Properties

Label 3060.2.z.a.2809.1
Level $3060$
Weight $2$
Character 3060.2809
Analytic conductor $24.434$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(829,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.829"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.z (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{29}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 340)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 2809.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3060.2809
Dual form 3060.2.z.a.829.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 2.00000i) q^{5} +(2.00000 + 2.00000i) q^{11} -2.00000i q^{13} +(1.00000 + 4.00000i) q^{17} +(-4.00000 + 4.00000i) q^{23} +(-3.00000 + 4.00000i) q^{25} +(5.00000 - 5.00000i) q^{29} +(4.00000 - 4.00000i) q^{31} +(5.00000 + 5.00000i) q^{37} +(5.00000 + 5.00000i) q^{41} +4.00000 q^{43} -8.00000i q^{47} +7.00000i q^{49} -6.00000 q^{53} +(2.00000 - 6.00000i) q^{55} +12.0000i q^{59} +(3.00000 + 3.00000i) q^{61} +(-4.00000 + 2.00000i) q^{65} -4.00000i q^{67} +(8.00000 - 8.00000i) q^{71} +(-1.00000 - 1.00000i) q^{73} +(-12.0000 - 12.0000i) q^{79} -4.00000 q^{83} +(7.00000 - 6.00000i) q^{85} +16.0000 q^{89} +(-5.00000 - 5.00000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} + 4 q^{11} + 2 q^{17} - 8 q^{23} - 6 q^{25} + 10 q^{29} + 8 q^{31} + 10 q^{37} + 10 q^{41} + 8 q^{43} - 12 q^{53} + 4 q^{55} + 6 q^{61} - 8 q^{65} + 16 q^{71} - 2 q^{73} - 24 q^{79} - 8 q^{83}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 2.00000i −0.447214 0.894427i
\(6\) 0 0
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 + 2.00000i 0.603023 + 0.603023i 0.941113 0.338091i \(-0.109781\pi\)
−0.338091 + 0.941113i \(0.609781\pi\)
\(12\) 0 0
\(13\) 2.00000i 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 + 4.00000i 0.242536 + 0.970143i
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.00000 + 4.00000i −0.834058 + 0.834058i −0.988069 0.154011i \(-0.950781\pi\)
0.154011 + 0.988069i \(0.450781\pi\)
\(24\) 0 0
\(25\) −3.00000 + 4.00000i −0.600000 + 0.800000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.00000 5.00000i 0.928477 0.928477i −0.0691309 0.997608i \(-0.522023\pi\)
0.997608 + 0.0691309i \(0.0220226\pi\)
\(30\) 0 0
\(31\) 4.00000 4.00000i 0.718421 0.718421i −0.249861 0.968282i \(-0.580385\pi\)
0.968282 + 0.249861i \(0.0803848\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.00000 + 5.00000i 0.821995 + 0.821995i 0.986394 0.164399i \(-0.0525685\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.00000 + 5.00000i 0.780869 + 0.780869i 0.979977 0.199109i \(-0.0638047\pi\)
−0.199109 + 0.979977i \(0.563805\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.00000i 1.16692i −0.812142 0.583460i \(-0.801699\pi\)
0.812142 0.583460i \(-0.198301\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 2.00000 6.00000i 0.269680 0.809040i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.0000i 1.56227i 0.624364 + 0.781133i \(0.285358\pi\)
−0.624364 + 0.781133i \(0.714642\pi\)
\(60\) 0 0
\(61\) 3.00000 + 3.00000i 0.384111 + 0.384111i 0.872581 0.488470i \(-0.162445\pi\)
−0.488470 + 0.872581i \(0.662445\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.00000 + 2.00000i −0.496139 + 0.248069i
\(66\) 0 0
\(67\) 4.00000i 0.488678i −0.969690 0.244339i \(-0.921429\pi\)
0.969690 0.244339i \(-0.0785709\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.00000 8.00000i 0.949425 0.949425i −0.0493559 0.998781i \(-0.515717\pi\)
0.998781 + 0.0493559i \(0.0157169\pi\)
\(72\) 0 0
\(73\) −1.00000 1.00000i −0.117041 0.117041i 0.646160 0.763202i \(-0.276374\pi\)
−0.763202 + 0.646160i \(0.776374\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −12.0000 12.0000i −1.35011 1.35011i −0.885537 0.464568i \(-0.846210\pi\)
−0.464568 0.885537i \(-0.653790\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) 7.00000 6.00000i 0.759257 0.650791i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.0000 1.69600 0.847998 0.529999i \(-0.177808\pi\)
0.847998 + 0.529999i \(0.177808\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −5.00000 5.00000i −0.507673 0.507673i 0.406138 0.913812i \(-0.366875\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.00000 −0.796030 −0.398015 0.917379i \(-0.630301\pi\)
−0.398015 + 0.917379i \(0.630301\pi\)
\(102\) 0 0
\(103\) 12.0000i 1.18240i −0.806527 0.591198i \(-0.798655\pi\)
0.806527 0.591198i \(-0.201345\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.0000 + 14.0000i 1.35343 + 1.35343i 0.881791 + 0.471640i \(0.156338\pi\)
0.471640 + 0.881791i \(0.343662\pi\)
\(108\) 0 0
\(109\) 3.00000 + 3.00000i 0.287348 + 0.287348i 0.836031 0.548683i \(-0.184871\pi\)
−0.548683 + 0.836031i \(0.684871\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.0000 11.0000i 1.03479 1.03479i 0.0354205 0.999372i \(-0.488723\pi\)
0.999372 0.0354205i \(-0.0112770\pi\)
\(114\) 0 0
\(115\) 12.0000 + 4.00000i 1.11901 + 0.373002i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.00000i 0.272727i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.0000 + 2.00000i 0.983870 + 0.178885i
\(126\) 0 0
\(127\) 20.0000 1.77471 0.887357 0.461084i \(-0.152539\pi\)
0.887357 + 0.461084i \(0.152539\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000 6.00000i 0.524222 0.524222i −0.394621 0.918844i \(-0.629124\pi\)
0.918844 + 0.394621i \(0.129124\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000i 0.512615i −0.966595 0.256307i \(-0.917494\pi\)
0.966595 0.256307i \(-0.0825059\pi\)
\(138\) 0 0
\(139\) 2.00000 2.00000i 0.169638 0.169638i −0.617182 0.786820i \(-0.711726\pi\)
0.786820 + 0.617182i \(0.211726\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.00000 4.00000i 0.334497 0.334497i
\(144\) 0 0
\(145\) −15.0000 5.00000i −1.24568 0.415227i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 22.0000 1.80231 0.901155 0.433497i \(-0.142720\pi\)
0.901155 + 0.433497i \(0.142720\pi\)
\(150\) 0 0
\(151\) 8.00000i 0.651031i 0.945537 + 0.325515i \(0.105538\pi\)
−0.945537 + 0.325515i \(0.894462\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −12.0000 4.00000i −0.963863 0.321288i
\(156\) 0 0
\(157\) 16.0000i 1.27694i 0.769647 + 0.638470i \(0.220432\pi\)
−0.769647 + 0.638470i \(0.779568\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 6.00000 6.00000i 0.469956 0.469956i −0.431944 0.901900i \(-0.642172\pi\)
0.901900 + 0.431944i \(0.142172\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.00000 8.00000i −0.619059 0.619059i 0.326231 0.945290i \(-0.394221\pi\)
−0.945290 + 0.326231i \(0.894221\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.00000 7.00000i −0.532200 0.532200i 0.389026 0.921227i \(-0.372811\pi\)
−0.921227 + 0.389026i \(0.872811\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 17.0000 + 17.0000i 1.26360 + 1.26360i 0.949335 + 0.314265i \(0.101758\pi\)
0.314265 + 0.949335i \(0.398242\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.00000 15.0000i 0.367607 1.10282i
\(186\) 0 0
\(187\) −6.00000 + 10.0000i −0.438763 + 0.731272i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) 0 0
\(193\) −5.00000 + 5.00000i −0.359908 + 0.359908i −0.863779 0.503871i \(-0.831909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.00000 5.00000i 0.356235 0.356235i −0.506188 0.862423i \(-0.668946\pi\)
0.862423 + 0.506188i \(0.168946\pi\)
\(198\) 0 0
\(199\) −12.0000 + 12.0000i −0.850657 + 0.850657i −0.990214 0.139557i \(-0.955432\pi\)
0.139557 + 0.990214i \(0.455432\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 5.00000 15.0000i 0.349215 1.04765i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −10.0000 10.0000i −0.688428 0.688428i 0.273456 0.961884i \(-0.411833\pi\)
−0.961884 + 0.273456i \(0.911833\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4.00000 8.00000i −0.272798 0.545595i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 8.00000 2.00000i 0.538138 0.134535i
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.00000 + 2.00000i −0.132745 + 0.132745i −0.770357 0.637613i \(-0.779922\pi\)
0.637613 + 0.770357i \(0.279922\pi\)
\(228\) 0 0
\(229\) 10.0000i 0.660819i −0.943838 0.330409i \(-0.892813\pi\)
0.943838 0.330409i \(-0.107187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.00000 + 1.00000i 0.0655122 + 0.0655122i 0.739104 0.673592i \(-0.235249\pi\)
−0.673592 + 0.739104i \(0.735249\pi\)
\(234\) 0 0
\(235\) −16.0000 + 8.00000i −1.04372 + 0.521862i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 7.00000 7.00000i 0.450910 0.450910i −0.444747 0.895656i \(-0.646706\pi\)
0.895656 + 0.444747i \(0.146706\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 14.0000 7.00000i 0.894427 0.447214i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) −16.0000 −1.00591
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 24.0000 1.49708 0.748539 0.663090i \(-0.230755\pi\)
0.748539 + 0.663090i \(0.230755\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) 6.00000 + 12.0000i 0.368577 + 0.737154i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.00000 5.00000i 0.304855 0.304855i −0.538055 0.842910i \(-0.680841\pi\)
0.842910 + 0.538055i \(0.180841\pi\)
\(270\) 0 0
\(271\) 4.00000 0.242983 0.121491 0.992592i \(-0.461232\pi\)
0.121491 + 0.992592i \(0.461232\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −14.0000 + 2.00000i −0.844232 + 0.120605i
\(276\) 0 0
\(277\) −3.00000 3.00000i −0.180253 0.180253i 0.611213 0.791466i \(-0.290682\pi\)
−0.791466 + 0.611213i \(0.790682\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.0000i 1.43172i 0.698244 + 0.715860i \(0.253965\pi\)
−0.698244 + 0.715860i \(0.746035\pi\)
\(282\) 0 0
\(283\) −10.0000 + 10.0000i −0.594438 + 0.594438i −0.938827 0.344389i \(-0.888086\pi\)
0.344389 + 0.938827i \(0.388086\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −15.0000 + 8.00000i −0.882353 + 0.470588i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 16.0000i 0.934730i 0.884064 + 0.467365i \(0.154797\pi\)
−0.884064 + 0.467365i \(0.845203\pi\)
\(294\) 0 0
\(295\) 24.0000 12.0000i 1.39733 0.698667i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8.00000 + 8.00000i 0.462652 + 0.462652i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.00000 9.00000i 0.171780 0.515339i
\(306\) 0 0
\(307\) 32.0000i 1.82634i 0.407583 + 0.913168i \(0.366372\pi\)
−0.407583 + 0.913168i \(0.633628\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −12.0000 + 12.0000i −0.680458 + 0.680458i −0.960103 0.279646i \(-0.909783\pi\)
0.279646 + 0.960103i \(0.409783\pi\)
\(312\) 0 0
\(313\) −17.0000 + 17.0000i −0.960897 + 0.960897i −0.999264 0.0383669i \(-0.987784\pi\)
0.0383669 + 0.999264i \(0.487784\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −17.0000 + 17.0000i −0.954815 + 0.954815i −0.999022 0.0442073i \(-0.985924\pi\)
0.0442073 + 0.999022i \(0.485924\pi\)
\(318\) 0 0
\(319\) 20.0000 1.11979
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 8.00000 + 6.00000i 0.443760 + 0.332820i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4.00000i 0.219860i −0.993939 0.109930i \(-0.964937\pi\)
0.993939 0.109930i \(-0.0350627\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −8.00000 + 4.00000i −0.437087 + 0.218543i
\(336\) 0 0
\(337\) 13.0000 + 13.0000i 0.708155 + 0.708155i 0.966147 0.257992i \(-0.0830608\pi\)
−0.257992 + 0.966147i \(0.583061\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −14.0000 + 14.0000i −0.751559 + 0.751559i −0.974770 0.223211i \(-0.928346\pi\)
0.223211 + 0.974770i \(0.428346\pi\)
\(348\) 0 0
\(349\) 24.0000i 1.28469i −0.766415 0.642345i \(-0.777962\pi\)
0.766415 0.642345i \(-0.222038\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 24.0000i 1.27739i −0.769460 0.638696i \(-0.779474\pi\)
0.769460 0.638696i \(-0.220526\pi\)
\(354\) 0 0
\(355\) −24.0000 8.00000i −1.27379 0.424596i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.0000i 1.05556i −0.849381 0.527780i \(-0.823025\pi\)
0.849381 0.527780i \(-0.176975\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.00000 + 3.00000i −0.0523424 + 0.157027i
\(366\) 0 0
\(367\) −8.00000 + 8.00000i −0.417597 + 0.417597i −0.884375 0.466778i \(-0.845415\pi\)
0.466778 + 0.884375i \(0.345415\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 26.0000i 1.34623i −0.739538 0.673114i \(-0.764956\pi\)
0.739538 0.673114i \(-0.235044\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.0000 10.0000i −0.515026 0.515026i
\(378\) 0 0
\(379\) 2.00000 2.00000i 0.102733 0.102733i −0.653872 0.756605i \(-0.726857\pi\)
0.756605 + 0.653872i \(0.226857\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.00000 0.204390 0.102195 0.994764i \(-0.467413\pi\)
0.102195 + 0.994764i \(0.467413\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.00000i 0.304212i 0.988364 + 0.152106i \(0.0486055\pi\)
−0.988364 + 0.152106i \(0.951394\pi\)
\(390\) 0 0
\(391\) −20.0000 12.0000i −1.01144 0.606866i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −12.0000 + 36.0000i −0.603786 + 1.81136i
\(396\) 0 0
\(397\) 7.00000 7.00000i 0.351320 0.351320i −0.509281 0.860601i \(-0.670088\pi\)
0.860601 + 0.509281i \(0.170088\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.00000 9.00000i −0.449439 0.449439i 0.445729 0.895168i \(-0.352944\pi\)
−0.895168 + 0.445729i \(0.852944\pi\)
\(402\) 0 0
\(403\) −8.00000 8.00000i −0.398508 0.398508i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 20.0000i 0.991363i
\(408\) 0 0
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 4.00000 + 8.00000i 0.196352 + 0.392705i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −26.0000 26.0000i −1.27018 1.27018i −0.945991 0.324192i \(-0.894908\pi\)
−0.324192 0.945991i \(-0.605092\pi\)
\(420\) 0 0
\(421\) −8.00000 −0.389896 −0.194948 0.980814i \(-0.562454\pi\)
−0.194948 + 0.980814i \(0.562454\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −19.0000 8.00000i −0.921635 0.388057i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.00000 + 4.00000i 0.192673 + 0.192673i 0.796850 0.604177i \(-0.206498\pi\)
−0.604177 + 0.796850i \(0.706498\pi\)
\(432\) 0 0
\(433\) 16.0000 0.768911 0.384455 0.923144i \(-0.374389\pi\)
0.384455 + 0.923144i \(0.374389\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −28.0000 + 28.0000i −1.33637 + 1.33637i −0.436816 + 0.899551i \(0.643894\pi\)
−0.899551 + 0.436816i \(0.856106\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0000i 0.570137i −0.958507 0.285069i \(-0.907984\pi\)
0.958507 0.285069i \(-0.0920164\pi\)
\(444\) 0 0
\(445\) −16.0000 32.0000i −0.758473 1.51695i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 23.0000 + 23.0000i 1.08544 + 1.08544i 0.995992 + 0.0894454i \(0.0285095\pi\)
0.0894454 + 0.995992i \(0.471491\pi\)
\(450\) 0 0
\(451\) 20.0000i 0.941763i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 32.0000 1.49690 0.748448 0.663193i \(-0.230799\pi\)
0.748448 + 0.663193i \(0.230799\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 24.0000i 1.11779i −0.829238 0.558896i \(-0.811225\pi\)
0.829238 0.558896i \(-0.188775\pi\)
\(462\) 0 0
\(463\) 12.0000i 0.557687i 0.960337 + 0.278844i \(0.0899511\pi\)
−0.960337 + 0.278844i \(0.910049\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 8.00000 + 8.00000i 0.367840 + 0.367840i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(480\) 0 0
\(481\) 10.0000 10.0000i 0.455961 0.455961i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.00000 + 15.0000i −0.227038 + 0.681115i
\(486\) 0 0
\(487\) 8.00000 8.00000i 0.362515 0.362515i −0.502223 0.864738i \(-0.667484\pi\)
0.864738 + 0.502223i \(0.167484\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 25.0000 + 15.0000i 1.12594 + 0.675566i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −6.00000 6.00000i −0.268597 0.268597i 0.559938 0.828535i \(-0.310825\pi\)
−0.828535 + 0.559938i \(0.810825\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −8.00000 + 8.00000i −0.356702 + 0.356702i −0.862596 0.505894i \(-0.831163\pi\)
0.505894 + 0.862596i \(0.331163\pi\)
\(504\) 0 0
\(505\) 8.00000 + 16.0000i 0.355995 + 0.711991i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −24.0000 + 12.0000i −1.05757 + 0.528783i
\(516\) 0 0
\(517\) 16.0000 16.0000i 0.703679 0.703679i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −29.0000 29.0000i −1.27051 1.27051i −0.945819 0.324694i \(-0.894739\pi\)
−0.324694 0.945819i \(-0.605261\pi\)
\(522\) 0 0
\(523\) 36.0000i 1.57417i −0.616844 0.787085i \(-0.711589\pi\)
0.616844 0.787085i \(-0.288411\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.0000 + 12.0000i 0.871214 + 0.522728i
\(528\) 0 0
\(529\) 9.00000i 0.391304i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10.0000 10.0000i 0.433148 0.433148i
\(534\) 0 0
\(535\) 14.0000 42.0000i 0.605273 1.81582i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −14.0000 + 14.0000i −0.603023 + 0.603023i
\(540\) 0 0
\(541\) −27.0000 + 27.0000i −1.16082 + 1.16082i −0.176524 + 0.984296i \(0.556485\pi\)
−0.984296 + 0.176524i \(0.943515\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.00000 9.00000i 0.128506 0.385518i
\(546\) 0 0
\(547\) 22.0000 + 22.0000i 0.940652 + 0.940652i 0.998335 0.0576829i \(-0.0183712\pi\)
−0.0576829 + 0.998335i \(0.518371\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.0000i 0.762684i 0.924434 + 0.381342i \(0.124538\pi\)
−0.924434 + 0.381342i \(0.875462\pi\)
\(558\) 0 0
\(559\) 8.00000i 0.338364i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −44.0000 −1.85438 −0.927189 0.374593i \(-0.877783\pi\)
−0.927189 + 0.374593i \(0.877783\pi\)
\(564\) 0 0
\(565\) −33.0000 11.0000i −1.38832 0.462773i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −2.00000 2.00000i −0.0836974 0.0836974i 0.664019 0.747716i \(-0.268850\pi\)
−0.747716 + 0.664019i \(0.768850\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4.00000 28.0000i −0.166812 1.16768i
\(576\) 0 0
\(577\) 2.00000i 0.0832611i 0.999133 + 0.0416305i \(0.0132552\pi\)
−0.999133 + 0.0416305i \(0.986745\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −12.0000 12.0000i −0.496989 0.496989i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24.0000 0.990586 0.495293 0.868726i \(-0.335061\pi\)
0.495293 + 0.868726i \(0.335061\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −22.0000 −0.903432 −0.451716 0.892162i \(-0.649188\pi\)
−0.451716 + 0.892162i \(0.649188\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 3.00000 + 3.00000i 0.122373 + 0.122373i 0.765641 0.643268i \(-0.222422\pi\)
−0.643268 + 0.765641i \(0.722422\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.00000 + 3.00000i −0.243935 + 0.121967i
\(606\) 0 0
\(607\) 16.0000 + 16.0000i 0.649420 + 0.649420i 0.952853 0.303433i \(-0.0981328\pi\)
−0.303433 + 0.952853i \(0.598133\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −16.0000 −0.647291
\(612\) 0 0
\(613\) 16.0000i 0.646234i −0.946359 0.323117i \(-0.895269\pi\)
0.946359 0.323117i \(-0.104731\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.0000 + 23.0000i 0.925945 + 0.925945i 0.997441 0.0714958i \(-0.0227772\pi\)
−0.0714958 + 0.997441i \(0.522777\pi\)
\(618\) 0 0
\(619\) −14.0000 14.0000i −0.562708 0.562708i 0.367368 0.930076i \(-0.380259\pi\)
−0.930076 + 0.367368i \(0.880259\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.0000 + 25.0000i −0.598089 + 0.996815i
\(630\) 0 0
\(631\) 4.00000i 0.159237i −0.996825 0.0796187i \(-0.974630\pi\)
0.996825 0.0796187i \(-0.0253703\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −20.0000 40.0000i −0.793676 1.58735i
\(636\) 0 0
\(637\) 14.0000 0.554700
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.0000 15.0000i 0.592464 0.592464i −0.345832 0.938296i \(-0.612403\pi\)
0.938296 + 0.345832i \(0.112403\pi\)
\(642\) 0 0
\(643\) −22.0000 22.0000i −0.867595 0.867595i 0.124610 0.992206i \(-0.460232\pi\)
−0.992206 + 0.124610i \(0.960232\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.0000i 0.629025i 0.949253 + 0.314512i \(0.101841\pi\)
−0.949253 + 0.314512i \(0.898159\pi\)
\(648\) 0 0
\(649\) −24.0000 + 24.0000i −0.942082 + 0.942082i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −7.00000 + 7.00000i −0.273931 + 0.273931i −0.830681 0.556749i \(-0.812048\pi\)
0.556749 + 0.830681i \(0.312048\pi\)
\(654\) 0 0
\(655\) −18.0000 6.00000i −0.703318 0.234439i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −40.0000 −1.55818 −0.779089 0.626913i \(-0.784318\pi\)
−0.779089 + 0.626913i \(0.784318\pi\)
\(660\) 0 0
\(661\) 24.0000i 0.933492i −0.884391 0.466746i \(-0.845426\pi\)
0.884391 0.466746i \(-0.154574\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 40.0000i 1.54881i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 12.0000i 0.463255i
\(672\) 0 0
\(673\) −19.0000 + 19.0000i −0.732396 + 0.732396i −0.971094 0.238698i \(-0.923279\pi\)
0.238698 + 0.971094i \(0.423279\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.00000 5.00000i −0.192166 0.192166i 0.604466 0.796631i \(-0.293387\pi\)
−0.796631 + 0.604466i \(0.793387\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 22.0000 + 22.0000i 0.841807 + 0.841807i 0.989094 0.147287i \(-0.0470541\pi\)
−0.147287 + 0.989094i \(0.547054\pi\)
\(684\) 0 0
\(685\) −12.0000 + 6.00000i −0.458496 + 0.229248i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.0000i 0.457164i
\(690\) 0 0
\(691\) −26.0000 26.0000i −0.989087 0.989087i 0.0108545 0.999941i \(-0.496545\pi\)
−0.999941 + 0.0108545i \(0.996545\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.00000 2.00000i −0.227593 0.0758643i
\(696\) 0 0
\(697\) −15.0000 + 25.0000i −0.568166 + 0.946943i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −8.00000 −0.302156 −0.151078 0.988522i \(-0.548274\pi\)
−0.151078 + 0.988522i \(0.548274\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 15.0000 15.0000i 0.563337 0.563337i −0.366917 0.930254i \(-0.619587\pi\)
0.930254 + 0.366917i \(0.119587\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 32.0000i 1.19841i
\(714\) 0 0
\(715\) −12.0000 4.00000i −0.448775 0.149592i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.00000 + 4.00000i −0.149175 + 0.149175i −0.777749 0.628575i \(-0.783639\pi\)
0.628575 + 0.777749i \(0.283639\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.00000 + 35.0000i 0.185695 + 1.29987i
\(726\) 0 0
\(727\) 16.0000i 0.593407i 0.954970 + 0.296704i \(0.0958873\pi\)
−0.954970 + 0.296704i \(0.904113\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.00000 + 16.0000i 0.147945 + 0.591781i
\(732\) 0 0
\(733\) 34.0000 1.25582 0.627909 0.778287i \(-0.283911\pi\)
0.627909 + 0.778287i \(0.283911\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.00000 8.00000i 0.294684 0.294684i
\(738\) 0 0
\(739\) 40.0000i 1.47142i 0.677295 + 0.735712i \(0.263152\pi\)
−0.677295 + 0.735712i \(0.736848\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −12.0000 12.0000i −0.440237 0.440237i 0.451854 0.892092i \(-0.350763\pi\)
−0.892092 + 0.451854i \(0.850763\pi\)
\(744\) 0 0
\(745\) −22.0000 44.0000i −0.806018 1.61204i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 4.00000 4.00000i 0.145962 0.145962i −0.630349 0.776312i \(-0.717088\pi\)
0.776312 + 0.630349i \(0.217088\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16.0000 8.00000i 0.582300 0.291150i
\(756\) 0 0
\(757\) 16.0000 0.581530 0.290765 0.956795i \(-0.406090\pi\)
0.290765 + 0.956795i \(0.406090\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.00000 0.290000 0.145000 0.989432i \(-0.453682\pi\)
0.145000 + 0.989432i \(0.453682\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 24.0000 0.866590
\(768\) 0 0
\(769\) 24.0000 0.865462 0.432731 0.901523i \(-0.357550\pi\)
0.432731 + 0.901523i \(0.357550\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 32.0000 1.15096 0.575480 0.817816i \(-0.304815\pi\)
0.575480 + 0.817816i \(0.304815\pi\)
\(774\) 0 0
\(775\) 4.00000 + 28.0000i 0.143684 + 1.00579i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 32.0000 16.0000i 1.14213 0.571064i
\(786\) 0 0
\(787\) 14.0000 + 14.0000i 0.499046 + 0.499046i 0.911141 0.412095i \(-0.135203\pi\)
−0.412095 + 0.911141i \(0.635203\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.00000 6.00000i 0.213066 0.213066i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −30.0000 −1.06265 −0.531327 0.847167i \(-0.678307\pi\)
−0.531327 + 0.847167i \(0.678307\pi\)
\(798\) 0 0
\(799\) 32.0000 8.00000i 1.13208 0.283020i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.00000i 0.141157i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −27.0000 27.0000i −0.949269 0.949269i 0.0495045 0.998774i \(-0.484236\pi\)
−0.998774 + 0.0495045i \(0.984236\pi\)
\(810\) 0 0
\(811\) −38.0000 + 38.0000i −1.33436 + 1.33436i −0.432936 + 0.901425i \(0.642522\pi\)
−0.901425 + 0.432936i \(0.857478\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −18.0000 6.00000i −0.630512 0.210171i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −25.0000 + 25.0000i −0.872506 + 0.872506i −0.992745 0.120239i \(-0.961634\pi\)
0.120239 + 0.992745i \(0.461634\pi\)
\(822\) 0 0
\(823\) −20.0000 + 20.0000i −0.697156 + 0.697156i −0.963796 0.266640i \(-0.914087\pi\)
0.266640 + 0.963796i \(0.414087\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −6.00000 + 6.00000i −0.208640 + 0.208640i −0.803689 0.595049i \(-0.797133\pi\)
0.595049 + 0.803689i \(0.297133\pi\)
\(828\) 0 0
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −28.0000 + 7.00000i −0.970143 + 0.242536i
\(834\) 0 0
\(835\) −8.00000 + 24.0000i −0.276851 + 0.830554i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(840\) 0 0
\(841\) 21.0000i 0.724138i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −9.00000 18.0000i −0.309609 0.619219i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −40.0000 −1.37118
\(852\) 0 0
\(853\) 21.0000 + 21.0000i 0.719026 + 0.719026i 0.968406 0.249380i \(-0.0802267\pi\)
−0.249380 + 0.968406i \(0.580227\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9.00000 9.00000i 0.307434 0.307434i −0.536479 0.843913i \(-0.680246\pi\)
0.843913 + 0.536479i \(0.180246\pi\)
\(858\) 0 0
\(859\) 36.0000i 1.22830i −0.789188 0.614152i \(-0.789498\pi\)
0.789188 0.614152i \(-0.210502\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 12.0000i 0.408485i −0.978920 0.204242i \(-0.934527\pi\)
0.978920 0.204242i \(-0.0654731\pi\)
\(864\) 0 0
\(865\) −7.00000 + 21.0000i −0.238007 + 0.714021i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 48.0000i 1.62829i
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −33.0000 + 33.0000i −1.11433 + 1.11433i −0.121773 + 0.992558i \(0.538858\pi\)
−0.992558 + 0.121773i \(0.961142\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −23.0000 + 23.0000i −0.774890 + 0.774890i −0.978957 0.204067i \(-0.934584\pi\)
0.204067 + 0.978957i \(0.434584\pi\)
\(882\) 0 0
\(883\) 4.00000i 0.134611i −0.997732 0.0673054i \(-0.978560\pi\)
0.997732 0.0673054i \(-0.0214402\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 4.00000 + 4.00000i 0.134307 + 0.134307i 0.771064 0.636757i \(-0.219725\pi\)
−0.636757 + 0.771064i \(0.719725\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 40.0000i 1.33407i
\(900\) 0 0
\(901\) −6.00000 24.0000i −0.199889 0.799556i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 17.0000 51.0000i 0.565099 1.69530i
\(906\) 0 0
\(907\) 22.0000 22.0000i 0.730498 0.730498i −0.240220 0.970718i \(-0.577220\pi\)
0.970718 + 0.240220i \(0.0772197\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −16.0000 16.0000i −0.530104 0.530104i 0.390499 0.920603i \(-0.372302\pi\)
−0.920603 + 0.390499i \(0.872302\pi\)
\(912\) 0 0
\(913\) −8.00000 8.00000i −0.264761 0.264761i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 12.0000 0.395843 0.197922 0.980218i \(-0.436581\pi\)
0.197922 + 0.980218i \(0.436581\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −16.0000 16.0000i −0.526646 0.526646i
\(924\) 0 0
\(925\) −35.0000 + 5.00000i −1.15079 + 0.164399i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 9.00000 + 9.00000i 0.295280 + 0.295280i 0.839162 0.543882i \(-0.183046\pi\)
−0.543882 + 0.839162i \(0.683046\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 26.0000 + 2.00000i 0.850291 + 0.0654070i
\(936\) 0 0
\(937\) 10.0000 0.326686 0.163343 0.986569i \(-0.447772\pi\)
0.163343 + 0.986569i \(0.447772\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 21.0000 + 21.0000i 0.684580 + 0.684580i 0.961029 0.276448i \(-0.0891575\pi\)
−0.276448 + 0.961029i \(0.589157\pi\)
\(942\) 0 0
\(943\) −40.0000 −1.30258
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30.0000 + 30.0000i 0.974869 + 0.974869i 0.999692 0.0248229i \(-0.00790217\pi\)
−0.0248229 + 0.999692i \(0.507902\pi\)
\(948\) 0 0
\(949\) −2.00000 + 2.00000i −0.0649227 + 0.0649227i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 30.0000i 0.971795i −0.874016 0.485898i \(-0.838493\pi\)
0.874016 0.485898i \(-0.161507\pi\)
\(954\) 0 0
\(955\) 4.00000 + 8.00000i 0.129437 + 0.258874i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000i 0.0322581i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 15.0000 + 5.00000i 0.482867 + 0.160956i
\(966\) 0 0
\(967\) −48.0000 −1.54358 −0.771788 0.635880i \(-0.780637\pi\)
−0.771788 + 0.635880i \(0.780637\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.00000i 0.128366i 0.997938 + 0.0641831i \(0.0204442\pi\)
−0.997938 + 0.0641831i \(0.979556\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) 32.0000 + 32.0000i 1.02272 + 1.02272i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) −15.0000 5.00000i −0.477940 0.159313i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −16.0000 + 16.0000i −0.508770 + 0.508770i
\(990\) 0 0
\(991\) −36.0000 + 36.0000i −1.14358 + 1.14358i −0.155787 + 0.987791i \(0.549791\pi\)
−0.987791 + 0.155787i \(0.950209\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 36.0000 + 12.0000i 1.14128 + 0.380426i
\(996\) 0 0
\(997\) 3.00000 3.00000i 0.0950110 0.0950110i −0.658004 0.753015i \(-0.728599\pi\)
0.753015 + 0.658004i \(0.228599\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.z.a.2809.1 2
3.2 odd 2 340.2.m.b.89.1 yes 2
5.4 even 2 3060.2.z.b.2809.1 2
15.2 even 4 1700.2.o.b.701.1 2
15.8 even 4 1700.2.o.a.701.1 2
15.14 odd 2 340.2.m.a.89.1 2
17.13 even 4 3060.2.z.b.829.1 2
51.47 odd 4 340.2.m.a.149.1 yes 2
85.64 even 4 inner 3060.2.z.a.829.1 2
255.47 even 4 1700.2.o.b.1101.1 2
255.98 even 4 1700.2.o.a.1101.1 2
255.149 odd 4 340.2.m.b.149.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
340.2.m.a.89.1 2 15.14 odd 2
340.2.m.a.149.1 yes 2 51.47 odd 4
340.2.m.b.89.1 yes 2 3.2 odd 2
340.2.m.b.149.1 yes 2 255.149 odd 4
1700.2.o.a.701.1 2 15.8 even 4
1700.2.o.a.1101.1 2 255.98 even 4
1700.2.o.b.701.1 2 15.2 even 4
1700.2.o.b.1101.1 2 255.47 even 4
3060.2.z.a.829.1 2 85.64 even 4 inner
3060.2.z.a.2809.1 2 1.1 even 1 trivial
3060.2.z.b.829.1 2 17.13 even 4
3060.2.z.b.2809.1 2 5.4 even 2