Defining parameters
Level: | \( N \) | \(=\) | \( 312 = 2^{3} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 312.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(312, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 60 | 24 | 36 |
Cusp forms | 52 | 24 | 28 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(312, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
312.2.g.a | $8$ | $2.491$ | \(\Q(\zeta_{20})\) | None | \(2\) | \(0\) | \(0\) | \(4\) | \(q+\beta_{7} q^{2}-\beta_{3} q^{3}+\beta_1 q^{4}+(\beta_{7}+\beta_{4}-\beta_{3}+\cdots-1)q^{5}+\cdots\) |
312.2.g.b | $16$ | $2.491$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(2\) | \(0\) | \(0\) | \(4\) | \(q+\beta _{10}q^{2}+\beta _{9}q^{3}-\beta _{2}q^{4}+\beta _{14}q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(312, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(312, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)