Properties

Label 312.2.g.a
Level $312$
Weight $2$
Character orbit 312.g
Analytic conductor $2.491$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [312,2,Mod(157,312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("312.157"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 312.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.49133254306\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{7} q^{2} - \beta_{3} q^{3} + \beta_1 q^{4} + (\beta_{7} + \beta_{4} - \beta_{3} + \cdots - 1) q^{5} - \beta_{6} q^{6} + ( - \beta_{6} + \beta_{4}) q^{7} + ( - \beta_{7} - \beta_{6} + \cdots + \beta_1) q^{8}+ \cdots + ( - 2 \beta_{7} + \beta_{5} - \beta_{4} + \cdots + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 2 q^{6} + 4 q^{7} - 4 q^{8} - 8 q^{9} - 4 q^{10} - 4 q^{12} - 4 q^{14} - 4 q^{15} + 8 q^{16} - 16 q^{17} - 2 q^{18} - 12 q^{20} - 20 q^{22} - 8 q^{23} + 4 q^{24} + 8 q^{25} + 2 q^{26} + 4 q^{30}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 2\zeta_{20} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\zeta_{20}^{4} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{20}^{5} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \zeta_{20}^{7} + \zeta_{20}^{2} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\zeta_{20}^{7} + \zeta_{20}^{2} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \zeta_{20}^{6} - \zeta_{20}^{4} + \zeta_{20}^{3} + \zeta_{20}^{2} - 1 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\zeta_{20}^{6} + \zeta_{20}^{4} + \zeta_{20}^{3} - \zeta_{20}^{2} + 1 \) Copy content Toggle raw display
\(\zeta_{20}\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{20}^{2}\)\(=\) \( ( \beta_{5} + \beta_{4} ) / 2 \) Copy content Toggle raw display
\(\zeta_{20}^{3}\)\(=\) \( ( \beta_{7} + \beta_{6} ) / 2 \) Copy content Toggle raw display
\(\zeta_{20}^{4}\)\(=\) \( ( \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{20}^{5}\)\(=\) \( \beta_{3} \) Copy content Toggle raw display
\(\zeta_{20}^{6}\)\(=\) \( ( -\beta_{7} + \beta_{6} - \beta_{5} - \beta_{4} + \beta_{2} + 2 ) / 2 \) Copy content Toggle raw display
\(\zeta_{20}^{7}\)\(=\) \( ( -\beta_{5} + \beta_{4} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
157.1
0.587785 + 0.809017i
0.587785 0.809017i
−0.951057 0.309017i
−0.951057 + 0.309017i
−0.587785 0.809017i
−0.587785 + 0.809017i
0.951057 0.309017i
0.951057 + 0.309017i
−1.26007 0.642040i 1.00000i 1.17557 + 1.61803i 2.79360i 0.642040 1.26007i 1.28408 −0.442463 2.79360i −1.00000 1.79360 3.52015i
157.2 −1.26007 + 0.642040i 1.00000i 1.17557 1.61803i 2.79360i 0.642040 + 1.26007i 1.28408 −0.442463 + 2.79360i −1.00000 1.79360 + 3.52015i
157.3 0.221232 1.39680i 1.00000i −1.90211 0.618034i 2.52015i 1.39680 + 0.221232i 2.79360 −1.28408 + 2.52015i −1.00000 −3.52015 0.557537i
157.4 0.221232 + 1.39680i 1.00000i −1.90211 + 0.618034i 2.52015i 1.39680 0.221232i 2.79360 −1.28408 2.52015i −1.00000 −3.52015 + 0.557537i
157.5 0.642040 1.26007i 1.00000i −1.17557 1.61803i 0.442463i −1.26007 0.642040i −2.52015 −2.79360 + 0.442463i −1.00000 −0.557537 0.284079i
157.6 0.642040 + 1.26007i 1.00000i −1.17557 + 1.61803i 0.442463i −1.26007 + 0.642040i −2.52015 −2.79360 0.442463i −1.00000 −0.557537 + 0.284079i
157.7 1.39680 0.221232i 1.00000i 1.90211 0.618034i 1.28408i 0.221232 + 1.39680i 0.442463 2.52015 1.28408i −1.00000 0.284079 + 1.79360i
157.8 1.39680 + 0.221232i 1.00000i 1.90211 + 0.618034i 1.28408i 0.221232 1.39680i 0.442463 2.52015 + 1.28408i −1.00000 0.284079 1.79360i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 157.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 312.2.g.a 8
3.b odd 2 1 936.2.g.d 8
4.b odd 2 1 1248.2.g.a 8
8.b even 2 1 inner 312.2.g.a 8
8.d odd 2 1 1248.2.g.a 8
12.b even 2 1 3744.2.g.d 8
16.e even 4 1 9984.2.a.y 4
16.e even 4 1 9984.2.a.bb 4
16.f odd 4 1 9984.2.a.s 4
16.f odd 4 1 9984.2.a.bh 4
24.f even 2 1 3744.2.g.d 8
24.h odd 2 1 936.2.g.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.2.g.a 8 1.a even 1 1 trivial
312.2.g.a 8 8.b even 2 1 inner
936.2.g.d 8 3.b odd 2 1
936.2.g.d 8 24.h odd 2 1
1248.2.g.a 8 4.b odd 2 1
1248.2.g.a 8 8.d odd 2 1
3744.2.g.d 8 12.b even 2 1
3744.2.g.d 8 24.f even 2 1
9984.2.a.s 4 16.f odd 4 1
9984.2.a.y 4 16.e even 4 1
9984.2.a.bb 4 16.e even 4 1
9984.2.a.bh 4 16.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{8} + 16T_{5}^{6} + 76T_{5}^{4} + 96T_{5}^{2} + 16 \) acting on \(S_{2}^{\mathrm{new}}(312, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 2 T^{7} + \cdots + 16 \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{8} + 16 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$7$ \( (T^{4} - 2 T^{3} - 6 T^{2} + \cdots - 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + 40 T^{6} + \cdots + 400 \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} + 8 T^{3} + 4 T^{2} + \cdots + 16)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} + 64 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$23$ \( (T^{4} + 4 T^{3} - 24 T^{2} + \cdots + 16)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} + 104 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$31$ \( (T^{4} + 2 T^{3} + \cdots + 316)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + 176 T^{6} + \cdots + 952576 \) Copy content Toggle raw display
$41$ \( (T^{4} - 18 T^{3} + \cdots - 2644)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + 344 T^{6} + \cdots + 49336576 \) Copy content Toggle raw display
$47$ \( (T^{4} - 12 T^{3} + \cdots - 964)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} + 224 T^{6} + \cdots + 1478656 \) Copy content Toggle raw display
$59$ \( T^{8} + 104 T^{6} + \cdots + 5776 \) Copy content Toggle raw display
$61$ \( (T^{4} + 60 T^{2} + 400)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + 176 T^{6} + \cdots + 5776 \) Copy content Toggle raw display
$71$ \( (T^{4} - 8 T^{3} + \cdots + 956)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} - 16 T^{3} + \cdots - 304)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 120 T^{2} + \cdots + 80)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 184 T^{6} + \cdots + 2572816 \) Copy content Toggle raw display
$89$ \( (T^{4} - 30 T^{3} + \cdots - 2420)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 28 T^{3} + \cdots - 18544)^{2} \) Copy content Toggle raw display
show more
show less