Properties

Label 3060.2.z.b.829.1
Level $3060$
Weight $2$
Character 3060.829
Analytic conductor $24.434$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(829,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.z (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 340)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 829.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3060.829
Dual form 3060.2.z.b.2809.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 1.00000i) q^{5} +(2.00000 - 2.00000i) q^{11} -2.00000i q^{13} +(-1.00000 + 4.00000i) q^{17} +(4.00000 + 4.00000i) q^{23} +(3.00000 - 4.00000i) q^{25} +(5.00000 + 5.00000i) q^{29} +(4.00000 + 4.00000i) q^{31} +(-5.00000 + 5.00000i) q^{37} +(5.00000 - 5.00000i) q^{41} -4.00000 q^{43} -8.00000i q^{47} -7.00000i q^{49} +6.00000 q^{53} +(2.00000 - 6.00000i) q^{55} -12.0000i q^{59} +(3.00000 - 3.00000i) q^{61} +(-2.00000 - 4.00000i) q^{65} -4.00000i q^{67} +(8.00000 + 8.00000i) q^{71} +(1.00000 - 1.00000i) q^{73} +(-12.0000 + 12.0000i) q^{79} +4.00000 q^{83} +(2.00000 + 9.00000i) q^{85} +16.0000 q^{89} +(5.00000 - 5.00000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} + 4 q^{11} - 2 q^{17} + 8 q^{23} + 6 q^{25} + 10 q^{29} + 8 q^{31} - 10 q^{37} + 10 q^{41} - 8 q^{43} + 12 q^{53} + 4 q^{55} + 6 q^{61} - 4 q^{65} + 16 q^{71} + 2 q^{73} - 24 q^{79} + 8 q^{83}+ \cdots + 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.00000 1.00000i 0.894427 0.447214i
\(6\) 0 0
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 2.00000i 0.603023 0.603023i −0.338091 0.941113i \(-0.609781\pi\)
0.941113 + 0.338091i \(0.109781\pi\)
\(12\) 0 0
\(13\) 2.00000i 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.00000 + 4.00000i −0.242536 + 0.970143i
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 + 4.00000i 0.834058 + 0.834058i 0.988069 0.154011i \(-0.0492193\pi\)
−0.154011 + 0.988069i \(0.549219\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.00000 + 5.00000i 0.928477 + 0.928477i 0.997608 0.0691309i \(-0.0220226\pi\)
−0.0691309 + 0.997608i \(0.522023\pi\)
\(30\) 0 0
\(31\) 4.00000 + 4.00000i 0.718421 + 0.718421i 0.968282 0.249861i \(-0.0803848\pi\)
−0.249861 + 0.968282i \(0.580385\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.00000 + 5.00000i −0.821995 + 0.821995i −0.986394 0.164399i \(-0.947432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.00000 5.00000i 0.780869 0.780869i −0.199109 0.979977i \(-0.563805\pi\)
0.979977 + 0.199109i \(0.0638047\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.00000i 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 2.00000 6.00000i 0.269680 0.809040i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.0000i 1.56227i −0.624364 0.781133i \(-0.714642\pi\)
0.624364 0.781133i \(-0.285358\pi\)
\(60\) 0 0
\(61\) 3.00000 3.00000i 0.384111 0.384111i −0.488470 0.872581i \(-0.662445\pi\)
0.872581 + 0.488470i \(0.162445\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.00000 4.00000i −0.248069 0.496139i
\(66\) 0 0
\(67\) 4.00000i 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.00000 + 8.00000i 0.949425 + 0.949425i 0.998781 0.0493559i \(-0.0157169\pi\)
−0.0493559 + 0.998781i \(0.515717\pi\)
\(72\) 0 0
\(73\) 1.00000 1.00000i 0.117041 0.117041i −0.646160 0.763202i \(-0.723626\pi\)
0.763202 + 0.646160i \(0.223626\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −12.0000 + 12.0000i −1.35011 + 1.35011i −0.464568 + 0.885537i \(0.653790\pi\)
−0.885537 + 0.464568i \(0.846210\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 2.00000 + 9.00000i 0.216930 + 0.976187i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.0000 1.69600 0.847998 0.529999i \(-0.177808\pi\)
0.847998 + 0.529999i \(0.177808\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 5.00000 5.00000i 0.507673 0.507673i −0.406138 0.913812i \(-0.633125\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.00000 −0.796030 −0.398015 0.917379i \(-0.630301\pi\)
−0.398015 + 0.917379i \(0.630301\pi\)
\(102\) 0 0
\(103\) 12.0000i 1.18240i −0.806527 0.591198i \(-0.798655\pi\)
0.806527 0.591198i \(-0.201345\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −14.0000 + 14.0000i −1.35343 + 1.35343i −0.471640 + 0.881791i \(0.656338\pi\)
−0.881791 + 0.471640i \(0.843662\pi\)
\(108\) 0 0
\(109\) 3.00000 3.00000i 0.287348 0.287348i −0.548683 0.836031i \(-0.684871\pi\)
0.836031 + 0.548683i \(0.184871\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −11.0000 11.0000i −1.03479 1.03479i −0.999372 0.0354205i \(-0.988723\pi\)
−0.0354205 0.999372i \(-0.511277\pi\)
\(114\) 0 0
\(115\) 12.0000 + 4.00000i 1.11901 + 0.373002i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.00000i 0.272727i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) 0 0
\(127\) −20.0000 −1.77471 −0.887357 0.461084i \(-0.847461\pi\)
−0.887357 + 0.461084i \(0.847461\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000 + 6.00000i 0.524222 + 0.524222i 0.918844 0.394621i \(-0.129124\pi\)
−0.394621 + 0.918844i \(0.629124\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000i 0.512615i −0.966595 0.256307i \(-0.917494\pi\)
0.966595 0.256307i \(-0.0825059\pi\)
\(138\) 0 0
\(139\) 2.00000 + 2.00000i 0.169638 + 0.169638i 0.786820 0.617182i \(-0.211726\pi\)
−0.617182 + 0.786820i \(0.711726\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.00000 4.00000i −0.334497 0.334497i
\(144\) 0 0
\(145\) 15.0000 + 5.00000i 1.24568 + 0.415227i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 22.0000 1.80231 0.901155 0.433497i \(-0.142720\pi\)
0.901155 + 0.433497i \(0.142720\pi\)
\(150\) 0 0
\(151\) 8.00000i 0.651031i −0.945537 0.325515i \(-0.894462\pi\)
0.945537 0.325515i \(-0.105538\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 12.0000 + 4.00000i 0.963863 + 0.321288i
\(156\) 0 0
\(157\) 16.0000i 1.27694i 0.769647 + 0.638470i \(0.220432\pi\)
−0.769647 + 0.638470i \(0.779568\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −6.00000 6.00000i −0.469956 0.469956i 0.431944 0.901900i \(-0.357828\pi\)
−0.901900 + 0.431944i \(0.857828\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.00000 8.00000i 0.619059 0.619059i −0.326231 0.945290i \(-0.605779\pi\)
0.945290 + 0.326231i \(0.105779\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.00000 7.00000i 0.532200 0.532200i −0.389026 0.921227i \(-0.627189\pi\)
0.921227 + 0.389026i \(0.127189\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 17.0000 17.0000i 1.26360 1.26360i 0.314265 0.949335i \(-0.398242\pi\)
0.949335 0.314265i \(-0.101758\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.00000 + 15.0000i −0.367607 + 1.10282i
\(186\) 0 0
\(187\) 6.00000 + 10.0000i 0.438763 + 0.731272i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) 0 0
\(193\) 5.00000 + 5.00000i 0.359908 + 0.359908i 0.863779 0.503871i \(-0.168091\pi\)
−0.503871 + 0.863779i \(0.668091\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.00000 5.00000i −0.356235 0.356235i 0.506188 0.862423i \(-0.331054\pi\)
−0.862423 + 0.506188i \(0.831054\pi\)
\(198\) 0 0
\(199\) −12.0000 12.0000i −0.850657 0.850657i 0.139557 0.990214i \(-0.455432\pi\)
−0.990214 + 0.139557i \(0.955432\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 5.00000 15.0000i 0.349215 1.04765i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −10.0000 + 10.0000i −0.688428 + 0.688428i −0.961884 0.273456i \(-0.911833\pi\)
0.273456 + 0.961884i \(0.411833\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.00000 + 4.00000i −0.545595 + 0.272798i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 8.00000 + 2.00000i 0.538138 + 0.134535i
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.00000 + 2.00000i 0.132745 + 0.132745i 0.770357 0.637613i \(-0.220078\pi\)
−0.637613 + 0.770357i \(0.720078\pi\)
\(228\) 0 0
\(229\) 10.0000i 0.660819i 0.943838 + 0.330409i \(0.107187\pi\)
−0.943838 + 0.330409i \(0.892813\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.00000 + 1.00000i −0.0655122 + 0.0655122i −0.739104 0.673592i \(-0.764751\pi\)
0.673592 + 0.739104i \(0.264751\pi\)
\(234\) 0 0
\(235\) −8.00000 16.0000i −0.521862 1.04372i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 7.00000 + 7.00000i 0.450910 + 0.450910i 0.895656 0.444747i \(-0.146706\pi\)
−0.444747 + 0.895656i \(0.646706\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −7.00000 14.0000i −0.447214 0.894427i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 16.0000 1.00591
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −24.0000 −1.49708 −0.748539 0.663090i \(-0.769245\pi\)
−0.748539 + 0.663090i \(0.769245\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −12.0000 −0.739952 −0.369976 0.929041i \(-0.620634\pi\)
−0.369976 + 0.929041i \(0.620634\pi\)
\(264\) 0 0
\(265\) 12.0000 6.00000i 0.737154 0.368577i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.00000 + 5.00000i 0.304855 + 0.304855i 0.842910 0.538055i \(-0.180841\pi\)
−0.538055 + 0.842910i \(0.680841\pi\)
\(270\) 0 0
\(271\) 4.00000 0.242983 0.121491 0.992592i \(-0.461232\pi\)
0.121491 + 0.992592i \(0.461232\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.00000 14.0000i −0.120605 0.844232i
\(276\) 0 0
\(277\) 3.00000 3.00000i 0.180253 0.180253i −0.611213 0.791466i \(-0.709318\pi\)
0.791466 + 0.611213i \(0.209318\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.0000i 1.43172i −0.698244 0.715860i \(-0.746035\pi\)
0.698244 0.715860i \(-0.253965\pi\)
\(282\) 0 0
\(283\) 10.0000 + 10.0000i 0.594438 + 0.594438i 0.938827 0.344389i \(-0.111914\pi\)
−0.344389 + 0.938827i \(0.611914\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −15.0000 8.00000i −0.882353 0.470588i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 16.0000i 0.934730i 0.884064 + 0.467365i \(0.154797\pi\)
−0.884064 + 0.467365i \(0.845203\pi\)
\(294\) 0 0
\(295\) −12.0000 24.0000i −0.698667 1.39733i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8.00000 8.00000i 0.462652 0.462652i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.00000 9.00000i 0.171780 0.515339i
\(306\) 0 0
\(307\) 32.0000i 1.82634i 0.407583 + 0.913168i \(0.366372\pi\)
−0.407583 + 0.913168i \(0.633628\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −12.0000 12.0000i −0.680458 0.680458i 0.279646 0.960103i \(-0.409783\pi\)
−0.960103 + 0.279646i \(0.909783\pi\)
\(312\) 0 0
\(313\) 17.0000 + 17.0000i 0.960897 + 0.960897i 0.999264 0.0383669i \(-0.0122156\pi\)
−0.0383669 + 0.999264i \(0.512216\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 17.0000 + 17.0000i 0.954815 + 0.954815i 0.999022 0.0442073i \(-0.0140762\pi\)
−0.0442073 + 0.999022i \(0.514076\pi\)
\(318\) 0 0
\(319\) 20.0000 1.11979
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −8.00000 6.00000i −0.443760 0.332820i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4.00000i 0.219860i 0.993939 + 0.109930i \(0.0350627\pi\)
−0.993939 + 0.109930i \(0.964937\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.00000 8.00000i −0.218543 0.437087i
\(336\) 0 0
\(337\) −13.0000 + 13.0000i −0.708155 + 0.708155i −0.966147 0.257992i \(-0.916939\pi\)
0.257992 + 0.966147i \(0.416939\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 14.0000 + 14.0000i 0.751559 + 0.751559i 0.974770 0.223211i \(-0.0716538\pi\)
−0.223211 + 0.974770i \(0.571654\pi\)
\(348\) 0 0
\(349\) 24.0000i 1.28469i 0.766415 + 0.642345i \(0.222038\pi\)
−0.766415 + 0.642345i \(0.777962\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 24.0000i 1.27739i −0.769460 0.638696i \(-0.779474\pi\)
0.769460 0.638696i \(-0.220526\pi\)
\(354\) 0 0
\(355\) 24.0000 + 8.00000i 1.27379 + 0.424596i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.0000i 1.05556i 0.849381 + 0.527780i \(0.176975\pi\)
−0.849381 + 0.527780i \(0.823025\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.00000 3.00000i 0.0523424 0.157027i
\(366\) 0 0
\(367\) 8.00000 + 8.00000i 0.417597 + 0.417597i 0.884375 0.466778i \(-0.154585\pi\)
−0.466778 + 0.884375i \(0.654585\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 26.0000i 1.34623i −0.739538 0.673114i \(-0.764956\pi\)
0.739538 0.673114i \(-0.235044\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 10.0000 10.0000i 0.515026 0.515026i
\(378\) 0 0
\(379\) 2.00000 + 2.00000i 0.102733 + 0.102733i 0.756605 0.653872i \(-0.226857\pi\)
−0.653872 + 0.756605i \(0.726857\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.00000 −0.204390 −0.102195 0.994764i \(-0.532587\pi\)
−0.102195 + 0.994764i \(0.532587\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.00000i 0.304212i −0.988364 0.152106i \(-0.951394\pi\)
0.988364 0.152106i \(-0.0486055\pi\)
\(390\) 0 0
\(391\) −20.0000 + 12.0000i −1.01144 + 0.606866i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −12.0000 + 36.0000i −0.603786 + 1.81136i
\(396\) 0 0
\(397\) −7.00000 7.00000i −0.351320 0.351320i 0.509281 0.860601i \(-0.329912\pi\)
−0.860601 + 0.509281i \(0.829912\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.00000 + 9.00000i −0.449439 + 0.449439i −0.895168 0.445729i \(-0.852944\pi\)
0.445729 + 0.895168i \(0.352944\pi\)
\(402\) 0 0
\(403\) 8.00000 8.00000i 0.398508 0.398508i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 20.0000i 0.991363i
\(408\) 0 0
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 8.00000 4.00000i 0.392705 0.196352i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −26.0000 + 26.0000i −1.27018 + 1.27018i −0.324192 + 0.945991i \(0.605092\pi\)
−0.945991 + 0.324192i \(0.894908\pi\)
\(420\) 0 0
\(421\) −8.00000 −0.389896 −0.194948 0.980814i \(-0.562454\pi\)
−0.194948 + 0.980814i \(0.562454\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 13.0000 + 16.0000i 0.630593 + 0.776114i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.00000 4.00000i 0.192673 0.192673i −0.604177 0.796850i \(-0.706498\pi\)
0.796850 + 0.604177i \(0.206498\pi\)
\(432\) 0 0
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −28.0000 28.0000i −1.33637 1.33637i −0.899551 0.436816i \(-0.856106\pi\)
−0.436816 0.899551i \(-0.643894\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0000i 0.570137i −0.958507 0.285069i \(-0.907984\pi\)
0.958507 0.285069i \(-0.0920164\pi\)
\(444\) 0 0
\(445\) 32.0000 16.0000i 1.51695 0.758473i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 23.0000 23.0000i 1.08544 1.08544i 0.0894454 0.995992i \(-0.471491\pi\)
0.995992 0.0894454i \(-0.0285095\pi\)
\(450\) 0 0
\(451\) 20.0000i 0.941763i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −32.0000 −1.49690 −0.748448 0.663193i \(-0.769201\pi\)
−0.748448 + 0.663193i \(0.769201\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 24.0000i 1.11779i 0.829238 + 0.558896i \(0.188775\pi\)
−0.829238 + 0.558896i \(0.811225\pi\)
\(462\) 0 0
\(463\) 12.0000i 0.557687i 0.960337 + 0.278844i \(0.0899511\pi\)
−0.960337 + 0.278844i \(0.910049\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8.00000 + 8.00000i −0.367840 + 0.367840i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(480\) 0 0
\(481\) 10.0000 + 10.0000i 0.455961 + 0.455961i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5.00000 15.0000i 0.227038 0.681115i
\(486\) 0 0
\(487\) −8.00000 8.00000i −0.362515 0.362515i 0.502223 0.864738i \(-0.332516\pi\)
−0.864738 + 0.502223i \(0.832516\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) −25.0000 + 15.0000i −1.12594 + 0.675566i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −6.00000 + 6.00000i −0.268597 + 0.268597i −0.828535 0.559938i \(-0.810825\pi\)
0.559938 + 0.828535i \(0.310825\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.00000 + 8.00000i 0.356702 + 0.356702i 0.862596 0.505894i \(-0.168837\pi\)
−0.505894 + 0.862596i \(0.668837\pi\)
\(504\) 0 0
\(505\) −16.0000 + 8.00000i −0.711991 + 0.355995i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.0000 24.0000i −0.528783 1.05757i
\(516\) 0 0
\(517\) −16.0000 16.0000i −0.703679 0.703679i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −29.0000 + 29.0000i −1.27051 + 1.27051i −0.324694 + 0.945819i \(0.605261\pi\)
−0.945819 + 0.324694i \(0.894739\pi\)
\(522\) 0 0
\(523\) 36.0000i 1.57417i −0.616844 0.787085i \(-0.711589\pi\)
0.616844 0.787085i \(-0.288411\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −20.0000 + 12.0000i −0.871214 + 0.522728i
\(528\) 0 0
\(529\) 9.00000i 0.391304i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −10.0000 10.0000i −0.433148 0.433148i
\(534\) 0 0
\(535\) −14.0000 + 42.0000i −0.605273 + 1.81582i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −14.0000 14.0000i −0.603023 0.603023i
\(540\) 0 0
\(541\) −27.0000 27.0000i −1.16082 1.16082i −0.984296 0.176524i \(-0.943515\pi\)
−0.176524 0.984296i \(-0.556485\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.00000 9.00000i 0.128506 0.385518i
\(546\) 0 0
\(547\) −22.0000 + 22.0000i −0.940652 + 0.940652i −0.998335 0.0576829i \(-0.981629\pi\)
0.0576829 + 0.998335i \(0.481629\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.0000i 0.762684i 0.924434 + 0.381342i \(0.124538\pi\)
−0.924434 + 0.381342i \(0.875462\pi\)
\(558\) 0 0
\(559\) 8.00000i 0.338364i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 44.0000 1.85438 0.927189 0.374593i \(-0.122217\pi\)
0.927189 + 0.374593i \(0.122217\pi\)
\(564\) 0 0
\(565\) −33.0000 11.0000i −1.38832 0.462773i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −2.00000 + 2.00000i −0.0836974 + 0.0836974i −0.747716 0.664019i \(-0.768850\pi\)
0.664019 + 0.747716i \(0.268850\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 28.0000 4.00000i 1.16768 0.166812i
\(576\) 0 0
\(577\) 2.00000i 0.0832611i 0.999133 + 0.0416305i \(0.0132552\pi\)
−0.999133 + 0.0416305i \(0.986745\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 12.0000 12.0000i 0.496989 0.496989i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −24.0000 −0.990586 −0.495293 0.868726i \(-0.664939\pi\)
−0.495293 + 0.868726i \(0.664939\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 22.0000 0.903432 0.451716 0.892162i \(-0.350812\pi\)
0.451716 + 0.892162i \(0.350812\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 3.00000 3.00000i 0.122373 0.122373i −0.643268 0.765641i \(-0.722422\pi\)
0.765641 + 0.643268i \(0.222422\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.00000 + 6.00000i 0.121967 + 0.243935i
\(606\) 0 0
\(607\) −16.0000 + 16.0000i −0.649420 + 0.649420i −0.952853 0.303433i \(-0.901867\pi\)
0.303433 + 0.952853i \(0.401867\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −16.0000 −0.647291
\(612\) 0 0
\(613\) 16.0000i 0.646234i −0.946359 0.323117i \(-0.895269\pi\)
0.946359 0.323117i \(-0.104731\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −23.0000 + 23.0000i −0.925945 + 0.925945i −0.997441 0.0714958i \(-0.977223\pi\)
0.0714958 + 0.997441i \(0.477223\pi\)
\(618\) 0 0
\(619\) −14.0000 + 14.0000i −0.562708 + 0.562708i −0.930076 0.367368i \(-0.880259\pi\)
0.367368 + 0.930076i \(0.380259\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.0000 25.0000i −0.598089 0.996815i
\(630\) 0 0
\(631\) 4.00000i 0.159237i 0.996825 + 0.0796187i \(0.0253703\pi\)
−0.996825 + 0.0796187i \(0.974630\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −40.0000 + 20.0000i −1.58735 + 0.793676i
\(636\) 0 0
\(637\) −14.0000 −0.554700
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.0000 + 15.0000i 0.592464 + 0.592464i 0.938296 0.345832i \(-0.112403\pi\)
−0.345832 + 0.938296i \(0.612403\pi\)
\(642\) 0 0
\(643\) 22.0000 22.0000i 0.867595 0.867595i −0.124610 0.992206i \(-0.539768\pi\)
0.992206 + 0.124610i \(0.0397681\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.0000i 0.629025i 0.949253 + 0.314512i \(0.101841\pi\)
−0.949253 + 0.314512i \(0.898159\pi\)
\(648\) 0 0
\(649\) −24.0000 24.0000i −0.942082 0.942082i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.00000 + 7.00000i 0.273931 + 0.273931i 0.830681 0.556749i \(-0.187952\pi\)
−0.556749 + 0.830681i \(0.687952\pi\)
\(654\) 0 0
\(655\) 18.0000 + 6.00000i 0.703318 + 0.234439i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −40.0000 −1.55818 −0.779089 0.626913i \(-0.784318\pi\)
−0.779089 + 0.626913i \(0.784318\pi\)
\(660\) 0 0
\(661\) 24.0000i 0.933492i 0.884391 + 0.466746i \(0.154574\pi\)
−0.884391 + 0.466746i \(0.845426\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 40.0000i 1.54881i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 12.0000i 0.463255i
\(672\) 0 0
\(673\) 19.0000 + 19.0000i 0.732396 + 0.732396i 0.971094 0.238698i \(-0.0767205\pi\)
−0.238698 + 0.971094i \(0.576721\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.00000 5.00000i 0.192166 0.192166i −0.604466 0.796631i \(-0.706613\pi\)
0.796631 + 0.604466i \(0.206613\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −22.0000 + 22.0000i −0.841807 + 0.841807i −0.989094 0.147287i \(-0.952946\pi\)
0.147287 + 0.989094i \(0.452946\pi\)
\(684\) 0 0
\(685\) −6.00000 12.0000i −0.229248 0.458496i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.0000i 0.457164i
\(690\) 0 0
\(691\) −26.0000 + 26.0000i −0.989087 + 0.989087i −0.999941 0.0108545i \(-0.996545\pi\)
0.0108545 + 0.999941i \(0.496545\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.00000 + 2.00000i 0.227593 + 0.0758643i
\(696\) 0 0
\(697\) 15.0000 + 25.0000i 0.568166 + 0.946943i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −8.00000 −0.302156 −0.151078 0.988522i \(-0.548274\pi\)
−0.151078 + 0.988522i \(0.548274\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 15.0000 + 15.0000i 0.563337 + 0.563337i 0.930254 0.366917i \(-0.119587\pi\)
−0.366917 + 0.930254i \(0.619587\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 32.0000i 1.19841i
\(714\) 0 0
\(715\) −12.0000 4.00000i −0.448775 0.149592i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.00000 4.00000i −0.149175 0.149175i 0.628575 0.777749i \(-0.283639\pi\)
−0.777749 + 0.628575i \(0.783639\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 35.0000 5.00000i 1.29987 0.185695i
\(726\) 0 0
\(727\) 16.0000i 0.593407i 0.954970 + 0.296704i \(0.0958873\pi\)
−0.954970 + 0.296704i \(0.904113\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.00000 16.0000i 0.147945 0.591781i
\(732\) 0 0
\(733\) −34.0000 −1.25582 −0.627909 0.778287i \(-0.716089\pi\)
−0.627909 + 0.778287i \(0.716089\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.00000 8.00000i −0.294684 0.294684i
\(738\) 0 0
\(739\) 40.0000i 1.47142i −0.677295 0.735712i \(-0.736848\pi\)
0.677295 0.735712i \(-0.263152\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 12.0000 12.0000i 0.440237 0.440237i −0.451854 0.892092i \(-0.649237\pi\)
0.892092 + 0.451854i \(0.149237\pi\)
\(744\) 0 0
\(745\) 44.0000 22.0000i 1.61204 0.806018i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 4.00000 + 4.00000i 0.145962 + 0.145962i 0.776312 0.630349i \(-0.217088\pi\)
−0.630349 + 0.776312i \(0.717088\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8.00000 16.0000i −0.291150 0.582300i
\(756\) 0 0
\(757\) −16.0000 −0.581530 −0.290765 0.956795i \(-0.593910\pi\)
−0.290765 + 0.956795i \(0.593910\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.00000 0.290000 0.145000 0.989432i \(-0.453682\pi\)
0.145000 + 0.989432i \(0.453682\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −24.0000 −0.866590
\(768\) 0 0
\(769\) 24.0000 0.865462 0.432731 0.901523i \(-0.357550\pi\)
0.432731 + 0.901523i \(0.357550\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −32.0000 −1.15096 −0.575480 0.817816i \(-0.695185\pi\)
−0.575480 + 0.817816i \(0.695185\pi\)
\(774\) 0 0
\(775\) 28.0000 4.00000i 1.00579 0.143684i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 16.0000 + 32.0000i 0.571064 + 1.14213i
\(786\) 0 0
\(787\) −14.0000 + 14.0000i −0.499046 + 0.499046i −0.911141 0.412095i \(-0.864797\pi\)
0.412095 + 0.911141i \(0.364797\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −6.00000 6.00000i −0.213066 0.213066i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 30.0000 1.06265 0.531327 0.847167i \(-0.321693\pi\)
0.531327 + 0.847167i \(0.321693\pi\)
\(798\) 0 0
\(799\) 32.0000 + 8.00000i 1.13208 + 0.283020i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.00000i 0.141157i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −27.0000 + 27.0000i −0.949269 + 0.949269i −0.998774 0.0495045i \(-0.984236\pi\)
0.0495045 + 0.998774i \(0.484236\pi\)
\(810\) 0 0
\(811\) −38.0000 38.0000i −1.33436 1.33436i −0.901425 0.432936i \(-0.857478\pi\)
−0.432936 0.901425i \(-0.642522\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −18.0000 6.00000i −0.630512 0.210171i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −25.0000 25.0000i −0.872506 0.872506i 0.120239 0.992745i \(-0.461634\pi\)
−0.992745 + 0.120239i \(0.961634\pi\)
\(822\) 0 0
\(823\) 20.0000 + 20.0000i 0.697156 + 0.697156i 0.963796 0.266640i \(-0.0859135\pi\)
−0.266640 + 0.963796i \(0.585913\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.00000 + 6.00000i 0.208640 + 0.208640i 0.803689 0.595049i \(-0.202867\pi\)
−0.595049 + 0.803689i \(0.702867\pi\)
\(828\) 0 0
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 28.0000 + 7.00000i 0.970143 + 0.242536i
\(834\) 0 0
\(835\) 8.00000 24.0000i 0.276851 0.830554i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(840\) 0 0
\(841\) 21.0000i 0.724138i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 18.0000 9.00000i 0.619219 0.309609i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −40.0000 −1.37118
\(852\) 0 0
\(853\) −21.0000 + 21.0000i −0.719026 + 0.719026i −0.968406 0.249380i \(-0.919773\pi\)
0.249380 + 0.968406i \(0.419773\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −9.00000 9.00000i −0.307434 0.307434i 0.536479 0.843913i \(-0.319754\pi\)
−0.843913 + 0.536479i \(0.819754\pi\)
\(858\) 0 0
\(859\) 36.0000i 1.22830i 0.789188 + 0.614152i \(0.210502\pi\)
−0.789188 + 0.614152i \(0.789498\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 12.0000i 0.408485i −0.978920 0.204242i \(-0.934527\pi\)
0.978920 0.204242i \(-0.0654731\pi\)
\(864\) 0 0
\(865\) 7.00000 21.0000i 0.238007 0.714021i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 48.0000i 1.62829i
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 33.0000 + 33.0000i 1.11433 + 1.11433i 0.992558 + 0.121773i \(0.0388579\pi\)
0.121773 + 0.992558i \(0.461142\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −23.0000 23.0000i −0.774890 0.774890i 0.204067 0.978957i \(-0.434584\pi\)
−0.978957 + 0.204067i \(0.934584\pi\)
\(882\) 0 0
\(883\) 4.00000i 0.134611i −0.997732 0.0673054i \(-0.978560\pi\)
0.997732 0.0673054i \(-0.0214402\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.00000 + 4.00000i −0.134307 + 0.134307i −0.771064 0.636757i \(-0.780275\pi\)
0.636757 + 0.771064i \(0.280275\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 40.0000i 1.33407i
\(900\) 0 0
\(901\) −6.00000 + 24.0000i −0.199889 + 0.799556i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 17.0000 51.0000i 0.565099 1.69530i
\(906\) 0 0
\(907\) −22.0000 22.0000i −0.730498 0.730498i 0.240220 0.970718i \(-0.422780\pi\)
−0.970718 + 0.240220i \(0.922780\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −16.0000 + 16.0000i −0.530104 + 0.530104i −0.920603 0.390499i \(-0.872302\pi\)
0.390499 + 0.920603i \(0.372302\pi\)
\(912\) 0 0
\(913\) 8.00000 8.00000i 0.264761 0.264761i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 12.0000 0.395843 0.197922 0.980218i \(-0.436581\pi\)
0.197922 + 0.980218i \(0.436581\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 16.0000 16.0000i 0.526646 0.526646i
\(924\) 0 0
\(925\) 5.00000 + 35.0000i 0.164399 + 1.15079i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 9.00000 9.00000i 0.295280 0.295280i −0.543882 0.839162i \(-0.683046\pi\)
0.839162 + 0.543882i \(0.183046\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 22.0000 + 14.0000i 0.719477 + 0.457849i
\(936\) 0 0
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 21.0000 21.0000i 0.684580 0.684580i −0.276448 0.961029i \(-0.589157\pi\)
0.961029 + 0.276448i \(0.0891575\pi\)
\(942\) 0 0
\(943\) 40.0000 1.30258
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30.0000 + 30.0000i −0.974869 + 0.974869i −0.999692 0.0248229i \(-0.992098\pi\)
0.0248229 + 0.999692i \(0.492098\pi\)
\(948\) 0 0
\(949\) −2.00000 2.00000i −0.0649227 0.0649227i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 30.0000i 0.971795i −0.874016 0.485898i \(-0.838493\pi\)
0.874016 0.485898i \(-0.161507\pi\)
\(954\) 0 0
\(955\) −8.00000 + 4.00000i −0.258874 + 0.129437i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000i 0.0322581i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 15.0000 + 5.00000i 0.482867 + 0.160956i
\(966\) 0 0
\(967\) 48.0000 1.54358 0.771788 0.635880i \(-0.219363\pi\)
0.771788 + 0.635880i \(0.219363\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.00000i 0.128366i −0.997938 0.0641831i \(-0.979556\pi\)
0.997938 0.0641831i \(-0.0204442\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −42.0000 −1.34370 −0.671850 0.740688i \(-0.734500\pi\)
−0.671850 + 0.740688i \(0.734500\pi\)
\(978\) 0 0
\(979\) 32.0000 32.0000i 1.02272 1.02272i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) −15.0000 5.00000i −0.477940 0.159313i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −16.0000 16.0000i −0.508770 0.508770i
\(990\) 0 0
\(991\) −36.0000 36.0000i −1.14358 1.14358i −0.987791 0.155787i \(-0.950209\pi\)
−0.155787 0.987791i \(-0.549791\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −36.0000 12.0000i −1.14128 0.380426i
\(996\) 0 0
\(997\) −3.00000 3.00000i −0.0950110 0.0950110i 0.658004 0.753015i \(-0.271401\pi\)
−0.753015 + 0.658004i \(0.771401\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.z.b.829.1 2
3.2 odd 2 340.2.m.a.149.1 yes 2
5.4 even 2 3060.2.z.a.829.1 2
15.2 even 4 1700.2.o.b.1101.1 2
15.8 even 4 1700.2.o.a.1101.1 2
15.14 odd 2 340.2.m.b.149.1 yes 2
17.4 even 4 3060.2.z.a.2809.1 2
51.38 odd 4 340.2.m.b.89.1 yes 2
85.4 even 4 inner 3060.2.z.b.2809.1 2
255.38 even 4 1700.2.o.a.701.1 2
255.89 odd 4 340.2.m.a.89.1 2
255.242 even 4 1700.2.o.b.701.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
340.2.m.a.89.1 2 255.89 odd 4
340.2.m.a.149.1 yes 2 3.2 odd 2
340.2.m.b.89.1 yes 2 51.38 odd 4
340.2.m.b.149.1 yes 2 15.14 odd 2
1700.2.o.a.701.1 2 255.38 even 4
1700.2.o.a.1101.1 2 15.8 even 4
1700.2.o.b.701.1 2 255.242 even 4
1700.2.o.b.1101.1 2 15.2 even 4
3060.2.z.a.829.1 2 5.4 even 2
3060.2.z.a.2809.1 2 17.4 even 4
3060.2.z.b.829.1 2 1.1 even 1 trivial
3060.2.z.b.2809.1 2 85.4 even 4 inner