Properties

Label 312.2.g.a.157.3
Level $312$
Weight $2$
Character 312.157
Analytic conductor $2.491$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [312,2,Mod(157,312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("312.157"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 312.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.49133254306\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 157.3
Root \(-0.951057 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 312.157
Dual form 312.2.g.a.157.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.221232 - 1.39680i) q^{2} +1.00000i q^{3} +(-1.90211 - 0.618034i) q^{4} -2.52015i q^{5} +(1.39680 + 0.221232i) q^{6} +2.79360 q^{7} +(-1.28408 + 2.52015i) q^{8} -1.00000 q^{9} +(-3.52015 - 0.557537i) q^{10} -5.31375i q^{11} +(0.618034 - 1.90211i) q^{12} +1.00000i q^{13} +(0.618034 - 3.90211i) q^{14} +2.52015 q^{15} +(3.23607 + 2.35114i) q^{16} -4.35114 q^{17} +(-0.221232 + 1.39680i) q^{18} -6.02967i q^{19} +(-1.55754 + 4.79360i) q^{20} +2.79360i q^{21} +(-7.42226 - 1.17557i) q^{22} +0.568158 q^{23} +(-2.52015 - 1.28408i) q^{24} -1.35114 q^{25} +(1.39680 + 0.221232i) q^{26} -1.00000i q^{27} +(-5.31375 - 1.72654i) q^{28} -2.68915i q^{29} +(0.557537 - 3.52015i) q^{30} +1.90868 q^{31} +(4.00000 - 4.00000i) q^{32} +5.31375 q^{33} +(-0.962611 + 6.07768i) q^{34} -7.04029i q^{35} +(1.90211 + 0.618034i) q^{36} +9.60845i q^{37} +(-8.42226 - 1.33395i) q^{38} -1.00000 q^{39} +(6.35114 + 3.23607i) q^{40} +11.2093 q^{41} +(3.90211 + 0.618034i) q^{42} +9.48746i q^{43} +(-3.28408 + 10.1074i) q^{44} +2.52015i q^{45} +(0.125695 - 0.793604i) q^{46} +3.95669 q^{47} +(-2.35114 + 3.23607i) q^{48} +0.804226 q^{49} +(-0.298915 + 1.88728i) q^{50} -4.35114i q^{51} +(0.618034 - 1.90211i) q^{52} +8.05934i q^{53} +(-1.39680 - 0.221232i) q^{54} -13.3914 q^{55} +(-3.58721 + 7.04029i) q^{56} +6.02967 q^{57} +(-3.75621 - 0.594926i) q^{58} +6.19868i q^{59} +(-4.79360 - 1.55754i) q^{60} +7.23607i q^{61} +(0.422260 - 2.66605i) q^{62} -2.79360 q^{63} +(-4.70228 - 6.47214i) q^{64} +2.52015 q^{65} +(1.17557 - 7.42226i) q^{66} -10.0297i q^{67} +(8.27636 + 2.68915i) q^{68} +0.568158i q^{69} +(-9.83390 - 1.55754i) q^{70} -1.63052 q^{71} +(1.28408 - 2.52015i) q^{72} -5.17442 q^{73} +(13.4211 + 2.12569i) q^{74} -1.35114i q^{75} +(-3.72654 + 11.4691i) q^{76} -14.8445i q^{77} +(-0.221232 + 1.39680i) q^{78} +9.17442 q^{79} +(5.92522 - 8.15537i) q^{80} +1.00000 q^{81} +(2.47985 - 15.6572i) q^{82} +4.61147i q^{83} +(1.72654 - 5.31375i) q^{84} +10.9655i q^{85} +(13.2521 + 2.09893i) q^{86} +2.68915 q^{87} +(13.3914 + 6.82328i) q^{88} +11.4182 q^{89} +(3.52015 + 0.557537i) q^{90} +2.79360i q^{91} +(-1.08070 - 0.351141i) q^{92} +1.90868i q^{93} +(0.875345 - 5.52671i) q^{94} -15.1957 q^{95} +(4.00000 + 4.00000i) q^{96} -10.2514 q^{97} +(0.177920 - 1.12334i) q^{98} +5.31375i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 2 q^{6} + 4 q^{7} - 4 q^{8} - 8 q^{9} - 4 q^{10} - 4 q^{12} - 4 q^{14} - 4 q^{15} + 8 q^{16} - 16 q^{17} - 2 q^{18} - 12 q^{20} - 20 q^{22} - 8 q^{23} + 4 q^{24} + 8 q^{25} + 2 q^{26} + 4 q^{30}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.221232 1.39680i 0.156434 0.987688i
\(3\) 1.00000i 0.577350i
\(4\) −1.90211 0.618034i −0.951057 0.309017i
\(5\) 2.52015i 1.12704i −0.826101 0.563522i \(-0.809446\pi\)
0.826101 0.563522i \(-0.190554\pi\)
\(6\) 1.39680 + 0.221232i 0.570242 + 0.0903175i
\(7\) 2.79360 1.05588 0.527942 0.849281i \(-0.322964\pi\)
0.527942 + 0.849281i \(0.322964\pi\)
\(8\) −1.28408 + 2.52015i −0.453990 + 0.891007i
\(9\) −1.00000 −0.333333
\(10\) −3.52015 0.557537i −1.11317 0.176309i
\(11\) 5.31375i 1.60216i −0.598560 0.801078i \(-0.704260\pi\)
0.598560 0.801078i \(-0.295740\pi\)
\(12\) 0.618034 1.90211i 0.178411 0.549093i
\(13\) 1.00000i 0.277350i
\(14\) 0.618034 3.90211i 0.165177 1.04288i
\(15\) 2.52015 0.650699
\(16\) 3.23607 + 2.35114i 0.809017 + 0.587785i
\(17\) −4.35114 −1.05531 −0.527653 0.849460i \(-0.676928\pi\)
−0.527653 + 0.849460i \(0.676928\pi\)
\(18\) −0.221232 + 1.39680i −0.0521448 + 0.329229i
\(19\) 6.02967i 1.38330i −0.722232 0.691651i \(-0.756884\pi\)
0.722232 0.691651i \(-0.243116\pi\)
\(20\) −1.55754 + 4.79360i −0.348276 + 1.07188i
\(21\) 2.79360i 0.609614i
\(22\) −7.42226 1.17557i −1.58243 0.250632i
\(23\) 0.568158 0.118469 0.0592346 0.998244i \(-0.481134\pi\)
0.0592346 + 0.998244i \(0.481134\pi\)
\(24\) −2.52015 1.28408i −0.514423 0.262112i
\(25\) −1.35114 −0.270228
\(26\) 1.39680 + 0.221232i 0.273935 + 0.0433871i
\(27\) 1.00000i 0.192450i
\(28\) −5.31375 1.72654i −1.00420 0.326286i
\(29\) 2.68915i 0.499363i −0.968328 0.249682i \(-0.919674\pi\)
0.968328 0.249682i \(-0.0803260\pi\)
\(30\) 0.557537 3.52015i 0.101792 0.642688i
\(31\) 1.90868 0.342809 0.171404 0.985201i \(-0.445170\pi\)
0.171404 + 0.985201i \(0.445170\pi\)
\(32\) 4.00000 4.00000i 0.707107 0.707107i
\(33\) 5.31375 0.925005
\(34\) −0.962611 + 6.07768i −0.165086 + 1.04231i
\(35\) 7.04029i 1.19003i
\(36\) 1.90211 + 0.618034i 0.317019 + 0.103006i
\(37\) 9.60845i 1.57962i 0.613352 + 0.789810i \(0.289821\pi\)
−0.613352 + 0.789810i \(0.710179\pi\)
\(38\) −8.42226 1.33395i −1.36627 0.216396i
\(39\) −1.00000 −0.160128
\(40\) 6.35114 + 3.23607i 1.00420 + 0.511667i
\(41\) 11.2093 1.75060 0.875299 0.483582i \(-0.160664\pi\)
0.875299 + 0.483582i \(0.160664\pi\)
\(42\) 3.90211 + 0.618034i 0.602109 + 0.0953647i
\(43\) 9.48746i 1.44682i 0.690417 + 0.723412i \(0.257427\pi\)
−0.690417 + 0.723412i \(0.742573\pi\)
\(44\) −3.28408 + 10.1074i −0.495094 + 1.52374i
\(45\) 2.52015i 0.375681i
\(46\) 0.125695 0.793604i 0.0185327 0.117011i
\(47\) 3.95669 0.577142 0.288571 0.957458i \(-0.406820\pi\)
0.288571 + 0.957458i \(0.406820\pi\)
\(48\) −2.35114 + 3.23607i −0.339358 + 0.467086i
\(49\) 0.804226 0.114889
\(50\) −0.298915 + 1.88728i −0.0422730 + 0.266901i
\(51\) 4.35114i 0.609282i
\(52\) 0.618034 1.90211i 0.0857059 0.263776i
\(53\) 8.05934i 1.10704i 0.832837 + 0.553518i \(0.186715\pi\)
−0.832837 + 0.553518i \(0.813285\pi\)
\(54\) −1.39680 0.221232i −0.190081 0.0301058i
\(55\) −13.3914 −1.80570
\(56\) −3.58721 + 7.04029i −0.479361 + 0.940799i
\(57\) 6.02967 0.798650
\(58\) −3.75621 0.594926i −0.493215 0.0781176i
\(59\) 6.19868i 0.806999i 0.914980 + 0.403500i \(0.132206\pi\)
−0.914980 + 0.403500i \(0.867794\pi\)
\(60\) −4.79360 1.55754i −0.618852 0.201077i
\(61\) 7.23607i 0.926484i 0.886232 + 0.463242i \(0.153314\pi\)
−0.886232 + 0.463242i \(0.846686\pi\)
\(62\) 0.422260 2.66605i 0.0536271 0.338588i
\(63\) −2.79360 −0.351961
\(64\) −4.70228 6.47214i −0.587785 0.809017i
\(65\) 2.52015 0.312586
\(66\) 1.17557 7.42226i 0.144703 0.913617i
\(67\) 10.0297i 1.22532i −0.790347 0.612660i \(-0.790100\pi\)
0.790347 0.612660i \(-0.209900\pi\)
\(68\) 8.27636 + 2.68915i 1.00366 + 0.326108i
\(69\) 0.568158i 0.0683982i
\(70\) −9.83390 1.55754i −1.17538 0.186161i
\(71\) −1.63052 −0.193507 −0.0967536 0.995308i \(-0.530846\pi\)
−0.0967536 + 0.995308i \(0.530846\pi\)
\(72\) 1.28408 2.52015i 0.151330 0.297002i
\(73\) −5.17442 −0.605620 −0.302810 0.953051i \(-0.597925\pi\)
−0.302810 + 0.953051i \(0.597925\pi\)
\(74\) 13.4211 + 2.12569i 1.56017 + 0.247107i
\(75\) 1.35114i 0.156016i
\(76\) −3.72654 + 11.4691i −0.427464 + 1.31560i
\(77\) 14.8445i 1.69169i
\(78\) −0.221232 + 1.39680i −0.0250496 + 0.158157i
\(79\) 9.17442 1.03220 0.516101 0.856528i \(-0.327383\pi\)
0.516101 + 0.856528i \(0.327383\pi\)
\(80\) 5.92522 8.15537i 0.662460 0.911798i
\(81\) 1.00000 0.111111
\(82\) 2.47985 15.6572i 0.273854 1.72905i
\(83\) 4.61147i 0.506175i 0.967443 + 0.253087i \(0.0814460\pi\)
−0.967443 + 0.253087i \(0.918554\pi\)
\(84\) 1.72654 5.31375i 0.188381 0.579778i
\(85\) 10.9655i 1.18938i
\(86\) 13.2521 + 2.09893i 1.42901 + 0.226333i
\(87\) 2.68915 0.288307
\(88\) 13.3914 + 6.82328i 1.42753 + 0.727364i
\(89\) 11.4182 1.21033 0.605164 0.796101i \(-0.293108\pi\)
0.605164 + 0.796101i \(0.293108\pi\)
\(90\) 3.52015 + 0.557537i 0.371056 + 0.0587695i
\(91\) 2.79360i 0.292849i
\(92\) −1.08070 0.351141i −0.112671 0.0366090i
\(93\) 1.90868i 0.197921i
\(94\) 0.875345 5.52671i 0.0902850 0.570037i
\(95\) −15.1957 −1.55904
\(96\) 4.00000 + 4.00000i 0.408248 + 0.408248i
\(97\) −10.2514 −1.04087 −0.520435 0.853901i \(-0.674230\pi\)
−0.520435 + 0.853901i \(0.674230\pi\)
\(98\) 0.177920 1.12334i 0.0179727 0.113475i
\(99\) 5.31375i 0.534052i
\(100\) 2.57002 + 0.835051i 0.257002 + 0.0835051i
\(101\) 3.01905i 0.300407i 0.988655 + 0.150203i \(0.0479929\pi\)
−0.988655 + 0.150203i \(0.952007\pi\)
\(102\) −6.07768 0.962611i −0.601780 0.0953126i
\(103\) 12.9193 1.27298 0.636488 0.771286i \(-0.280386\pi\)
0.636488 + 0.771286i \(0.280386\pi\)
\(104\) −2.52015 1.28408i −0.247121 0.125914i
\(105\) 7.04029 0.687062
\(106\) 11.2573 + 1.78298i 1.09341 + 0.173179i
\(107\) 10.9537i 1.05893i −0.848331 0.529466i \(-0.822392\pi\)
0.848331 0.529466i \(-0.177608\pi\)
\(108\) −0.618034 + 1.90211i −0.0594703 + 0.183031i
\(109\) 5.45309i 0.522311i −0.965297 0.261155i \(-0.915896\pi\)
0.965297 0.261155i \(-0.0841035\pi\)
\(110\) −2.96261 + 18.7052i −0.282474 + 1.78347i
\(111\) −9.60845 −0.911994
\(112\) 9.04029 + 6.56816i 0.854227 + 0.620633i
\(113\) −13.6334 −1.28252 −0.641262 0.767322i \(-0.721589\pi\)
−0.641262 + 0.767322i \(0.721589\pi\)
\(114\) 1.33395 8.42226i 0.124936 0.788817i
\(115\) 1.43184i 0.133520i
\(116\) −1.66199 + 5.11507i −0.154312 + 0.474923i
\(117\) 1.00000i 0.0924500i
\(118\) 8.65833 + 1.37134i 0.797064 + 0.126242i
\(119\) −12.1554 −1.11428
\(120\) −3.23607 + 6.35114i −0.295411 + 0.579777i
\(121\) −17.2360 −1.56691
\(122\) 10.1074 + 1.60085i 0.915077 + 0.144934i
\(123\) 11.2093i 1.01071i
\(124\) −3.63052 1.17963i −0.326030 0.105934i
\(125\) 9.19566i 0.822485i
\(126\) −0.618034 + 3.90211i −0.0550588 + 0.347628i
\(127\) 19.4377 1.72481 0.862406 0.506217i \(-0.168956\pi\)
0.862406 + 0.506217i \(0.168956\pi\)
\(128\) −10.0806 + 5.13632i −0.891007 + 0.453990i
\(129\) −9.48746 −0.835324
\(130\) 0.557537 3.52015i 0.0488992 0.308737i
\(131\) 12.7235i 1.11166i −0.831296 0.555830i \(-0.812401\pi\)
0.831296 0.555830i \(-0.187599\pi\)
\(132\) −10.1074 3.28408i −0.879732 0.285842i
\(133\) 16.8445i 1.46061i
\(134\) −14.0095 2.21888i −1.21023 0.191682i
\(135\) −2.52015 −0.216900
\(136\) 5.58721 10.9655i 0.479099 0.940285i
\(137\) −9.23054 −0.788619 −0.394309 0.918978i \(-0.629016\pi\)
−0.394309 + 0.918978i \(0.629016\pi\)
\(138\) 0.793604 + 0.125695i 0.0675561 + 0.0106998i
\(139\) 11.7507i 0.996681i −0.866982 0.498340i \(-0.833943\pi\)
0.866982 0.498340i \(-0.166057\pi\)
\(140\) −4.35114 + 13.3914i −0.367739 + 1.13178i
\(141\) 3.95669i 0.333213i
\(142\) −0.360723 + 2.27751i −0.0302712 + 0.191125i
\(143\) 5.31375 0.444358
\(144\) −3.23607 2.35114i −0.269672 0.195928i
\(145\) −6.77706 −0.562804
\(146\) −1.14475 + 7.22764i −0.0947398 + 0.598164i
\(147\) 0.804226i 0.0663314i
\(148\) 5.93835 18.2764i 0.488129 1.50231i
\(149\) 17.6079i 1.44250i 0.692675 + 0.721249i \(0.256432\pi\)
−0.692675 + 0.721249i \(0.743568\pi\)
\(150\) −1.88728 0.298915i −0.154096 0.0244063i
\(151\) −11.6250 −0.946029 −0.473014 0.881055i \(-0.656834\pi\)
−0.473014 + 0.881055i \(0.656834\pi\)
\(152\) 15.1957 + 7.74258i 1.23253 + 0.628006i
\(153\) 4.35114 0.351769
\(154\) −20.7349 3.28408i −1.67086 0.264639i
\(155\) 4.81015i 0.386360i
\(156\) 1.90211 + 0.618034i 0.152291 + 0.0494823i
\(157\) 13.4781i 1.07567i 0.843051 + 0.537833i \(0.180757\pi\)
−0.843051 + 0.537833i \(0.819243\pi\)
\(158\) 2.02967 12.8148i 0.161472 1.01949i
\(159\) −8.05934 −0.639148
\(160\) −10.0806 10.0806i −0.796940 0.796940i
\(161\) 1.58721 0.125090
\(162\) 0.221232 1.39680i 0.0173816 0.109743i
\(163\) 9.79349i 0.767085i 0.923523 + 0.383543i \(0.125296\pi\)
−0.923523 + 0.383543i \(0.874704\pi\)
\(164\) −21.3214 6.92773i −1.66492 0.540965i
\(165\) 13.3914i 1.04252i
\(166\) 6.44131 + 1.02020i 0.499943 + 0.0791831i
\(167\) −16.6054 −1.28497 −0.642484 0.766299i \(-0.722096\pi\)
−0.642484 + 0.766299i \(0.722096\pi\)
\(168\) −7.04029 3.58721i −0.543170 0.276759i
\(169\) −1.00000 −0.0769231
\(170\) 15.3167 + 2.42592i 1.17473 + 0.186060i
\(171\) 6.02967i 0.461101i
\(172\) 5.86357 18.0462i 0.447093 1.37601i
\(173\) 16.1979i 1.23150i 0.787942 + 0.615750i \(0.211147\pi\)
−0.787942 + 0.615750i \(0.788853\pi\)
\(174\) 0.594926 3.75621i 0.0451012 0.284758i
\(175\) −3.77455 −0.285329
\(176\) 12.4934 17.1957i 0.941724 1.29617i
\(177\) −6.19868 −0.465921
\(178\) 2.52607 15.9490i 0.189337 1.19543i
\(179\) 1.22795i 0.0917816i 0.998946 + 0.0458908i \(0.0146126\pi\)
−0.998946 + 0.0458908i \(0.985387\pi\)
\(180\) 1.55754 4.79360i 0.116092 0.357294i
\(181\) 7.00592i 0.520746i 0.965508 + 0.260373i \(0.0838455\pi\)
−0.965508 + 0.260373i \(0.916154\pi\)
\(182\) 3.90211 + 0.618034i 0.289244 + 0.0458117i
\(183\) −7.23607 −0.534906
\(184\) −0.729560 + 1.43184i −0.0537839 + 0.105557i
\(185\) 24.2147 1.78030
\(186\) 2.66605 + 0.422260i 0.195484 + 0.0309616i
\(187\) 23.1209i 1.69077i
\(188\) −7.52607 2.44537i −0.548895 0.178347i
\(189\) 2.79360i 0.203205i
\(190\) −3.36176 + 21.2253i −0.243888 + 1.53985i
\(191\) −14.3701 −1.03978 −0.519891 0.854232i \(-0.674028\pi\)
−0.519891 + 0.854232i \(0.674028\pi\)
\(192\) 6.47214 4.70228i 0.467086 0.339358i
\(193\) −3.67383 −0.264448 −0.132224 0.991220i \(-0.542212\pi\)
−0.132224 + 0.991220i \(0.542212\pi\)
\(194\) −2.26793 + 14.3192i −0.162828 + 1.02806i
\(195\) 2.52015i 0.180471i
\(196\) −1.52973 0.497039i −0.109266 0.0355028i
\(197\) 6.88442i 0.490494i −0.969461 0.245247i \(-0.921131\pi\)
0.969461 0.245247i \(-0.0788691\pi\)
\(198\) 7.42226 + 1.17557i 0.527477 + 0.0835442i
\(199\) 15.3952 1.09133 0.545667 0.838002i \(-0.316276\pi\)
0.545667 + 0.838002i \(0.316276\pi\)
\(200\) 1.73497 3.40507i 0.122681 0.240775i
\(201\) 10.0297 0.707439
\(202\) 4.21702 + 0.667910i 0.296708 + 0.0469940i
\(203\) 7.51243i 0.527269i
\(204\) −2.68915 + 8.27636i −0.188278 + 0.579461i
\(205\) 28.2491i 1.97300i
\(206\) 2.85816 18.0457i 0.199137 1.25730i
\(207\) −0.568158 −0.0394897
\(208\) −2.35114 + 3.23607i −0.163022 + 0.224381i
\(209\) −32.0402 −2.21627
\(210\) 1.55754 9.83390i 0.107480 0.678603i
\(211\) 1.57035i 0.108107i −0.998538 0.0540537i \(-0.982786\pi\)
0.998538 0.0540537i \(-0.0172142\pi\)
\(212\) 4.98095 15.3298i 0.342093 1.05285i
\(213\) 1.63052i 0.111721i
\(214\) −15.3001 2.42330i −1.04589 0.165653i
\(215\) 23.9098 1.63063
\(216\) 2.52015 + 1.28408i 0.171474 + 0.0873705i
\(217\) 5.33209 0.361966
\(218\) −7.61688 1.20640i −0.515880 0.0817074i
\(219\) 5.17442i 0.349655i
\(220\) 25.4720 + 8.27636i 1.71732 + 0.557992i
\(221\) 4.35114i 0.292689i
\(222\) −2.12569 + 13.4211i −0.142667 + 0.900766i
\(223\) 27.6571 1.85205 0.926027 0.377457i \(-0.123202\pi\)
0.926027 + 0.377457i \(0.123202\pi\)
\(224\) 11.1744 11.1744i 0.746622 0.746622i
\(225\) 1.35114 0.0900761
\(226\) −3.01615 + 19.0432i −0.200631 + 1.26673i
\(227\) 22.9434i 1.52281i 0.648276 + 0.761405i \(0.275490\pi\)
−0.648276 + 0.761405i \(0.724510\pi\)
\(228\) −11.4691 3.72654i −0.759561 0.246796i
\(229\) 23.5064i 1.55335i −0.629904 0.776673i \(-0.716906\pi\)
0.629904 0.776673i \(-0.283094\pi\)
\(230\) −2.00000 0.316769i −0.131876 0.0208871i
\(231\) 14.8445 0.976698
\(232\) 6.77706 + 3.45309i 0.444936 + 0.226706i
\(233\) 3.47433 0.227611 0.113805 0.993503i \(-0.463696\pi\)
0.113805 + 0.993503i \(0.463696\pi\)
\(234\) −1.39680 0.221232i −0.0913118 0.0144624i
\(235\) 9.97144i 0.650465i
\(236\) 3.83099 11.7906i 0.249376 0.767502i
\(237\) 9.17442i 0.595942i
\(238\) −2.68915 + 16.9786i −0.174312 + 1.10056i
\(239\) −11.5820 −0.749177 −0.374589 0.927191i \(-0.622216\pi\)
−0.374589 + 0.927191i \(0.622216\pi\)
\(240\) 8.15537 + 5.92522i 0.526427 + 0.382471i
\(241\) 10.0058 0.644531 0.322265 0.946649i \(-0.395556\pi\)
0.322265 + 0.946649i \(0.395556\pi\)
\(242\) −3.81314 + 24.0752i −0.245118 + 1.54761i
\(243\) 1.00000i 0.0641500i
\(244\) 4.47214 13.7638i 0.286299 0.881138i
\(245\) 2.02677i 0.129485i
\(246\) 15.6572 + 2.47985i 0.998265 + 0.158110i
\(247\) 6.02967 0.383659
\(248\) −2.45089 + 4.81015i −0.155632 + 0.305445i
\(249\) −4.61147 −0.292240
\(250\) −12.8445 2.03437i −0.812359 0.128665i
\(251\) 11.3723i 0.717811i 0.933374 + 0.358906i \(0.116850\pi\)
−0.933374 + 0.358906i \(0.883150\pi\)
\(252\) 5.31375 + 1.72654i 0.334735 + 0.108762i
\(253\) 3.01905i 0.189806i
\(254\) 4.30023 27.1506i 0.269820 1.70358i
\(255\) −10.9655 −0.686687
\(256\) 4.94427 + 15.2169i 0.309017 + 0.951057i
\(257\) 11.3510 0.708058 0.354029 0.935235i \(-0.384811\pi\)
0.354029 + 0.935235i \(0.384811\pi\)
\(258\) −2.09893 + 13.2521i −0.130673 + 0.825040i
\(259\) 26.8422i 1.66789i
\(260\) −4.79360 1.55754i −0.297287 0.0965943i
\(261\) 2.68915i 0.166454i
\(262\) −17.7722 2.81485i −1.09797 0.173902i
\(263\) 3.88712 0.239690 0.119845 0.992793i \(-0.461760\pi\)
0.119845 + 0.992793i \(0.461760\pi\)
\(264\) −6.82328 + 13.3914i −0.419944 + 0.824186i
\(265\) 20.3107 1.24768
\(266\) −23.5285 3.72654i −1.44262 0.228489i
\(267\) 11.4182i 0.698783i
\(268\) −6.19868 + 19.0776i −0.378645 + 1.16535i
\(269\) 25.2300i 1.53830i −0.639067 0.769151i \(-0.720679\pi\)
0.639067 0.769151i \(-0.279321\pi\)
\(270\) −0.557537 + 3.52015i −0.0339306 + 0.214229i
\(271\) −2.90649 −0.176556 −0.0882782 0.996096i \(-0.528136\pi\)
−0.0882782 + 0.996096i \(0.528136\pi\)
\(272\) −14.0806 10.2301i −0.853761 0.620294i
\(273\) −2.79360 −0.169077
\(274\) −2.04209 + 12.8932i −0.123367 + 0.778909i
\(275\) 7.17963i 0.432948i
\(276\) 0.351141 1.08070i 0.0211362 0.0650506i
\(277\) 4.26825i 0.256454i −0.991745 0.128227i \(-0.959071\pi\)
0.991745 0.128227i \(-0.0409286\pi\)
\(278\) −16.4134 2.59963i −0.984410 0.155915i
\(279\) −1.90868 −0.114270
\(280\) 17.7426 + 9.04029i 1.06032 + 0.540261i
\(281\) −18.9900 −1.13285 −0.566424 0.824114i \(-0.691673\pi\)
−0.566424 + 0.824114i \(0.691673\pi\)
\(282\) 5.52671 + 0.875345i 0.329111 + 0.0521260i
\(283\) 13.1957i 0.784401i −0.919880 0.392200i \(-0.871714\pi\)
0.919880 0.392200i \(-0.128286\pi\)
\(284\) 3.10143 + 1.00772i 0.184036 + 0.0597970i
\(285\) 15.1957i 0.900113i
\(286\) 1.17557 7.42226i 0.0695129 0.438887i
\(287\) 31.3144 1.84843
\(288\) −4.00000 + 4.00000i −0.235702 + 0.235702i
\(289\) 1.93243 0.113672
\(290\) −1.49930 + 9.46621i −0.0880420 + 0.555875i
\(291\) 10.2514i 0.600947i
\(292\) 9.84233 + 3.19797i 0.575979 + 0.187147i
\(293\) 12.0980i 0.706770i −0.935478 0.353385i \(-0.885031\pi\)
0.935478 0.353385i \(-0.114969\pi\)
\(294\) 1.12334 + 0.177920i 0.0655148 + 0.0103765i
\(295\) 15.6216 0.909524
\(296\) −24.2147 12.3380i −1.40745 0.717132i
\(297\) −5.31375 −0.308335
\(298\) 24.5948 + 3.89544i 1.42474 + 0.225657i
\(299\) 0.568158i 0.0328574i
\(300\) −0.835051 + 2.57002i −0.0482117 + 0.148380i
\(301\) 26.5042i 1.52768i
\(302\) −2.57182 + 16.2378i −0.147991 + 0.934382i
\(303\) −3.01905 −0.173440
\(304\) 14.1766 19.5124i 0.813084 1.11911i
\(305\) 18.2360 1.04419
\(306\) 0.962611 6.07768i 0.0550288 0.347438i
\(307\) 24.7863i 1.41463i −0.706900 0.707314i \(-0.749907\pi\)
0.706900 0.707314i \(-0.250093\pi\)
\(308\) −9.17442 + 28.2360i −0.522761 + 1.60889i
\(309\) 12.9193i 0.734953i
\(310\) −6.71883 1.06416i −0.381604 0.0604401i
\(311\) −6.72956 −0.381598 −0.190799 0.981629i \(-0.561108\pi\)
−0.190799 + 0.981629i \(0.561108\pi\)
\(312\) 1.28408 2.52015i 0.0726967 0.142675i
\(313\) 11.4956 0.649768 0.324884 0.945754i \(-0.394675\pi\)
0.324884 + 0.945754i \(0.394675\pi\)
\(314\) 18.8262 + 2.98177i 1.06242 + 0.168271i
\(315\) 7.04029i 0.396676i
\(316\) −17.4508 5.67010i −0.981683 0.318968i
\(317\) 2.86756i 0.161058i 0.996752 + 0.0805291i \(0.0256610\pi\)
−0.996752 + 0.0805291i \(0.974339\pi\)
\(318\) −1.78298 + 11.2573i −0.0999847 + 0.631279i
\(319\) −14.2895 −0.800058
\(320\) −16.3107 + 11.8504i −0.911798 + 0.662460i
\(321\) 10.9537 0.611374
\(322\) 0.351141 2.21702i 0.0195683 0.123550i
\(323\) 26.2360i 1.45981i
\(324\) −1.90211 0.618034i −0.105673 0.0343352i
\(325\) 1.35114i 0.0749478i
\(326\) 13.6796 + 2.16663i 0.757641 + 0.119999i
\(327\) 5.45309 0.301556
\(328\) −14.3936 + 28.2491i −0.794755 + 1.55979i
\(329\) 11.0534 0.609395
\(330\) −18.7052 2.96261i −1.02969 0.163086i
\(331\) 1.44967i 0.0796811i −0.999206 0.0398405i \(-0.987315\pi\)
0.999206 0.0398405i \(-0.0126850\pi\)
\(332\) 2.85004 8.77154i 0.156417 0.481401i
\(333\) 9.60845i 0.526540i
\(334\) −3.67365 + 23.1945i −0.201013 + 1.26915i
\(335\) −25.2762 −1.38099
\(336\) −6.56816 + 9.04029i −0.358322 + 0.493188i
\(337\) −22.6774 −1.23532 −0.617660 0.786446i \(-0.711919\pi\)
−0.617660 + 0.786446i \(0.711919\pi\)
\(338\) −0.221232 + 1.39680i −0.0120334 + 0.0759760i
\(339\) 13.6334i 0.740466i
\(340\) 6.77706 20.8576i 0.367538 1.13116i
\(341\) 10.1422i 0.549233i
\(342\) 8.42226 + 1.33395i 0.455424 + 0.0721320i
\(343\) −17.3085 −0.934573
\(344\) −23.9098 12.1826i −1.28913 0.656844i
\(345\) 1.43184 0.0770878
\(346\) 22.6252 + 3.58348i 1.21634 + 0.192649i
\(347\) 33.7652i 1.81261i 0.422621 + 0.906307i \(0.361110\pi\)
−0.422621 + 0.906307i \(0.638890\pi\)
\(348\) −5.11507 1.66199i −0.274197 0.0890919i
\(349\) 6.34741i 0.339769i 0.985464 + 0.169885i \(0.0543395\pi\)
−0.985464 + 0.169885i \(0.945661\pi\)
\(350\) −0.835051 + 5.27230i −0.0446354 + 0.281817i
\(351\) 1.00000 0.0533761
\(352\) −21.2550 21.2550i −1.13290 1.13290i
\(353\) 32.1856 1.71307 0.856534 0.516090i \(-0.172613\pi\)
0.856534 + 0.516090i \(0.172613\pi\)
\(354\) −1.37134 + 8.65833i −0.0728861 + 0.460185i
\(355\) 4.10915i 0.218091i
\(356\) −21.7187 7.05684i −1.15109 0.374012i
\(357\) 12.1554i 0.643330i
\(358\) 1.71521 + 0.271662i 0.0906516 + 0.0143578i
\(359\) 22.9222 1.20979 0.604894 0.796306i \(-0.293216\pi\)
0.604894 + 0.796306i \(0.293216\pi\)
\(360\) −6.35114 3.23607i −0.334735 0.170556i
\(361\) −17.3570 −0.913524
\(362\) 9.78589 + 1.54993i 0.514335 + 0.0814626i
\(363\) 17.2360i 0.904653i
\(364\) 1.72654 5.31375i 0.0904954 0.278516i
\(365\) 13.0403i 0.682560i
\(366\) −1.60085 + 10.1074i −0.0836777 + 0.528320i
\(367\) −9.68093 −0.505340 −0.252670 0.967552i \(-0.581309\pi\)
−0.252670 + 0.967552i \(0.581309\pi\)
\(368\) 1.83860 + 1.33582i 0.0958436 + 0.0696344i
\(369\) −11.2093 −0.583533
\(370\) 5.35706 33.8232i 0.278500 1.75838i
\(371\) 22.5146i 1.16890i
\(372\) 1.17963 3.63052i 0.0611608 0.188234i
\(373\) 23.2975i 1.20630i −0.797628 0.603149i \(-0.793912\pi\)
0.797628 0.603149i \(-0.206088\pi\)
\(374\) 32.2953 + 5.11507i 1.66995 + 0.264494i
\(375\) 9.19566 0.474862
\(376\) −5.08070 + 9.97144i −0.262017 + 0.514238i
\(377\) 2.68915 0.138498
\(378\) −3.90211 0.618034i −0.200703 0.0317882i
\(379\) 9.48276i 0.487097i 0.969889 + 0.243548i \(0.0783114\pi\)
−0.969889 + 0.243548i \(0.921689\pi\)
\(380\) 28.9039 + 9.39144i 1.48274 + 0.481770i
\(381\) 19.4377i 0.995821i
\(382\) −3.17912 + 20.0722i −0.162658 + 1.02698i
\(383\) −5.68406 −0.290442 −0.145221 0.989399i \(-0.546389\pi\)
−0.145221 + 0.989399i \(0.546389\pi\)
\(384\) −5.13632 10.0806i −0.262112 0.514423i
\(385\) −37.4104 −1.90661
\(386\) −0.812768 + 5.13162i −0.0413688 + 0.261192i
\(387\) 9.48746i 0.482275i
\(388\) 19.4993 + 6.33571i 0.989927 + 0.321647i
\(389\) 1.79842i 0.0911834i 0.998960 + 0.0455917i \(0.0145173\pi\)
−0.998960 + 0.0455917i \(0.985483\pi\)
\(390\) 3.52015 + 0.557537i 0.178250 + 0.0282320i
\(391\) −2.47214 −0.125021
\(392\) −1.03269 + 2.02677i −0.0521587 + 0.102367i
\(393\) 12.7235 0.641817
\(394\) −9.61617 1.52305i −0.484456 0.0767302i
\(395\) 23.1209i 1.16334i
\(396\) 3.28408 10.1074i 0.165031 0.507914i
\(397\) 4.61064i 0.231402i 0.993284 + 0.115701i \(0.0369114\pi\)
−0.993284 + 0.115701i \(0.963089\pi\)
\(398\) 3.40590 21.5040i 0.170722 1.07790i
\(399\) 16.8445 0.843281
\(400\) −4.37238 3.17672i −0.218619 0.158836i
\(401\) −19.4701 −0.972290 −0.486145 0.873878i \(-0.661597\pi\)
−0.486145 + 0.873878i \(0.661597\pi\)
\(402\) 2.21888 14.0095i 0.110668 0.698729i
\(403\) 1.90868i 0.0950780i
\(404\) 1.86588 5.74258i 0.0928308 0.285704i
\(405\) 2.52015i 0.125227i
\(406\) −10.4934 1.66199i −0.520778 0.0824831i
\(407\) 51.0569 2.53080
\(408\) 10.9655 + 5.58721i 0.542874 + 0.276608i
\(409\) 34.5696 1.70936 0.854678 0.519159i \(-0.173755\pi\)
0.854678 + 0.519159i \(0.173755\pi\)
\(410\) −39.4584 6.24959i −1.94871 0.308645i
\(411\) 9.23054i 0.455309i
\(412\) −24.5740 7.98457i −1.21067 0.393371i
\(413\) 17.3167i 0.852097i
\(414\) −0.125695 + 0.793604i −0.00617755 + 0.0390035i
\(415\) 11.6216 0.570481
\(416\) 4.00000 + 4.00000i 0.196116 + 0.196116i
\(417\) 11.7507 0.575434
\(418\) −7.08831 + 44.7538i −0.346700 + 2.18898i
\(419\) 5.72235i 0.279555i 0.990183 + 0.139778i \(0.0446388\pi\)
−0.990183 + 0.139778i \(0.955361\pi\)
\(420\) −13.3914 4.35114i −0.653435 0.212314i
\(421\) 30.8897i 1.50547i 0.658322 + 0.752736i \(0.271266\pi\)
−0.658322 + 0.752736i \(0.728734\pi\)
\(422\) −2.19347 0.347411i −0.106776 0.0169117i
\(423\) −3.95669 −0.192381
\(424\) −20.3107 10.3488i −0.986376 0.502584i
\(425\) 5.87901 0.285174
\(426\) −2.27751 0.360723i −0.110346 0.0174771i
\(427\) 20.2147i 0.978258i
\(428\) −6.76974 + 20.8351i −0.327228 + 1.00710i
\(429\) 5.31375i 0.256550i
\(430\) 5.28960 33.3972i 0.255087 1.61056i
\(431\) 16.3709 0.788559 0.394279 0.918991i \(-0.370994\pi\)
0.394279 + 0.918991i \(0.370994\pi\)
\(432\) 2.35114 3.23607i 0.113119 0.155695i
\(433\) −9.17672 −0.441005 −0.220503 0.975386i \(-0.570770\pi\)
−0.220503 + 0.975386i \(0.570770\pi\)
\(434\) 1.17963 7.44788i 0.0566239 0.357509i
\(435\) 6.77706i 0.324935i
\(436\) −3.37019 + 10.3724i −0.161403 + 0.496747i
\(437\) 3.42581i 0.163879i
\(438\) −7.22764 1.14475i −0.345350 0.0546981i
\(439\) −19.1494 −0.913953 −0.456977 0.889479i \(-0.651068\pi\)
−0.456977 + 0.889479i \(0.651068\pi\)
\(440\) 17.1957 33.7484i 0.819771 1.60889i
\(441\) −0.804226 −0.0382965
\(442\) −6.07768 0.962611i −0.289086 0.0457867i
\(443\) 5.89817i 0.280230i −0.990135 0.140115i \(-0.955253\pi\)
0.990135 0.140115i \(-0.0447473\pi\)
\(444\) 18.2764 + 5.93835i 0.867358 + 0.281822i
\(445\) 28.7756i 1.36409i
\(446\) 6.11862 38.6314i 0.289725 1.82925i
\(447\) −17.6079 −0.832827
\(448\) −13.1363 18.0806i −0.620633 0.854227i
\(449\) −21.8310 −1.03027 −0.515134 0.857110i \(-0.672258\pi\)
−0.515134 + 0.857110i \(0.672258\pi\)
\(450\) 0.298915 1.88728i 0.0140910 0.0889671i
\(451\) 59.5634i 2.80473i
\(452\) 25.9323 + 8.42592i 1.21975 + 0.396322i
\(453\) 11.6250i 0.546190i
\(454\) 32.0475 + 5.07582i 1.50406 + 0.238220i
\(455\) 7.04029 0.330054
\(456\) −7.74258 + 15.1957i −0.362579 + 0.711602i
\(457\) 6.84244 0.320076 0.160038 0.987111i \(-0.448838\pi\)
0.160038 + 0.987111i \(0.448838\pi\)
\(458\) −32.8338 5.20036i −1.53422 0.242997i
\(459\) 4.35114i 0.203094i
\(460\) −0.884927 + 2.72353i −0.0412599 + 0.126985i
\(461\) 22.2688i 1.03716i −0.855029 0.518580i \(-0.826461\pi\)
0.855029 0.518580i \(-0.173539\pi\)
\(462\) 3.28408 20.7349i 0.152789 0.964673i
\(463\) 26.4021 1.22701 0.613504 0.789692i \(-0.289760\pi\)
0.613504 + 0.789692i \(0.289760\pi\)
\(464\) 6.32258 8.70228i 0.293518 0.403993i
\(465\) 4.81015 0.223065
\(466\) 0.768632 4.85295i 0.0356062 0.224809i
\(467\) 11.3035i 0.523065i −0.965195 0.261532i \(-0.915772\pi\)
0.965195 0.261532i \(-0.0842278\pi\)
\(468\) −0.618034 + 1.90211i −0.0285686 + 0.0879252i
\(469\) 28.0189i 1.29379i
\(470\) −13.9281 2.20600i −0.642457 0.101755i
\(471\) −13.4781 −0.621036
\(472\) −15.6216 7.95959i −0.719042 0.366370i
\(473\) 50.4140 2.31804
\(474\) 12.8148 + 2.02967i 0.588605 + 0.0932259i
\(475\) 8.14694i 0.373807i
\(476\) 23.1209 + 7.51243i 1.05974 + 0.344332i
\(477\) 8.05934i 0.369012i
\(478\) −2.56231 + 16.1778i −0.117197 + 0.739954i
\(479\) −40.4023 −1.84603 −0.923015 0.384764i \(-0.874283\pi\)
−0.923015 + 0.384764i \(0.874283\pi\)
\(480\) 10.0806 10.0806i 0.460114 0.460114i
\(481\) −9.60845 −0.438108
\(482\) 2.21360 13.9761i 0.100827 0.636596i
\(483\) 1.58721i 0.0722205i
\(484\) 32.7847 + 10.6524i 1.49022 + 0.484200i
\(485\) 25.8350i 1.17311i
\(486\) 1.39680 + 0.221232i 0.0633602 + 0.0100353i
\(487\) −36.4018 −1.64952 −0.824762 0.565480i \(-0.808691\pi\)
−0.824762 + 0.565480i \(0.808691\pi\)
\(488\) −18.2360 9.29168i −0.825503 0.420615i
\(489\) −9.79349 −0.442877
\(490\) −2.83099 0.448385i −0.127891 0.0202560i
\(491\) 3.76382i 0.169859i 0.996387 + 0.0849294i \(0.0270665\pi\)
−0.996387 + 0.0849294i \(0.972934\pi\)
\(492\) 6.92773 21.3214i 0.312326 0.961241i
\(493\) 11.7009i 0.526981i
\(494\) 1.33395 8.42226i 0.0600175 0.378935i
\(495\) 13.3914 0.601900
\(496\) 6.17661 + 4.48757i 0.277338 + 0.201498i
\(497\) −4.55503 −0.204321
\(498\) −1.02020 + 6.44131i −0.0457164 + 0.288642i
\(499\) 16.9348i 0.758107i −0.925375 0.379053i \(-0.876250\pi\)
0.925375 0.379053i \(-0.123750\pi\)
\(500\) −5.68323 + 17.4912i −0.254162 + 0.782230i
\(501\) 16.6054i 0.741876i
\(502\) 15.8848 + 2.51591i 0.708974 + 0.112290i
\(503\) −12.9809 −0.578792 −0.289396 0.957209i \(-0.593454\pi\)
−0.289396 + 0.957209i \(0.593454\pi\)
\(504\) 3.58721 7.04029i 0.159787 0.313600i
\(505\) 7.60845 0.338572
\(506\) −4.21702 0.667910i −0.187469 0.0296922i
\(507\) 1.00000i 0.0444116i
\(508\) −36.9726 12.0131i −1.64039 0.532996i
\(509\) 13.4857i 0.597741i 0.954294 + 0.298871i \(0.0966099\pi\)
−0.954294 + 0.298871i \(0.903390\pi\)
\(510\) −2.42592 + 15.3167i −0.107422 + 0.678233i
\(511\) −14.4553 −0.639464
\(512\) 22.3488 3.53971i 0.987688 0.156434i
\(513\) −6.02967 −0.266217
\(514\) 2.51121 15.8551i 0.110765 0.699340i
\(515\) 32.5585i 1.43470i
\(516\) 18.0462 + 5.86357i 0.794440 + 0.258129i
\(517\) 21.0249i 0.924672i
\(518\) 37.4933 + 5.93835i 1.64736 + 0.260916i
\(519\) −16.1979 −0.711007
\(520\) −3.23607 + 6.35114i −0.141911 + 0.278516i
\(521\) −35.4175 −1.55167 −0.775834 0.630937i \(-0.782670\pi\)
−0.775834 + 0.630937i \(0.782670\pi\)
\(522\) 3.75621 + 0.594926i 0.164405 + 0.0260392i
\(523\) 4.72122i 0.206445i −0.994658 0.103222i \(-0.967085\pi\)
0.994658 0.103222i \(-0.0329153\pi\)
\(524\) −7.86357 + 24.2016i −0.343522 + 1.05725i
\(525\) 3.77455i 0.164735i
\(526\) 0.859954 5.42954i 0.0374958 0.236739i
\(527\) −8.30493 −0.361768
\(528\) 17.1957 + 12.4934i 0.748345 + 0.543705i
\(529\) −22.6772 −0.985965
\(530\) 4.49338 28.3701i 0.195180 1.23232i
\(531\) 6.19868i 0.269000i
\(532\) −10.4105 + 32.0402i −0.451352 + 1.38912i
\(533\) 11.2093i 0.485529i
\(534\) 15.9490 + 2.52607i 0.690179 + 0.109314i
\(535\) −27.6049 −1.19346
\(536\) 25.2762 + 12.8789i 1.09177 + 0.556283i
\(537\) −1.22795 −0.0529901
\(538\) −35.2414 5.58168i −1.51936 0.240643i
\(539\) 4.27346i 0.184071i
\(540\) 4.79360 + 1.55754i 0.206284 + 0.0670257i
\(541\) 26.4200i 1.13589i 0.823068 + 0.567943i \(0.192261\pi\)
−0.823068 + 0.567943i \(0.807739\pi\)
\(542\) −0.643007 + 4.05979i −0.0276195 + 0.174383i
\(543\) −7.00592 −0.300653
\(544\) −17.4046 + 17.4046i −0.746215 + 0.746215i
\(545\) −13.7426 −0.588667
\(546\) −0.618034 + 3.90211i −0.0264494 + 0.166995i
\(547\) 26.9939i 1.15417i 0.816683 + 0.577087i \(0.195811\pi\)
−0.816683 + 0.577087i \(0.804189\pi\)
\(548\) 17.5575 + 5.70479i 0.750021 + 0.243697i
\(549\) 7.23607i 0.308828i
\(550\) 10.0285 + 1.58836i 0.427618 + 0.0677280i
\(551\) −16.2147 −0.690770
\(552\) −1.43184 0.729560i −0.0609432 0.0310521i
\(553\) 25.6297 1.08989
\(554\) −5.96190 0.944272i −0.253297 0.0401183i
\(555\) 24.2147i 1.02786i
\(556\) −7.26233 + 22.3511i −0.307991 + 0.947900i
\(557\) 24.7636i 1.04927i 0.851329 + 0.524633i \(0.175797\pi\)
−0.851329 + 0.524633i \(0.824203\pi\)
\(558\) −0.422260 + 2.66605i −0.0178757 + 0.112863i
\(559\) −9.48746 −0.401277
\(560\) 16.5527 22.7829i 0.699480 0.962752i
\(561\) −23.1209 −0.976164
\(562\) −4.20119 + 26.5252i −0.177216 + 1.11890i
\(563\) 19.7426i 0.832050i 0.909353 + 0.416025i \(0.136577\pi\)
−0.909353 + 0.416025i \(0.863423\pi\)
\(564\) 2.44537 7.52607i 0.102969 0.316905i
\(565\) 34.3582i 1.44546i
\(566\) −18.4317 2.91930i −0.774743 0.122707i
\(567\) 2.79360 0.117320
\(568\) 2.09372 4.10915i 0.0878504 0.172416i
\(569\) 2.17684 0.0912577 0.0456289 0.998958i \(-0.485471\pi\)
0.0456289 + 0.998958i \(0.485471\pi\)
\(570\) −21.2253 3.36176i −0.889031 0.140809i
\(571\) 4.05934i 0.169878i 0.996386 + 0.0849391i \(0.0270696\pi\)
−0.996386 + 0.0849391i \(0.972930\pi\)
\(572\) −10.1074 3.28408i −0.422610 0.137314i
\(573\) 14.3701i 0.600319i
\(574\) 6.92773 43.7400i 0.289158 1.82567i
\(575\) −0.767662 −0.0320137
\(576\) 4.70228 + 6.47214i 0.195928 + 0.269672i
\(577\) −27.5489 −1.14687 −0.573437 0.819249i \(-0.694390\pi\)
−0.573437 + 0.819249i \(0.694390\pi\)
\(578\) 0.427514 2.69922i 0.0177823 0.112273i
\(579\) 3.67383i 0.152679i
\(580\) 12.8907 + 4.18845i 0.535259 + 0.173916i
\(581\) 12.8826i 0.534461i
\(582\) −14.3192 2.26793i −0.593548 0.0940088i
\(583\) 42.8254 1.77365
\(584\) 6.64436 13.0403i 0.274946 0.539611i
\(585\) −2.52015 −0.104195
\(586\) −16.8985 2.67645i −0.698069 0.110563i
\(587\) 14.3268i 0.591329i 0.955292 + 0.295664i \(0.0955410\pi\)
−0.955292 + 0.295664i \(0.904459\pi\)
\(588\) 0.497039 1.52973i 0.0204975 0.0630850i
\(589\) 11.5087i 0.474208i
\(590\) 3.45599 21.8203i 0.142281 0.898326i
\(591\) 6.88442 0.283187
\(592\) −22.5908 + 31.0936i −0.928477 + 1.27794i
\(593\) 27.6050 1.13360 0.566801 0.823855i \(-0.308181\pi\)
0.566801 + 0.823855i \(0.308181\pi\)
\(594\) −1.17557 + 7.42226i −0.0482342 + 0.304539i
\(595\) 30.6333i 1.25584i
\(596\) 10.8823 33.4923i 0.445757 1.37190i
\(597\) 15.3952i 0.630082i
\(598\) 0.793604 + 0.125695i 0.0324529 + 0.00514003i
\(599\) −18.5204 −0.756724 −0.378362 0.925658i \(-0.623513\pi\)
−0.378362 + 0.925658i \(0.623513\pi\)
\(600\) 3.40507 + 1.73497i 0.139012 + 0.0708299i
\(601\) 35.1640 1.43437 0.717185 0.696883i \(-0.245430\pi\)
0.717185 + 0.696883i \(0.245430\pi\)
\(602\) 37.0211 + 5.86357i 1.50887 + 0.238981i
\(603\) 10.0297i 0.408440i
\(604\) 22.1121 + 7.18464i 0.899727 + 0.292339i
\(605\) 43.4371i 1.76597i
\(606\) −0.667910 + 4.21702i −0.0271320 + 0.171305i
\(607\) −35.5432 −1.44265 −0.721327 0.692594i \(-0.756468\pi\)
−0.721327 + 0.692594i \(0.756468\pi\)
\(608\) −24.1187 24.1187i −0.978142 0.978142i
\(609\) 7.51243 0.304419
\(610\) 4.03437 25.4720i 0.163347 1.03133i
\(611\) 3.95669i 0.160070i
\(612\) −8.27636 2.68915i −0.334552 0.108703i
\(613\) 37.3356i 1.50797i 0.656891 + 0.753985i \(0.271871\pi\)
−0.656891 + 0.753985i \(0.728129\pi\)
\(614\) −34.6215 5.48351i −1.39721 0.221297i
\(615\) 28.2491 1.13911
\(616\) 37.4104 + 19.0615i 1.50731 + 0.768011i
\(617\) 20.1630 0.811731 0.405865 0.913933i \(-0.366970\pi\)
0.405865 + 0.913933i \(0.366970\pi\)
\(618\) 18.0457 + 2.85816i 0.725905 + 0.114972i
\(619\) 15.1066i 0.607187i −0.952802 0.303594i \(-0.901813\pi\)
0.952802 0.303594i \(-0.0981865\pi\)
\(620\) −2.97283 + 9.14945i −0.119392 + 0.367451i
\(621\) 0.568158i 0.0227994i
\(622\) −1.48879 + 9.39986i −0.0596951 + 0.376900i
\(623\) 31.8979 1.27796
\(624\) −3.23607 2.35114i −0.129546 0.0941210i
\(625\) −29.9301 −1.19720
\(626\) 2.54319 16.0570i 0.101646 0.641768i
\(627\) 32.0402i 1.27956i
\(628\) 8.32990 25.6368i 0.332399 1.02302i
\(629\) 41.8077i 1.66698i
\(630\) 9.83390 + 1.55754i 0.391792 + 0.0620537i
\(631\) 0.390213 0.0155341 0.00776706 0.999970i \(-0.497528\pi\)
0.00776706 + 0.999970i \(0.497528\pi\)
\(632\) −11.7807 + 23.1209i −0.468610 + 0.919699i
\(633\) 1.57035 0.0624158
\(634\) 4.00541 + 0.634395i 0.159075 + 0.0251950i
\(635\) 48.9857i 1.94394i
\(636\) 15.3298 + 4.98095i 0.607866 + 0.197507i
\(637\) 0.804226i 0.0318646i
\(638\) −3.16129 + 19.9596i −0.125157 + 0.790208i
\(639\) 1.63052 0.0645024
\(640\) 12.9443 + 25.4046i 0.511667 + 1.00420i
\(641\) −36.5386 −1.44319 −0.721593 0.692317i \(-0.756590\pi\)
−0.721593 + 0.692317i \(0.756590\pi\)
\(642\) 2.42330 15.3001i 0.0956400 0.603847i
\(643\) 29.1064i 1.14785i −0.818910 0.573923i \(-0.805421\pi\)
0.818910 0.573923i \(-0.194579\pi\)
\(644\) −3.01905 0.980949i −0.118967 0.0386548i
\(645\) 23.9098i 0.941447i
\(646\) 36.6464 + 5.80423i 1.44183 + 0.228364i
\(647\) −15.1906 −0.597206 −0.298603 0.954377i \(-0.596521\pi\)
−0.298603 + 0.954377i \(0.596521\pi\)
\(648\) −1.28408 + 2.52015i −0.0504434 + 0.0990007i
\(649\) 32.9382 1.29294
\(650\) −1.88728 0.298915i −0.0740251 0.0117244i
\(651\) 5.33209i 0.208981i
\(652\) 6.05271 18.6283i 0.237042 0.729542i
\(653\) 15.9205i 0.623016i 0.950243 + 0.311508i \(0.100834\pi\)
−0.950243 + 0.311508i \(0.899166\pi\)
\(654\) 1.20640 7.61688i 0.0471738 0.297844i
\(655\) −32.0652 −1.25289
\(656\) 36.2741 + 26.3546i 1.41626 + 1.02898i
\(657\) 5.17442 0.201873
\(658\) 2.44537 15.4394i 0.0953304 0.601892i
\(659\) 7.56597i 0.294728i 0.989082 + 0.147364i \(0.0470789\pi\)
−0.989082 + 0.147364i \(0.952921\pi\)
\(660\) −8.27636 + 25.4720i −0.322157 + 0.991497i
\(661\) 32.0806i 1.24779i −0.781508 0.623895i \(-0.785549\pi\)
0.781508 0.623895i \(-0.214451\pi\)
\(662\) −2.02490 0.320713i −0.0787001 0.0124649i
\(663\) 4.35114 0.168984
\(664\) −11.6216 5.92149i −0.451005 0.229798i
\(665\) −42.4507 −1.64617
\(666\) −13.4211 2.12569i −0.520057 0.0823690i
\(667\) 1.52786i 0.0591591i
\(668\) 31.5854 + 10.2627i 1.22208 + 0.397077i
\(669\) 27.6571i 1.06928i
\(670\) −5.59191 + 35.3059i −0.216034 + 1.36399i
\(671\) 38.4507 1.48437
\(672\) 11.1744 + 11.1744i 0.431063 + 0.431063i
\(673\) 19.0592 0.734679 0.367340 0.930087i \(-0.380269\pi\)
0.367340 + 0.930087i \(0.380269\pi\)
\(674\) −5.01697 + 31.6759i −0.193247 + 1.22011i
\(675\) 1.35114i 0.0520054i
\(676\) 1.90211 + 0.618034i 0.0731582 + 0.0237705i
\(677\) 4.40095i 0.169142i −0.996417 0.0845711i \(-0.973048\pi\)
0.996417 0.0845711i \(-0.0269520\pi\)
\(678\) −19.0432 3.01615i −0.731350 0.115834i
\(679\) −28.6383 −1.09904
\(680\) −27.6347 14.0806i −1.05974 0.539966i
\(681\) −22.9434 −0.879195
\(682\) −14.1667 2.24379i −0.542471 0.0859190i
\(683\) 33.8071i 1.29359i −0.762662 0.646797i \(-0.776108\pi\)
0.762662 0.646797i \(-0.223892\pi\)
\(684\) 3.72654 11.4691i 0.142488 0.438533i
\(685\) 23.2623i 0.888808i
\(686\) −3.82920 + 24.1766i −0.146199 + 0.923067i
\(687\) 23.5064 0.896825
\(688\) −22.3063 + 30.7021i −0.850422 + 1.17050i
\(689\) −8.05934 −0.307037
\(690\) 0.316769 2.00000i 0.0120592 0.0761387i
\(691\) 12.4856i 0.474974i −0.971391 0.237487i \(-0.923676\pi\)
0.971391 0.237487i \(-0.0763237\pi\)
\(692\) 10.0108 30.8101i 0.380554 1.17123i
\(693\) 14.8445i 0.563897i
\(694\) 47.1634 + 7.46994i 1.79030 + 0.283555i
\(695\) −29.6135 −1.12330
\(696\) −3.45309 + 6.77706i −0.130889 + 0.256884i
\(697\) −48.7732 −1.84742
\(698\) 8.86608 + 1.40425i 0.335586 + 0.0531516i
\(699\) 3.47433i 0.131411i
\(700\) 7.17963 + 2.33280i 0.271364 + 0.0881716i
\(701\) 34.2016i 1.29178i 0.763432 + 0.645888i \(0.223513\pi\)
−0.763432 + 0.645888i \(0.776487\pi\)
\(702\) 0.221232 1.39680i 0.00834985 0.0527189i
\(703\) 57.9358 2.18509
\(704\) −34.3913 + 24.9868i −1.29617 + 0.941724i
\(705\) 9.97144 0.375546
\(706\) 7.12048 44.9570i 0.267983 1.69198i
\(707\) 8.43403i 0.317195i
\(708\) 11.7906 + 3.83099i 0.443117 + 0.143978i
\(709\) 41.6463i 1.56406i 0.623240 + 0.782030i \(0.285816\pi\)
−0.623240 + 0.782030i \(0.714184\pi\)
\(710\) 5.73967 + 0.909075i 0.215406 + 0.0341170i
\(711\) −9.17442 −0.344068
\(712\) −14.6619 + 28.7756i −0.549477 + 1.07841i
\(713\) 1.08443 0.0406122
\(714\) −16.9786 2.68915i −0.635410 0.100639i
\(715\) 13.3914i 0.500811i
\(716\) 0.758917 2.33571i 0.0283621 0.0872895i
\(717\) 11.5820i 0.432538i
\(718\) 5.07112 32.0178i 0.189252 1.19489i
\(719\) 33.0401 1.23219 0.616093 0.787673i \(-0.288714\pi\)
0.616093 + 0.787673i \(0.288714\pi\)
\(720\) −5.92522 + 8.15537i −0.220820 + 0.303933i
\(721\) 36.0914 1.34411
\(722\) −3.83991 + 24.2442i −0.142907 + 0.902277i
\(723\) 10.0058i 0.372120i
\(724\) 4.32990 13.3261i 0.160919 0.495259i
\(725\) 3.63342i 0.134942i
\(726\) −24.0752 3.81314i −0.893515 0.141519i
\(727\) −7.80551 −0.289490 −0.144745 0.989469i \(-0.546236\pi\)
−0.144745 + 0.989469i \(0.546236\pi\)
\(728\) −7.04029 3.58721i −0.260931 0.132951i
\(729\) −1.00000 −0.0370370
\(730\) 18.2147 + 2.88493i 0.674157 + 0.106776i
\(731\) 41.2813i 1.52684i
\(732\) 13.7638 + 4.47214i 0.508725 + 0.165295i
\(733\) 29.3035i 1.08235i −0.840910 0.541175i \(-0.817980\pi\)
0.840910 0.541175i \(-0.182020\pi\)
\(734\) −2.14173 + 13.5223i −0.0790526 + 0.499119i
\(735\) 2.02677 0.0747585
\(736\) 2.27263 2.27263i 0.0837703 0.0837703i
\(737\) −53.2952 −1.96315
\(738\) −2.47985 + 15.6572i −0.0912846 + 0.576349i
\(739\) 42.2408i 1.55385i 0.629591 + 0.776926i \(0.283222\pi\)
−0.629591 + 0.776926i \(0.716778\pi\)
\(740\) −46.0591 14.9655i −1.69317 0.550143i
\(741\) 6.02967i 0.221506i
\(742\) 31.4485 + 4.98095i 1.15451 + 0.182856i
\(743\) 19.3835 0.711112 0.355556 0.934655i \(-0.384291\pi\)
0.355556 + 0.934655i \(0.384291\pi\)
\(744\) −4.81015 2.45089i −0.176349 0.0898541i
\(745\) 44.3746 1.62576
\(746\) −32.5420 5.15414i −1.19145 0.188707i
\(747\) 4.61147i 0.168725i
\(748\) 14.2895 43.9785i 0.522476 1.60801i
\(749\) 30.6002i 1.11811i
\(750\) 2.03437 12.8445i 0.0742848 0.469016i
\(751\) 9.06886 0.330927 0.165464 0.986216i \(-0.447088\pi\)
0.165464 + 0.986216i \(0.447088\pi\)
\(752\) 12.8041 + 9.30273i 0.466918 + 0.339236i
\(753\) −11.3723 −0.414429
\(754\) 0.594926 3.75621i 0.0216659 0.136793i
\(755\) 29.2967i 1.06622i
\(756\) −1.72654 + 5.31375i −0.0627937 + 0.193259i
\(757\) 6.34174i 0.230495i −0.993337 0.115247i \(-0.963234\pi\)
0.993337 0.115247i \(-0.0367660\pi\)
\(758\) 13.2455 + 2.09789i 0.481100 + 0.0761987i
\(759\) 3.01905 0.109585
\(760\) 19.5124 38.2953i 0.707790 1.38912i
\(761\) 19.1133 0.692856 0.346428 0.938077i \(-0.387395\pi\)
0.346428 + 0.938077i \(0.387395\pi\)
\(762\) 27.1506 + 4.30023i 0.983561 + 0.155781i
\(763\) 15.2338i 0.551499i
\(764\) 27.3335 + 8.88120i 0.988892 + 0.321310i
\(765\) 10.9655i 0.396459i
\(766\) −1.25749 + 7.93950i −0.0454351 + 0.286866i
\(767\) −6.19868 −0.223821
\(768\) −15.2169 + 4.94427i −0.549093 + 0.178411i
\(769\) −5.22795 −0.188525 −0.0942624 0.995547i \(-0.530049\pi\)
−0.0942624 + 0.995547i \(0.530049\pi\)
\(770\) −8.27636 + 52.2549i −0.298259 + 1.88314i
\(771\) 11.3510i 0.408797i
\(772\) 6.98804 + 2.27055i 0.251505 + 0.0817190i
\(773\) 32.5414i 1.17043i 0.810877 + 0.585216i \(0.198990\pi\)
−0.810877 + 0.585216i \(0.801010\pi\)
\(774\) −13.2521 2.09893i −0.476337 0.0754444i
\(775\) −2.57889 −0.0926366
\(776\) 13.1636 25.8350i 0.472545 0.927423i
\(777\) −26.8422 −0.962959
\(778\) 2.51203 + 0.397867i 0.0900607 + 0.0142642i
\(779\) 67.5884i 2.42161i
\(780\) 1.55754 4.79360i 0.0557688 0.171639i
\(781\) 8.66418i 0.310029i
\(782\) −0.546915 + 3.45309i −0.0195576 + 0.123482i
\(783\) −2.68915 −0.0961025
\(784\) 2.60253 + 1.89085i 0.0929475 + 0.0675303i
\(785\) 33.9667 1.21232
\(786\) 2.81485 17.7722i 0.100402 0.633915i
\(787\) 8.62409i 0.307416i −0.988116 0.153708i \(-0.950879\pi\)
0.988116 0.153708i \(-0.0491214\pi\)
\(788\) −4.25480 + 13.0949i −0.151571 + 0.466488i
\(789\) 3.88712i 0.138385i
\(790\) −32.2953 5.11507i −1.14902 0.181986i
\(791\) −38.0864 −1.35420
\(792\) −13.3914 6.82328i −0.475844 0.242455i
\(793\) −7.23607 −0.256960
\(794\) 6.44016 + 1.02002i 0.228553 + 0.0361992i
\(795\) 20.3107i 0.720348i
\(796\) −29.2833 9.51474i −1.03792 0.337241i
\(797\) 27.6486i 0.979365i −0.871901 0.489682i \(-0.837113\pi\)
0.871901 0.489682i \(-0.162887\pi\)
\(798\) 3.72654 23.5285i 0.131918 0.832899i
\(799\) −17.2161 −0.609062
\(800\) −5.40456 + 5.40456i −0.191080 + 0.191080i
\(801\) −11.4182 −0.403442
\(802\) −4.30740 + 27.1959i −0.152100 + 0.960319i
\(803\) 27.4956i 0.970298i
\(804\) −19.0776 6.19868i −0.672814 0.218611i
\(805\) 4.00000i 0.140981i
\(806\) 2.66605 + 0.422260i 0.0939074 + 0.0148735i
\(807\) 25.2300 0.888139
\(808\) −7.60845 3.87670i −0.267664 0.136382i
\(809\) −24.4163 −0.858431 −0.429216 0.903202i \(-0.641210\pi\)
−0.429216 + 0.903202i \(0.641210\pi\)
\(810\) −3.52015 0.557537i −0.123685 0.0195898i
\(811\) 9.54312i 0.335104i 0.985863 + 0.167552i \(0.0535863\pi\)
−0.985863 + 0.167552i \(0.946414\pi\)
\(812\) −4.64294 + 14.2895i −0.162935 + 0.501463i
\(813\) 2.90649i 0.101935i
\(814\) 11.2954 71.3164i 0.395904 2.49964i
\(815\) 24.6810 0.864539
\(816\) 10.2301 14.0806i 0.358127 0.492919i
\(817\) 57.2063 2.00139
\(818\) 7.64789 48.2869i 0.267402 1.68831i
\(819\) 2.79360i 0.0976164i
\(820\) −17.4589 + 53.7330i −0.609691 + 1.87644i
\(821\) 2.26876i 0.0791802i −0.999216 0.0395901i \(-0.987395\pi\)
0.999216 0.0395901i \(-0.0126052\pi\)
\(822\) −12.8932 2.04209i −0.449704 0.0712260i
\(823\) −14.4047 −0.502115 −0.251058 0.967972i \(-0.580778\pi\)
−0.251058 + 0.967972i \(0.580778\pi\)
\(824\) −16.5894 + 32.5585i −0.577919 + 1.13423i
\(825\) −7.17963 −0.249963
\(826\) 24.1879 + 3.83099i 0.841606 + 0.133297i
\(827\) 15.2993i 0.532010i −0.963972 0.266005i \(-0.914296\pi\)
0.963972 0.266005i \(-0.0857038\pi\)
\(828\) 1.08070 + 0.351141i 0.0375570 + 0.0122030i
\(829\) 21.5350i 0.747940i 0.927441 + 0.373970i \(0.122004\pi\)
−0.927441 + 0.373970i \(0.877996\pi\)
\(830\) 2.57106 16.2331i 0.0892429 0.563457i
\(831\) 4.26825 0.148064
\(832\) 6.47214 4.70228i 0.224381 0.163022i
\(833\) −3.49930 −0.121244
\(834\) 2.59963 16.4134i 0.0900177 0.568349i
\(835\) 41.8481i 1.44821i
\(836\) 60.9440 + 19.8019i 2.10779 + 0.684864i
\(837\) 1.90868i 0.0659735i
\(838\) 7.99300 + 1.26597i 0.276113 + 0.0437321i
\(839\) 47.6245 1.64418 0.822090 0.569358i \(-0.192808\pi\)
0.822090 + 0.569358i \(0.192808\pi\)
\(840\) −9.04029 + 17.7426i −0.311920 + 0.612177i
\(841\) 21.7685 0.750636
\(842\) 43.1468 + 6.83379i 1.48694 + 0.235508i
\(843\) 18.9900i 0.654050i
\(844\) −0.970530 + 2.98698i −0.0334070 + 0.102816i
\(845\) 2.52015i 0.0866957i
\(846\) −0.875345 + 5.52671i −0.0300950 + 0.190012i
\(847\) −48.1504 −1.65447
\(848\) −18.9487 + 26.0806i −0.650700 + 0.895611i
\(849\) 13.1957 0.452874
\(850\) 1.30062 8.21181i 0.0446110 0.281663i
\(851\) 5.45912i 0.187136i
\(852\) −1.00772 + 3.10143i −0.0345238 + 0.106253i
\(853\) 15.3358i 0.525088i 0.964920 + 0.262544i \(0.0845616\pi\)
−0.964920 + 0.262544i \(0.915438\pi\)
\(854\) 28.2360 + 4.47214i 0.966214 + 0.153033i
\(855\) 15.1957 0.519681
\(856\) 27.6049 + 14.0654i 0.943515 + 0.480745i
\(857\) 15.0828 0.515218 0.257609 0.966249i \(-0.417065\pi\)
0.257609 + 0.966249i \(0.417065\pi\)
\(858\) 7.42226 + 1.17557i 0.253392 + 0.0401333i
\(859\) 15.0249i 0.512642i −0.966592 0.256321i \(-0.917490\pi\)
0.966592 0.256321i \(-0.0825104\pi\)
\(860\) −45.4791 14.7771i −1.55083 0.503894i
\(861\) 31.3144i 1.06719i
\(862\) 3.62176 22.8669i 0.123358 0.778850i
\(863\) −1.32919 −0.0452460 −0.0226230 0.999744i \(-0.507202\pi\)
−0.0226230 + 0.999744i \(0.507202\pi\)
\(864\) −4.00000 4.00000i −0.136083 0.136083i
\(865\) 40.8210 1.38795
\(866\) −2.03018 + 12.8181i −0.0689884 + 0.435576i
\(867\) 1.93243i 0.0656287i
\(868\) −10.1422 3.29541i −0.344250 0.111854i
\(869\) 48.7506i 1.65375i
\(870\) −9.46621 1.49930i −0.320935 0.0508311i
\(871\) 10.0297 0.339842
\(872\) 13.7426 + 7.00219i 0.465382 + 0.237124i
\(873\) 10.2514 0.346957
\(874\) −4.78518 0.757897i −0.161861 0.0256363i
\(875\) 25.6890i 0.868448i
\(876\) −3.19797 + 9.84233i −0.108049 + 0.332541i
\(877\) 44.4244i 1.50011i −0.661378 0.750053i \(-0.730028\pi\)
0.661378 0.750053i \(-0.269972\pi\)
\(878\) −4.23647 + 26.7480i −0.142974 + 0.902701i
\(879\) 12.0980 0.408054
\(880\) −43.3356 31.4852i −1.46084 1.06136i
\(881\) −36.5136 −1.23017 −0.615087 0.788459i \(-0.710879\pi\)
−0.615087 + 0.788459i \(0.710879\pi\)
\(882\) −0.177920 + 1.12334i −0.00599089 + 0.0378250i
\(883\) 6.77808i 0.228101i −0.993475 0.114050i \(-0.963617\pi\)
0.993475 0.114050i \(-0.0363825\pi\)
\(884\) −2.68915 + 8.27636i −0.0904460 + 0.278364i
\(885\) 15.6216i 0.525114i
\(886\) −8.23858 1.30486i −0.276780 0.0438377i
\(887\) −48.6502 −1.63351 −0.816756 0.576983i \(-0.804230\pi\)
−0.816756 + 0.576983i \(0.804230\pi\)
\(888\) 12.3380 24.2147i 0.414037 0.812593i
\(889\) 54.3011 1.82120
\(890\) −40.1938 6.36607i −1.34730 0.213391i
\(891\) 5.31375i 0.178017i
\(892\) −52.6069 17.0930i −1.76141 0.572316i
\(893\) 23.8575i 0.798362i
\(894\) −3.89544 + 24.5948i −0.130283 + 0.822574i
\(895\) 3.09462 0.103442
\(896\) −28.1612 + 14.3488i −0.940799 + 0.479361i
\(897\) −0.568158 −0.0189702
\(898\) −4.82971 + 30.4936i −0.161169 + 1.01758i
\(899\) 5.13273i 0.171186i
\(900\) −2.57002 0.835051i −0.0856674 0.0278350i
\(901\) 35.0673i 1.16826i
\(902\) −83.1983 13.1773i −2.77020 0.438757i
\(903\) −26.5042 −0.882005
\(904\) 17.5064 34.3582i 0.582254 1.14274i
\(905\) 17.6560 0.586904
\(906\) −16.2378 2.57182i −0.539465 0.0854429i
\(907\) 36.5196i 1.21261i 0.795230 + 0.606307i \(0.207350\pi\)
−0.795230 + 0.606307i \(0.792650\pi\)
\(908\) 14.1798 43.6410i 0.470574 1.44828i
\(909\) 3.01905i 0.100136i
\(910\) 1.55754 9.83390i 0.0516318 0.325991i
\(911\) −23.9142 −0.792312 −0.396156 0.918183i \(-0.629656\pi\)
−0.396156 + 0.918183i \(0.629656\pi\)
\(912\) 19.5124 + 14.1766i 0.646121 + 0.469434i
\(913\) 24.5042 0.810971
\(914\) 1.51377 9.55754i 0.0500709 0.316135i
\(915\) 18.2360i 0.602862i
\(916\) −14.5278 + 44.7118i −0.480010 + 1.47732i
\(917\) 35.5445i 1.17378i
\(918\) 6.07768 + 0.962611i 0.200593 + 0.0317709i
\(919\) 18.4982 0.610198 0.305099 0.952321i \(-0.401310\pi\)
0.305099 + 0.952321i \(0.401310\pi\)
\(920\) 3.60845 + 1.83860i 0.118967 + 0.0606168i
\(921\) 24.7863 0.816736
\(922\) −31.1051 4.92656i −1.02439 0.162247i
\(923\) 1.63052i 0.0536692i
\(924\) −28.2360 9.17442i −0.928895 0.301816i
\(925\) 12.9824i 0.426858i
\(926\) 5.84097 36.8785i 0.191946 1.21190i
\(927\) −12.9193 −0.424325
\(928\) −10.7566 10.7566i −0.353103 0.353103i
\(929\) 31.5521 1.03519 0.517595 0.855625i \(-0.326827\pi\)
0.517595 + 0.855625i \(0.326827\pi\)
\(930\) 1.06416 6.71883i 0.0348951 0.220319i
\(931\) 4.84922i 0.158927i
\(932\) −6.60856 2.14725i −0.216471 0.0703356i
\(933\) 6.72956i 0.220316i
\(934\) −15.7888 2.50070i −0.516625 0.0818254i
\(935\) 58.2680 1.90557
\(936\) 2.52015 + 1.28408i 0.0823736 + 0.0419714i
\(937\) −5.54201 −0.181050 −0.0905248 0.995894i \(-0.528854\pi\)
−0.0905248 + 0.995894i \(0.528854\pi\)
\(938\) −39.1369 6.19868i −1.27787 0.202394i
\(939\) 11.4956i 0.375144i
\(940\) −6.16269 + 18.9668i −0.201005 + 0.618629i
\(941\) 9.62480i 0.313760i 0.987618 + 0.156880i \(0.0501435\pi\)
−0.987618 + 0.156880i \(0.949856\pi\)
\(942\) −2.98177 + 18.8262i −0.0971515 + 0.613390i
\(943\) 6.36865 0.207392
\(944\) −14.5740 + 20.0593i −0.474342 + 0.652876i
\(945\) −7.04029 −0.229021
\(946\) 11.1532 70.4184i 0.362621 2.28950i
\(947\) 31.1231i 1.01137i 0.862719 + 0.505683i \(0.168759\pi\)
−0.862719 + 0.505683i \(0.831241\pi\)
\(948\) 5.67010 17.4508i 0.184156 0.566775i
\(949\) 5.17442i 0.167969i
\(950\) 11.3797 + 1.80236i 0.369205 + 0.0584763i
\(951\) −2.86756 −0.0929870
\(952\) 15.6085 30.6333i 0.505873 0.992831i
\(953\) −17.0359 −0.551847 −0.275924 0.961180i \(-0.588984\pi\)
−0.275924 + 0.961180i \(0.588984\pi\)
\(954\) −11.2573 1.78298i −0.364469 0.0577262i
\(955\) 36.2147i 1.17188i
\(956\) 22.0303 + 7.15807i 0.712510 + 0.231509i
\(957\) 14.2895i 0.461914i
\(958\) −8.93828 + 56.4341i −0.288783 + 1.82330i
\(959\) −25.7865 −0.832689
\(960\) −11.8504 16.3107i −0.382471 0.526427i
\(961\) −27.3570 −0.882482
\(962\) −2.12569 + 13.4211i −0.0685351 + 0.432714i
\(963\) 10.9537i 0.352977i
\(964\) −19.0322 6.18393i −0.612985 0.199171i
\(965\) 9.25860i 0.298045i
\(966\) 2.21702 + 0.351141i 0.0713314 + 0.0112978i
\(967\) 7.56565 0.243295 0.121647 0.992573i \(-0.461182\pi\)
0.121647 + 0.992573i \(0.461182\pi\)
\(968\) 22.1323 43.4371i 0.711360 1.39612i
\(969\) −26.2360 −0.842820
\(970\) 36.0864 + 5.71552i 1.15866 + 0.183514i
\(971\) 25.0676i 0.804457i −0.915539 0.402228i \(-0.868236\pi\)
0.915539 0.402228i \(-0.131764\pi\)
\(972\) 0.618034 1.90211i 0.0198234 0.0610103i
\(973\) 32.8268i 1.05238i
\(974\) −8.05324 + 50.8462i −0.258042 + 1.62922i
\(975\) 1.35114 0.0432711
\(976\) −17.0130 + 23.4164i −0.544573 + 0.749541i
\(977\) −37.9292 −1.21346 −0.606732 0.794907i \(-0.707520\pi\)
−0.606732 + 0.794907i \(0.707520\pi\)
\(978\) −2.16663 + 13.6796i −0.0692812 + 0.437424i
\(979\) 60.6735i 1.93913i
\(980\) −1.25261 + 3.85514i −0.0400132 + 0.123148i
\(981\) 5.45309i 0.174104i
\(982\) 5.25731 + 0.832676i 0.167768 + 0.0265718i
\(983\) −10.3543 −0.330250 −0.165125 0.986273i \(-0.552803\pi\)
−0.165125 + 0.986273i \(0.552803\pi\)
\(984\) −28.2491 14.3936i −0.900548 0.458852i
\(985\) −17.3497 −0.552809
\(986\) 16.3438 + 2.58861i 0.520493 + 0.0824380i
\(987\) 11.0534i 0.351834i
\(988\) −11.4691 3.72654i −0.364881 0.118557i
\(989\) 5.39038i 0.171404i
\(990\) 2.96261 18.7052i 0.0941579 0.594490i
\(991\) −45.2348 −1.43693 −0.718466 0.695562i \(-0.755155\pi\)
−0.718466 + 0.695562i \(0.755155\pi\)
\(992\) 7.63471 7.63471i 0.242402 0.242402i
\(993\) 1.44967 0.0460039
\(994\) −1.00772 + 6.36247i −0.0319628 + 0.201805i
\(995\) 38.7981i 1.22998i
\(996\) 8.77154 + 2.85004i 0.277937 + 0.0903071i
\(997\) 24.7402i 0.783529i 0.920066 + 0.391764i \(0.128135\pi\)
−0.920066 + 0.391764i \(0.871865\pi\)
\(998\) −23.6546 3.74652i −0.748773 0.118594i
\(999\) 9.60845 0.303998
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.2.g.a.157.3 8
3.2 odd 2 936.2.g.d.469.6 8
4.3 odd 2 1248.2.g.a.625.1 8
8.3 odd 2 1248.2.g.a.625.8 8
8.5 even 2 inner 312.2.g.a.157.4 yes 8
12.11 even 2 3744.2.g.d.1873.7 8
16.3 odd 4 9984.2.a.bh.1.1 4
16.5 even 4 9984.2.a.bb.1.4 4
16.11 odd 4 9984.2.a.s.1.4 4
16.13 even 4 9984.2.a.y.1.1 4
24.5 odd 2 936.2.g.d.469.5 8
24.11 even 2 3744.2.g.d.1873.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.g.a.157.3 8 1.1 even 1 trivial
312.2.g.a.157.4 yes 8 8.5 even 2 inner
936.2.g.d.469.5 8 24.5 odd 2
936.2.g.d.469.6 8 3.2 odd 2
1248.2.g.a.625.1 8 4.3 odd 2
1248.2.g.a.625.8 8 8.3 odd 2
3744.2.g.d.1873.2 8 24.11 even 2
3744.2.g.d.1873.7 8 12.11 even 2
9984.2.a.s.1.4 4 16.11 odd 4
9984.2.a.y.1.1 4 16.13 even 4
9984.2.a.bb.1.4 4 16.5 even 4
9984.2.a.bh.1.1 4 16.3 odd 4