdots\!69$$$$T^{4} )^{2}$$)($$( 1 + 125289228 T + 118178637993664822 T^{2} +$$$$73\!\cdots\!64$$$$T^{3} +$$$$34\!\cdots\!69$$$$T^{4} )^{2}$$)($$( 1 - 15542580 T + 117570538072136630 T^{2} -$$$$91\!\cdots\!40$$$$T^{3} +$$$$34\!\cdots\!69$$$$T^{4} )^{2}$$)($$1 + 135883160 T + 125372580970067452 T^{2} +$$$$25\!\cdots\!40$$$$T^{3} +$$$$92\!\cdots\!14$$$$T^{4} +$$$$14\!\cdots\!20$$$$T^{5} +$$$$43\!\cdots\!88$$$$T^{6} +$$$$27\!\cdots\!20$$$$T^{7} +$$$$12\!\cdots\!61$$$$T^{8}$$)($$1 - 20798450 T + 160452234507087765 T^{2} -$$$$63\!\cdots\!00$$$$T^{3} +$$$$14\!\cdots\!90$$$$T^{4} -$$$$58\!\cdots\!00$$$$T^{5} +$$$$87\!\cdots\!70$$$$T^{6} -$$$$22\!\cdots\!00$$$$T^{7} +$$$$32\!\cdots\!05$$$$T^{8} -$$$$24\!\cdots\!50$$$$T^{9} +$$$$70\!\cdots\!93$$$$T^{10}$$)($$1 - 20798450 T + 160452234507087765 T^{2} -$$$$63\!\cdots\!00$$$$T^{3} +$$$$14\!\cdots\!90$$$$T^{4} -$$$$58\!\cdots\!00$$$$T^{5} +$$$$87\!\cdots\!70$$$$T^{6} -$$$$22\!\cdots\!00$$$$T^{7} +$$$$32\!\cdots\!05$$$$T^{8} -$$$$24\!\cdots\!50$$$$T^{9} +$$$$70\!\cdots\!93$$$$T^{10}$$)($$( 1 - 453783726 T + 188304804218057223 T^{2} -$$$$50\!\cdots\!60$$$$T^{3} +$$$$11\!\cdots\!99$$$$T^{4} -$$$$15\!\cdots\!94$$$$T^{5} +$$$$20\!\cdots\!97$$$$T^{6} )^{2}$$)
$79$ ($$1 - 117380080 T + 119851595982618319 T^{2}$$)($$1 + 583345720 T + 119851595982618319 T^{2}$$)($$1 + 95040840 T + 119851595982618319 T^{2}$$)($$1 - 91425472 T + 119851595982618319 T^{2}$$)($$1 + 486017080 T + 119851595982618319 T^{2}$$)($$1 - 486017080 T + 119851595982618319 T^{2}$$)($$1 + 91425472 T + 119851595982618319 T^{2}$$)($$1 - 95040840 T + 119851595982618319 T^{2}$$)($$1 - 583345720 T + 119851595982618319 T^{2}$$)($$1 + 117380080 T + 119851595982618319 T^{2}$$)($$1 - 6877520 T - 115982362290712162 T^{2} -$$$$82\!\cdots\!80$$$$T^{3} +$$$$14\!\cdots\!61$$$$T^{4}$$)($$1 + 542261776 T + 313115996157615582 T^{2} +$$$$64\!\cdots\!44$$$$T^{3} +$$$$14\!\cdots\!61$$$$T^{4}$$)($$1 - 191601328 T - 39905777688415266 T^{2} -$$$$22\!\cdots\!32$$$$T^{3} +$$$$14\!\cdots\!61$$$$T^{4}$$)($$1 - 466946256 T + 276599246367485918 T^{2} -$$$$55\!\cdots\!64$$$$T^{3} +$$$$14\!\cdots\!61$$$$T^{4}$$)($$1 - 452087344 T + 272781342616725918 T^{2} -$$$$54\!\cdots\!36$$$$T^{3} +$$$$14\!\cdots\!61$$$$T^{4}$$)($$1 + 452087344 T + 272781342616725918 T^{2} +$$$$54\!\cdots\!36$$$$T^{3} +$$$$14\!\cdots\!61$$$$T^{4}$$)($$1 + 466946256 T + 276599246367485918 T^{2} +$$$$55\!\cdots\!64$$$$T^{3} +$$$$14\!\cdots\!61$$$$T^{4}$$)($$1 + 191601328 T - 39905777688415266 T^{2} +$$$$22\!\cdots\!32$$$$T^{3} +$$$$14\!\cdots\!61$$$$T^{4}$$)($$1 + 6877520 T - 115982362290712162 T^{2} +$$$$82\!\cdots\!80$$$$T^{3} +$$$$14\!\cdots\!61$$$$T^{4}$$)($$1 - 542261776 T + 313115996157615582 T^{2} -$$$$64\!\cdots\!44$$$$T^{3} +$$$$14\!\cdots\!61$$$$T^{4}$$)($$1 + 413839728 T + 365148310414214253 T^{2} +$$$$92\!\cdots\!64$$$$T^{3} +$$$$43\!\cdots\!07$$$$T^{4} +$$$$59\!\cdots\!08$$$$T^{5} +$$$$17\!\cdots\!59$$$$T^{6}$$)($$1 - 413839728 T + 365148310414214253 T^{2} -$$$$92\!\cdots\!64$$$$T^{3} +$$$$43\!\cdots\!07$$$$T^{4} -$$$$59\!\cdots\!08$$$$T^{5} +$$$$17\!\cdots\!59$$$$T^{6}$$)($$1 - 932964288 T + 666869545637894716 T^{2} -$$$$33\!\cdots\!16$$$$T^{3} +$$$$12\!\cdots\!86$$$$T^{4} -$$$$39\!\cdots\!04$$$$T^{5} +$$$$95\!\cdots\!76$$$$T^{6} -$$$$16\!\cdots\!92$$$$T^{7} +$$$$20\!\cdots\!21$$$$T^{8}$$)($$1 + 176796025786946108 T^{2} +$$$$29\!\cdots\!82$$$$T^{4} +$$$$25\!\cdots\!88$$$$T^{6} +$$$$20\!\cdots\!21$$$$T^{8}$$)($$1 + 218645142269150396 T^{2} +$$$$32\!\cdots\!26$$$$T^{4} +$$$$31\!\cdots\!56$$$$T^{6} +$$$$20\!\cdots\!21$$$$T^{8}$$)($$1 + 461562359976478908 T^{2} +$$$$81\!\cdots\!82$$$$T^{4} +$$$$66\!\cdots\!88$$$$T^{6} +$$$$20\!\cdots\!21$$$$T^{8}$$)($$1 + 932964288 T + 666869545637894716 T^{2} +$$$$33\!\cdots\!16$$$$T^{3} +$$$$12\!\cdots\!86$$$$T^{4} +$$$$39\!\cdots\!04$$$$T^{5} +$$$$95\!\cdots\!76$$$$T^{6} +$$$$16\!\cdots\!92$$$$T^{7} +$$$$20\!\cdots\!21$$$$T^{8}$$)($$1 + 630111560 T + 555019186979644811 T^{2} +$$$$25\!\cdots\!80$$$$T^{3} +$$$$12\!\cdots\!22$$$$T^{4} +$$$$41\!\cdots\!20$$$$T^{5} +$$$$14\!\cdots\!18$$$$T^{6} +$$$$35\!\cdots\!80$$$$T^{7} +$$$$95\!\cdots\!49$$$$T^{8} +$$$$13\!\cdots\!60$$$$T^{9} +$$$$24\!\cdots\!99$$$$T^{10}$$)($$1 - 630111560 T + 555019186979644811 T^{2} -$$$$25\!\cdots\!80$$$$T^{3} +$$$$12\!\cdots\!22$$$$T^{4} -$$$$41\!\cdots\!20$$$$T^{5} +$$$$14\!\cdots\!18$$$$T^{6} -$$$$35\!\cdots\!80$$$$T^{7} +$$$$95\!\cdots\!49$$$$T^{8} -$$$$13\!\cdots\!60$$$$T^{9} +$$$$24\!\cdots\!99$$$$T^{10}$$)($$1 - 89510656943479974 T^{2} +$$$$41\!\cdots\!67$$$$T^{4} -$$$$25\!\cdots\!08$$$$T^{6} +$$$$59\!\cdots\!87$$$$T^{8} -$$$$18\!\cdots\!54$$$$T^{10} +$$$$29\!\cdots\!81$$$$T^{12}$$)
$83$ ($$1 - 323637636 T + 186940255267540403 T^{2}$$)($$1 - 14571786 T + 186940255267540403 T^{2}$$)($$1 - 261706326 T + 186940255267540403 T^{2}$$)($$1 + 652637376 T + 186940255267540403 T^{2}$$)($$1 + 251168886 T + 186940255267540403 T^{2}$$)($$1 - 251168886 T + 186940255267540403 T^{2}$$)($$1 - 652637376 T + 186940255267540403 T^{2}$$)($$1 + 261706326 T + 186940255267540403 T^{2}$$)($$1 + 14571786 T + 186940255267540403 T^{2}$$)($$1 + 323637636 T + 186940255267540403 T^{2}$$)($$1 + 1402348740 T + 857904310704391270 T^{2} +$$$$26\!\cdots\!20$$$$T^{3} +$$$$34\!\cdots\!09$$$$T^{4}$$)($$1 + 1256915700 T + 768086791626261130 T^{2} +$$$$23\!\cdots\!00$$$$T^{3} +$$$$34\!\cdots\!09$$$$T^{4}$$)($$1 + 17270436 T + 372491529649343530 T^{2} +$$$$32\!\cdots\!08$$$$T^{3} +$$$$34\!\cdots\!09$$$$T^{4}$$)($$1 + 329535164 T + 370572645121965674 T^{2} +$$$$61\!\cdots\!92$$$$T^{3} +$$$$34\!\cdots\!09$$$$T^{4}$$)($$1 + 244865436 T + 172811505943449574 T^{2} +$$$$45\!\cdots\!08$$$$T^{3} +$$$$34\!\cdots\!09$$$$T^{4}$$)($$1 - 244865436 T + 172811505943449574 T^{2} -$$$$45\!\cdots\!08$$$$T^{3} +$$$$34\!\cdots\!09$$$$T^{4}$$)($$1 - 329535164 T + 370572645121965674 T^{2} -$$$$61\!\cdots\!92$$$$T^{3} +$$$$34\!\cdots\!09$$$$T^{4}$$)($$1 - 17270436 T + 372491529649343530 T^{2} -$$$$32\!\cdots\!08$$$$T^{3} +$$$$34\!\cdots\!09$$$$T^{4}$$)($$1 - 1402348740 T + 857904310704391270 T^{2} -$$$$26\!\cdots\!20$$$$T^{3} +$$$$34\!\cdots\!09$$$$T^{4}$$)($$1 - 1256915700 T + 768086791626261130 T^{2} -$$$$23\!\cdots\!00$$$$T^{3} +$$$$34\!\cdots\!09$$$$T^{4}$$)($$1 + 371949828 T + 338245334081122329 T^{2} +$$$$14\!\cdots\!04$$$$T^{3} +$$$$63\!\cdots\!87$$$$T^{4} +$$$$12\!\cdots\!52$$$$T^{5} +$$$$65\!\cdots\!27$$$$T^{6}$$)($$1 - 371949828 T + 338245334081122329 T^{2} -$$$$14\!\cdots\!04$$$$T^{3} +$$$$63\!\cdots\!87$$$$T^{4} -$$$$12\!\cdots\!52$$$$T^{5} +$$$$65\!\cdots\!27$$$$T^{6}$$)($$1 + 1006214192 T + 958538310443626940 T^{2} +$$$$52\!\cdots\!52$$$$T^{3} +$$$$27\!\cdots\!02$$$$T^{4} +$$$$98\!\cdots\!56$$$$T^{5} +$$$$33\!\cdots\!60$$$$T^{6} +$$$$65\!\cdots\!84$$$$T^{7} +$$$$12\!\cdots\!81$$$$T^{8}$$)($$1 + 275279483914653244 T^{2} +$$$$87\!\cdots\!46$$$$T^{4} +$$$$96\!\cdots\!96$$$$T^{6} +$$$$12\!\cdots\!81$$$$T^{8}$$)($$1 + 651791560596304612 T^{2} +$$$$17\!\cdots\!54$$$$T^{4} +$$$$22\!\cdots\!08$$$$T^{6} +$$$$12\!\cdots\!81$$$$T^{8}$$)($$1 + 216942772020942244 T^{2} +$$$$81\!\cdots\!46$$$$T^{4} +$$$$75\!\cdots\!96$$$$T^{6} +$$$$12\!\cdots\!81$$$$T^{8}$$)($$1 - 1006214192 T + 958538310443626940 T^{2} -$$$$52\!\cdots\!52$$$$T^{3} +$$$$27\!\cdots\!02$$$$T^{4} -$$$$98\!\cdots\!56$$$$T^{5} +$$$$33\!\cdots\!60$$$$T^{6} -$$$$65\!\cdots\!84$$$$T^{7} +$$$$12\!\cdots\!81$$$$T^{8}$$)($$1 - 717612218 T + 336088014899272823 T^{2} -$$$$10\!\cdots\!72$$$$T^{3} +$$$$85\!\cdots\!02$$$$T^{4} -$$$$44\!\cdots\!08$$$$T^{5} +$$$$16\!\cdots\!06$$$$T^{6} -$$$$38\!\cdots\!48$$$$T^{7} +$$$$21\!\cdots\!21$$$$T^{8} -$$$$87\!\cdots\!58$$$$T^{9} +$$$$22\!\cdots\!43$$$$T^{10}$$)($$1 + 717612218 T + 336088014899272823 T^{2} +$$$$10\!\cdots\!72$$$$T^{3} +$$$$85\!\cdots\!02$$$$T^{4} +$$$$44\!\cdots\!08$$$$T^{5} +$$$$16\!\cdots\!06$$$$T^{6} +$$$$38\!\cdots\!48$$$$T^{7} +$$$$21\!\cdots\!21$$$$T^{8} +$$$$87\!\cdots\!58$$$$T^{9} +$$$$22\!\cdots\!43$$$$T^{10}$$)($$1 + 619026085450723290 T^{2} +$$$$21\!\cdots\!99$$$$T^{4} +$$$$48\!\cdots\!28$$$$T^{6} +$$$$73\!\cdots\!91$$$$T^{8} +$$$$75\!\cdots\!90$$$$T^{10} +$$$$42\!\cdots\!29$$$$T^{12}$$)
$89$ ($$1 + 894379110 T + 350356403707485209 T^{2}$$)($$1 - 470133690 T + 350356403707485209 T^{2}$$)($$1 + 19938630 T + 350356403707485209 T^{2}$$)($$1 + 170059206 T + 350356403707485209 T^{2}$$)($$1 + 526039110 T + 350356403707485209 T^{2}$$)($$1 + 526039110 T + 350356403707485209 T^{2}$$)($$1 + 170059206 T + 350356403707485209 T^{2}$$)($$1 + 19938630 T + 350356403707485209 T^{2}$$)($$1 - 470133690 T + 350356403707485209 T^{2}$$)($$1 + 894379110 T + 350356403707485209 T^{2}$$)($$1 - 830088660 T + 692293619421117718 T^{2} -$$$$29\!\cdots\!40$$$$T^{3} +$$$$12\!\cdots\!81$$$$T^{4}$$)($$1 + 462291852 T + 159603168035249494 T^{2} +$$$$16\!\cdots\!68$$$$T^{3} +$$$$12\!\cdots\!81$$$$T^{4}$$)($$1 + 615067148 T + 322694158807723094 T^{2} +$$$$21\!\cdots\!32$$$$T^{3} +$$$$12\!\cdots\!81$$$$T^{4}$$)($$1 + 108334860 T - 479764388871867818 T^{2} +$$$$37\!\cdots\!40$$$$T^{3} +$$$$12\!\cdots\!81$$$$T^{4}$$)($$1 + 256073260 T + 592174274852066582 T^{2} +$$$$89\!\cdots\!40$$$$T^{3} +$$$$12\!\cdots\!81$$$$T^{4}$$)($$1 + 256073260 T + 592174274852066582 T^{2} +$$$$89\!\cdots\!40$$$$T^{3} +$$$$12\!\cdots\!81$$$$T^{4}$$)($$1 + 108334860 T - 479764388871867818 T^{2} +$$$$37\!\cdots\!40$$$$T^{3} +$$$$12\!\cdots\!81$$$$T^{4}$$)($$1 + 615067148 T + 322694158807723094 T^{2} +$$$$21\!\cdots\!32$$$$T^{3} +$$$$12\!\cdots\!81$$$$T^{4}$$)($$1 - 830088660 T + 692293619421117718 T^{2} -$$$$29\!\cdots\!40$$$$T^{3} +$$$$12\!\cdots\!81$$$$T^{4}$$)($$1 + 462291852 T + 159603168035249494 T^{2} +$$$$16\!\cdots\!68$$$$T^{3} +$$$$12\!\cdots\!81$$$$T^{4}$$)($$1 - 754926606 T + 926540806511526711 T^{2} -$$$$52\!\cdots\!12$$$$T^{3} +$$$$32\!\cdots\!99$$$$T^{4} -$$$$92\!\cdots\!86$$$$T^{5} +$$$$43\!\cdots\!29$$$$T^{6}$$)($$1 - 754926606 T + 926540806511526711 T^{2} -$$$$52\!\cdots\!12$$$$T^{3} +$$$$32\!\cdots\!99$$$$T^{4} -$$$$92\!\cdots\!86$$$$T^{5} +$$$$43\!\cdots\!29$$$$T^{6}$$)($$1 + 734523608 T + 1021794154090964156 T^{2} +$$$$72\!\cdots\!48$$$$T^{3} +$$$$47\!\cdots\!10$$$$T^{4} +$$$$25\!\cdots\!32$$$$T^{5} +$$$$12\!\cdots\!36$$$$T^{6} +$$$$31\!\cdots\!32$$$$T^{7} +$$$$15\!\cdots\!61$$$$T^{8}$$)($$( 1 + 10176620 T + 561347837750580118 T^{2} +$$$$35\!\cdots\!80$$$$T^{3} +$$$$12\!\cdots\!81$$$$T^{4} )^{2}$$)($$( 1 + 444515020 T + 453908025627823318 T^{2} +$$$$15\!\cdots\!80$$$$T^{3} +$$$$12\!\cdots\!81$$$$T^{4} )^{2}$$)($$( 1 - 1264960180 T + 964100354720476118 T^{2} -$$$$44\!\cdots\!20$$$$T^{3} +$$$$12\!\cdots\!81$$$$T^{4} )^{2}$$)($$1 + 734523608 T + 1021794154090964156 T^{2} +$$$$72\!\cdots\!48$$$$T^{3} +$$$$47\!\cdots\!10$$$$T^{4} +$$$$25\!\cdots\!32$$$$T^{5} +$$$$12\!\cdots\!36$$$$T^{6} +$$$$31\!\cdots\!32$$$$T^{7} +$$$$15\!\cdots\!61$$$$T^{8}$$)($$1 - 220266146 T + 398618953829800933 T^{2} -$$$$22\!\cdots\!04$$$$T^{3} +$$$$12\!\cdots\!22$$$$T^{4} -$$$$63\!\cdots\!76$$$$T^{5} +$$$$43\!\cdots\!98$$$$T^{6} -$$$$27\!\cdots\!24$$$$T^{7} +$$$$17\!\cdots\!57$$$$T^{8} -$$$$33\!\cdots\!06$$$$T^{9} +$$$$52\!\cdots\!49$$$$T^{10}$$)($$1 - 220266146 T + 398618953829800933 T^{2} -$$$$22\!\cdots\!04$$$$T^{3} +$$$$12\!\cdots\!22$$$$T^{4} -$$$$63\!\cdots\!76$$$$T^{5} +$$$$43\!\cdots\!98$$$$T^{6} -$$$$27\!\cdots\!24$$$$T^{7} +$$$$17\!\cdots\!57$$$$T^{8} -$$$$33\!\cdots\!06$$$$T^{9} +$$$$52\!\cdots\!49$$$$T^{10}$$)($$( 1 - 1216618590 T + 1483119744652446327 T^{2} -$$$$89\!\cdots\!20$$$$T^{3} +$$$$51\!\cdots\!43$$$$T^{4} -$$$$14\!\cdots\!90$$$$T^{5} +$$$$43\!\cdots\!29$$$$T^{6} )^{2}$$)
$97$ ($$1 - 232678562 T + 760231058654565217 T^{2}$$)($$1 + 117838462 T + 760231058654565217 T^{2}$$)($$1 + 19503358 T + 760231058654565217 T^{2}$$)($$1 + 10947022 T + 760231058654565217 T^{2}$$)($$1 + 1075981438 T + 760231058654565217 T^{2}$$)($$1 + 1075981438 T + 760231058654565217 T^{2}$$)($$1 + 10947022 T + 760231058654565217 T^{2}$$)($$1 + 19503358 T + 760231058654565217 T^{2}$$)($$1 + 117838462 T + 760231058654565217 T^{2}$$)($$1 - 232678562 T + 760231058654565217 T^{2}$$)($$1 - 638394580 T + 1615411126351062630 T^{2} -$$$$48\!\cdots\!60$$$$T^{3} +$$$$57\!\cdots\!89$$$$T^{4}$$)($$1 - 1671716740 T + 2048690578856969670 T^{2} -$$$$12\!\cdots\!80$$$$T^{3} +$$$$57\!\cdots\!89$$$$T^{4}$$)($$1 + 996545468 T + 943405561624881990 T^{2} +$$$$75\!\cdots\!56$$$$T^{3} +$$$$57\!\cdots\!89$$$$T^{4}$$)($$1 - 2043058628 T + 2509217520410601030 T^{2} -$$$$15\!\cdots\!76$$$$T^{3} +$$$$57\!\cdots\!89$$$$T^{4}$$)($$1 + 184950572 T - 615454564650127770 T^{2} +$$$$14\!\cdots\!24$$$$T^{3} +$$$$57\!\cdots\!89$$$$T^{4}$$)($$1 + 184950572 T - 615454564650127770 T^{2} +$$$$14\!\cdots\!24$$$$T^{3} +$$$$57\!\cdots\!89$$$$T^{4}$$)($$1 - 2043058628 T + 2509217520410601030 T^{2} -$$$$15\!\cdots\!76$$$$T^{3} +$$$$57\!\cdots\!89$$$$T^{4}$$)($$1 + 996545468 T + 943405561624881990 T^{2} +$$$$75\!\cdots\!56$$$$T^{3} +$$$$57\!\cdots\!89$$$$T^{4}$$)($$1 - 638394580 T + 1615411126351062630 T^{2} -$$$$48\!\cdots\!60$$$$T^{3} +$$$$57\!\cdots\!89$$$$T^{4}$$)($$1 - 1671716740 T + 2048690578856969670 T^{2} -$$$$12\!\cdots\!80$$$$T^{3} +$$$$57\!\cdots\!89$$$$T^{4}$$)($$1 + 903451002 T + 2439888940908067119 T^{2} +$$$$13\!\cdots\!72$$$$T^{3} +$$$$18\!\cdots\!23$$$$T^{4} +$$$$52\!\cdots\!78$$$$T^{5} +$$$$43\!\cdots\!13$$$$T^{6}$$)($$1 + 903451002 T + 2439888940908067119 T^{2} +$$$$13\!\cdots\!72$$$$T^{3} +$$$$18\!\cdots\!23$$$$T^{4} +$$$$52\!\cdots\!78$$$$T^{5} +$$$$43\!\cdots\!13$$$$T^{6}$$)($$1 + 72294520 T + 54140137519539868 T^{2} -$$$$24\!\cdots\!80$$$$T^{3} +$$$$44\!\cdots\!34$$$$T^{4} -$$$$18\!\cdots\!60$$$$T^{5} +$$$$31\!\cdots\!52$$$$T^{6} +$$$$31\!\cdots\!60$$$$T^{7} +$$$$33\!\cdots\!21$$$$T^{8}$$)($$( 1 + 242496764 T + 1522345998397506758 T^{2} +$$$$18\!\cdots\!88$$$$T^{3} +$$$$57\!\cdots\!89$$$$T^{4} )^{2}$$)($$( 1 + 1469989196 T + 1820572906327579238 T^{2} +$$$$11\!\cdots\!32$$$$T^{3} +$$$$57\!\cdots\!89$$$$T^{4} )^{2}$$)($$( 1 - 232459636 T + 43355844308585958 T^{2} -$$$$17\!\cdots\!12$$$$T^{3} +$$$$57\!\cdots\!89$$$$T^{4} )^{2}$$)($$1 + 72294520 T + 54140137519539868 T^{2} -$$$$24\!\cdots\!80$$$$T^{3} +$$$$44\!\cdots\!34$$$$T^{4} -$$$$18\!\cdots\!60$$$$T^{5} +$$$$31\!\cdots\!52$$$$T^{6} +$$$$31\!\cdots\!60$$$$T^{7} +$$$$33\!\cdots\!21$$$$T^{8}$$)($$1 + 781256910 T + 2464973284541767885 T^{2} +$$$$22\!\cdots\!80$$$$T^{3} +$$$$28\!\cdots\!90$$$$T^{4} +$$$$25\!\cdots\!40$$$$T^{5} +$$$$21\!\cdots\!30$$$$T^{6} +$$$$13\!\cdots\!20$$$$T^{7} +$$$$10\!\cdots\!05$$$$T^{8} +$$$$26\!\cdots\!10$$$$T^{9} +$$$$25\!\cdots\!57$$$$T^{10}$$)($$1 + 781256910 T + 2464973284541767885 T^{2} +$$$$22\!\cdots\!80$$$$T^{3} +$$$$28\!\cdots\!90$$$$T^{4} +$$$$25\!\cdots\!40$$$$T^{5} +$$$$21\!\cdots\!30$$$$T^{6} +$$$$13\!\cdots\!20$$$$T^{7} +$$$$10\!\cdots\!05$$$$T^{8} +$$$$26\!\cdots\!10$$$$T^{9} +$$$$25\!\cdots\!57$$$$T^{10}$$)($$( 1 - 1056946566 T + 1205794263030317103 T^{2} -$$$$80\!\cdots\!92$$$$T^{3} +$$$$91\!\cdots\!51$$$$T^{4} -$$$$61\!\cdots\!74$$$$T^{5} +$$$$43\!\cdots\!13$$$$T^{6} )^{2}$$)