Properties

Label 312.2.g
Level $312$
Weight $2$
Character orbit 312.g
Rep. character $\chi_{312}(157,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $2$
Sturm bound $112$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 312.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(112\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(312, [\chi])\).

Total New Old
Modular forms 60 24 36
Cusp forms 52 24 28
Eisenstein series 8 0 8

Trace form

\( 24 q + 4 q^{2} + 4 q^{6} + 8 q^{7} - 8 q^{8} - 24 q^{9} - 12 q^{10} - 4 q^{12} + 8 q^{14} - 8 q^{15} - 4 q^{16} - 4 q^{18} + 12 q^{20} - 4 q^{22} - 16 q^{23} - 4 q^{24} - 24 q^{25} + 32 q^{28} + 12 q^{30}+ \cdots - 52 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(312, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
312.2.g.a 312.g 8.b $8$ $2.491$ \(\Q(\zeta_{20})\) None 312.2.g.a \(2\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{7} q^{2}-\beta_{3} q^{3}+\beta_1 q^{4}+(\beta_{7}+\beta_{4}-\beta_{3}+\cdots-1)q^{5}+\cdots\)
312.2.g.b 312.g 8.b $16$ $2.491$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 312.2.g.b \(2\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{10}q^{2}+\beta _{9}q^{3}-\beta _{2}q^{4}+\beta _{14}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(312, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(312, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)