Properties

Label 1700.2.o.a.1101.1
Level $1700$
Weight $2$
Character 1700.1101
Analytic conductor $13.575$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1700,2,Mod(701,1700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1700.701"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1700, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1700 = 2^{2} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1700.o (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.5745683436\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 340)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1101.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1700.1101
Dual form 1700.2.o.a.701.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 - 2.00000i) q^{3} +5.00000i q^{9} +(-2.00000 + 2.00000i) q^{11} +2.00000 q^{13} +(-4.00000 - 1.00000i) q^{17} +(4.00000 - 4.00000i) q^{23} +(4.00000 - 4.00000i) q^{27} +(5.00000 + 5.00000i) q^{29} +(4.00000 + 4.00000i) q^{31} +8.00000 q^{33} +(5.00000 + 5.00000i) q^{37} +(-4.00000 - 4.00000i) q^{39} +(-5.00000 + 5.00000i) q^{41} -4.00000i q^{43} +8.00000 q^{47} +7.00000i q^{49} +(6.00000 + 10.0000i) q^{51} -6.00000i q^{53} -12.0000i q^{59} +(3.00000 - 3.00000i) q^{61} -4.00000 q^{67} -16.0000 q^{69} +(-8.00000 - 8.00000i) q^{71} +(1.00000 + 1.00000i) q^{73} +(12.0000 - 12.0000i) q^{79} -1.00000 q^{81} -4.00000i q^{83} -20.0000i q^{87} +16.0000 q^{89} -16.0000i q^{93} +(-5.00000 - 5.00000i) q^{97} +(-10.0000 - 10.0000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} - 4 q^{11} + 4 q^{13} - 8 q^{17} + 8 q^{23} + 8 q^{27} + 10 q^{29} + 8 q^{31} + 16 q^{33} + 10 q^{37} - 8 q^{39} - 10 q^{41} + 16 q^{47} + 12 q^{51} + 6 q^{61} - 8 q^{67} - 32 q^{69} - 16 q^{71}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1700\mathbb{Z}\right)^\times\).

\(n\) \(477\) \(851\) \(1601\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.00000 2.00000i −1.15470 1.15470i −0.985599 0.169102i \(-0.945913\pi\)
−0.169102 0.985599i \(-0.554087\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) 0 0
\(9\) 5.00000i 1.66667i
\(10\) 0 0
\(11\) −2.00000 + 2.00000i −0.603023 + 0.603023i −0.941113 0.338091i \(-0.890219\pi\)
0.338091 + 0.941113i \(0.390219\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.00000 1.00000i −0.970143 0.242536i
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 4.00000i 0.834058 0.834058i −0.154011 0.988069i \(-0.549219\pi\)
0.988069 + 0.154011i \(0.0492193\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.00000 4.00000i 0.769800 0.769800i
\(28\) 0 0
\(29\) 5.00000 + 5.00000i 0.928477 + 0.928477i 0.997608 0.0691309i \(-0.0220226\pi\)
−0.0691309 + 0.997608i \(0.522023\pi\)
\(30\) 0 0
\(31\) 4.00000 + 4.00000i 0.718421 + 0.718421i 0.968282 0.249861i \(-0.0803848\pi\)
−0.249861 + 0.968282i \(0.580385\pi\)
\(32\) 0 0
\(33\) 8.00000 1.39262
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.00000 + 5.00000i 0.821995 + 0.821995i 0.986394 0.164399i \(-0.0525685\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) −4.00000 4.00000i −0.640513 0.640513i
\(40\) 0 0
\(41\) −5.00000 + 5.00000i −0.780869 + 0.780869i −0.979977 0.199109i \(-0.936195\pi\)
0.199109 + 0.979977i \(0.436195\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) 6.00000 + 10.0000i 0.840168 + 1.40028i
\(52\) 0 0
\(53\) 6.00000i 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.0000i 1.56227i −0.624364 0.781133i \(-0.714642\pi\)
0.624364 0.781133i \(-0.285358\pi\)
\(60\) 0 0
\(61\) 3.00000 3.00000i 0.384111 0.384111i −0.488470 0.872581i \(-0.662445\pi\)
0.872581 + 0.488470i \(0.162445\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) 0 0
\(69\) −16.0000 −1.92617
\(70\) 0 0
\(71\) −8.00000 8.00000i −0.949425 0.949425i 0.0493559 0.998781i \(-0.484283\pi\)
−0.998781 + 0.0493559i \(0.984283\pi\)
\(72\) 0 0
\(73\) 1.00000 + 1.00000i 0.117041 + 0.117041i 0.763202 0.646160i \(-0.223626\pi\)
−0.646160 + 0.763202i \(0.723626\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 12.0000 12.0000i 1.35011 1.35011i 0.464568 0.885537i \(-0.346210\pi\)
0.885537 0.464568i \(-0.153790\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 4.00000i 0.439057i −0.975606 0.219529i \(-0.929548\pi\)
0.975606 0.219529i \(-0.0704519\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 20.0000i 2.14423i
\(88\) 0 0
\(89\) 16.0000 1.69600 0.847998 0.529999i \(-0.177808\pi\)
0.847998 + 0.529999i \(0.177808\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 16.0000i 1.65912i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −5.00000 5.00000i −0.507673 0.507673i 0.406138 0.913812i \(-0.366875\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 0 0
\(99\) −10.0000 10.0000i −1.00504 1.00504i
\(100\) 0 0
\(101\) 8.00000 0.796030 0.398015 0.917379i \(-0.369699\pi\)
0.398015 + 0.917379i \(0.369699\pi\)
\(102\) 0 0
\(103\) 12.0000 1.18240 0.591198 0.806527i \(-0.298655\pi\)
0.591198 + 0.806527i \(0.298655\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −14.0000 14.0000i −1.35343 1.35343i −0.881791 0.471640i \(-0.843662\pi\)
−0.471640 0.881791i \(-0.656338\pi\)
\(108\) 0 0
\(109\) −3.00000 + 3.00000i −0.287348 + 0.287348i −0.836031 0.548683i \(-0.815129\pi\)
0.548683 + 0.836031i \(0.315129\pi\)
\(110\) 0 0
\(111\) 20.0000i 1.89832i
\(112\) 0 0
\(113\) −11.0000 + 11.0000i −1.03479 + 1.03479i −0.0354205 + 0.999372i \(0.511277\pi\)
−0.999372 + 0.0354205i \(0.988723\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 10.0000i 0.924500i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.00000i 0.272727i
\(122\) 0 0
\(123\) 20.0000 1.80334
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 20.0000i 1.77471i 0.461084 + 0.887357i \(0.347461\pi\)
−0.461084 + 0.887357i \(0.652539\pi\)
\(128\) 0 0
\(129\) −8.00000 + 8.00000i −0.704361 + 0.704361i
\(130\) 0 0
\(131\) −6.00000 6.00000i −0.524222 0.524222i 0.394621 0.918844i \(-0.370876\pi\)
−0.918844 + 0.394621i \(0.870876\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −2.00000 2.00000i −0.169638 0.169638i 0.617182 0.786820i \(-0.288274\pi\)
−0.786820 + 0.617182i \(0.788274\pi\)
\(140\) 0 0
\(141\) −16.0000 16.0000i −1.34744 1.34744i
\(142\) 0 0
\(143\) −4.00000 + 4.00000i −0.334497 + 0.334497i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 14.0000 14.0000i 1.15470 1.15470i
\(148\) 0 0
\(149\) 22.0000 1.80231 0.901155 0.433497i \(-0.142720\pi\)
0.901155 + 0.433497i \(0.142720\pi\)
\(150\) 0 0
\(151\) 8.00000i 0.651031i −0.945537 0.325515i \(-0.894462\pi\)
0.945537 0.325515i \(-0.105538\pi\)
\(152\) 0 0
\(153\) 5.00000 20.0000i 0.404226 1.61690i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 16.0000 1.27694 0.638470 0.769647i \(-0.279568\pi\)
0.638470 + 0.769647i \(0.279568\pi\)
\(158\) 0 0
\(159\) −12.0000 + 12.0000i −0.951662 + 0.951662i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 6.00000 6.00000i 0.469956 0.469956i −0.431944 0.901900i \(-0.642172\pi\)
0.901900 + 0.431944i \(0.142172\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.00000 + 8.00000i 0.619059 + 0.619059i 0.945290 0.326231i \(-0.105779\pi\)
−0.326231 + 0.945290i \(0.605779\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.00000 7.00000i −0.532200 0.532200i 0.389026 0.921227i \(-0.372811\pi\)
−0.921227 + 0.389026i \(0.872811\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −24.0000 + 24.0000i −1.80395 + 1.80395i
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 17.0000 17.0000i 1.26360 1.26360i 0.314265 0.949335i \(-0.398242\pi\)
0.949335 0.314265i \(-0.101758\pi\)
\(182\) 0 0
\(183\) −12.0000 −0.887066
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 10.0000 6.00000i 0.731272 0.438763i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) −5.00000 + 5.00000i −0.359908 + 0.359908i −0.863779 0.503871i \(-0.831909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5.00000 5.00000i 0.356235 0.356235i −0.506188 0.862423i \(-0.668946\pi\)
0.862423 + 0.506188i \(0.168946\pi\)
\(198\) 0 0
\(199\) 12.0000 + 12.0000i 0.850657 + 0.850657i 0.990214 0.139557i \(-0.0445677\pi\)
−0.139557 + 0.990214i \(0.544568\pi\)
\(200\) 0 0
\(201\) 8.00000 + 8.00000i 0.564276 + 0.564276i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 20.0000 + 20.0000i 1.39010 + 1.39010i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −10.0000 + 10.0000i −0.688428 + 0.688428i −0.961884 0.273456i \(-0.911833\pi\)
0.273456 + 0.961884i \(0.411833\pi\)
\(212\) 0 0
\(213\) 32.0000i 2.19260i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 4.00000i 0.270295i
\(220\) 0 0
\(221\) −8.00000 2.00000i −0.538138 0.134535i
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.00000 + 2.00000i −0.132745 + 0.132745i −0.770357 0.637613i \(-0.779922\pi\)
0.637613 + 0.770357i \(0.279922\pi\)
\(228\) 0 0
\(229\) 10.0000i 0.660819i −0.943838 0.330409i \(-0.892813\pi\)
0.943838 0.330409i \(-0.107187\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.00000 + 1.00000i 0.0655122 + 0.0655122i 0.739104 0.673592i \(-0.235249\pi\)
−0.673592 + 0.739104i \(0.735249\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −48.0000 −3.11794
\(238\) 0 0
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 0 0
\(241\) 7.00000 + 7.00000i 0.450910 + 0.450910i 0.895656 0.444747i \(-0.146706\pi\)
−0.444747 + 0.895656i \(0.646706\pi\)
\(242\) 0 0
\(243\) −10.0000 10.0000i −0.641500 0.641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −8.00000 + 8.00000i −0.506979 + 0.506979i
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 16.0000i 1.00591i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 24.0000i 1.49708i −0.663090 0.748539i \(-0.730755\pi\)
0.663090 0.748539i \(-0.269245\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −25.0000 + 25.0000i −1.54746 + 1.54746i
\(262\) 0 0
\(263\) 12.0000i 0.739952i 0.929041 + 0.369976i \(0.120634\pi\)
−0.929041 + 0.369976i \(0.879366\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −32.0000 32.0000i −1.95837 1.95837i
\(268\) 0 0
\(269\) 5.00000 + 5.00000i 0.304855 + 0.304855i 0.842910 0.538055i \(-0.180841\pi\)
−0.538055 + 0.842910i \(0.680841\pi\)
\(270\) 0 0
\(271\) 4.00000 0.242983 0.121491 0.992592i \(-0.461232\pi\)
0.121491 + 0.992592i \(0.461232\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −3.00000 3.00000i −0.180253 0.180253i 0.611213 0.791466i \(-0.290682\pi\)
−0.791466 + 0.611213i \(0.790682\pi\)
\(278\) 0 0
\(279\) −20.0000 + 20.0000i −1.19737 + 1.19737i
\(280\) 0 0
\(281\) 24.0000i 1.43172i 0.698244 + 0.715860i \(0.253965\pi\)
−0.698244 + 0.715860i \(0.746035\pi\)
\(282\) 0 0
\(283\) −10.0000 + 10.0000i −0.594438 + 0.594438i −0.938827 0.344389i \(-0.888086\pi\)
0.344389 + 0.938827i \(0.388086\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 15.0000 + 8.00000i 0.882353 + 0.470588i
\(290\) 0 0
\(291\) 20.0000i 1.17242i
\(292\) 0 0
\(293\) 16.0000 0.934730 0.467365 0.884064i \(-0.345203\pi\)
0.467365 + 0.884064i \(0.345203\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 16.0000i 0.928414i
\(298\) 0 0
\(299\) 8.00000 8.00000i 0.462652 0.462652i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −16.0000 16.0000i −0.919176 0.919176i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 32.0000 1.82634 0.913168 0.407583i \(-0.133628\pi\)
0.913168 + 0.407583i \(0.133628\pi\)
\(308\) 0 0
\(309\) −24.0000 24.0000i −1.36531 1.36531i
\(310\) 0 0
\(311\) 12.0000 + 12.0000i 0.680458 + 0.680458i 0.960103 0.279646i \(-0.0902170\pi\)
−0.279646 + 0.960103i \(0.590217\pi\)
\(312\) 0 0
\(313\) −17.0000 + 17.0000i −0.960897 + 0.960897i −0.999264 0.0383669i \(-0.987784\pi\)
0.0383669 + 0.999264i \(0.487784\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −17.0000 + 17.0000i −0.954815 + 0.954815i −0.999022 0.0442073i \(-0.985924\pi\)
0.0442073 + 0.999022i \(0.485924\pi\)
\(318\) 0 0
\(319\) −20.0000 −1.11979
\(320\) 0 0
\(321\) 56.0000i 3.12562i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 12.0000 0.663602
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4.00000i 0.219860i 0.993939 + 0.109930i \(0.0350627\pi\)
−0.993939 + 0.109930i \(0.964937\pi\)
\(332\) 0 0
\(333\) −25.0000 + 25.0000i −1.36999 + 1.36999i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 13.0000 + 13.0000i 0.708155 + 0.708155i 0.966147 0.257992i \(-0.0830608\pi\)
−0.257992 + 0.966147i \(0.583061\pi\)
\(338\) 0 0
\(339\) 44.0000 2.38975
\(340\) 0 0
\(341\) −16.0000 −0.866449
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −14.0000 + 14.0000i −0.751559 + 0.751559i −0.974770 0.223211i \(-0.928346\pi\)
0.223211 + 0.974770i \(0.428346\pi\)
\(348\) 0 0
\(349\) 24.0000i 1.28469i −0.766415 0.642345i \(-0.777962\pi\)
0.766415 0.642345i \(-0.222038\pi\)
\(350\) 0 0
\(351\) 8.00000 8.00000i 0.427008 0.427008i
\(352\) 0 0
\(353\) −24.0000 −1.27739 −0.638696 0.769460i \(-0.720526\pi\)
−0.638696 + 0.769460i \(0.720526\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.0000i 1.05556i 0.849381 + 0.527780i \(0.176975\pi\)
−0.849381 + 0.527780i \(0.823025\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 6.00000 6.00000i 0.314918 0.314918i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 8.00000 8.00000i 0.417597 0.417597i −0.466778 0.884375i \(-0.654585\pi\)
0.884375 + 0.466778i \(0.154585\pi\)
\(368\) 0 0
\(369\) −25.0000 25.0000i −1.30145 1.30145i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 26.0000 1.34623 0.673114 0.739538i \(-0.264956\pi\)
0.673114 + 0.739538i \(0.264956\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 10.0000 + 10.0000i 0.515026 + 0.515026i
\(378\) 0 0
\(379\) −2.00000 2.00000i −0.102733 0.102733i 0.653872 0.756605i \(-0.273143\pi\)
−0.756605 + 0.653872i \(0.773143\pi\)
\(380\) 0 0
\(381\) 40.0000 40.0000i 2.04926 2.04926i
\(382\) 0 0
\(383\) 4.00000i 0.204390i 0.994764 + 0.102195i \(0.0325866\pi\)
−0.994764 + 0.102195i \(0.967413\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 20.0000 1.01666
\(388\) 0 0
\(389\) 6.00000i 0.304212i −0.988364 0.152106i \(-0.951394\pi\)
0.988364 0.152106i \(-0.0486055\pi\)
\(390\) 0 0
\(391\) −20.0000 + 12.0000i −1.01144 + 0.606866i
\(392\) 0 0
\(393\) 24.0000i 1.21064i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −7.00000 + 7.00000i −0.351320 + 0.351320i −0.860601 0.509281i \(-0.829912\pi\)
0.509281 + 0.860601i \(0.329912\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.00000 9.00000i 0.449439 0.449439i −0.445729 0.895168i \(-0.647056\pi\)
0.895168 + 0.445729i \(0.147056\pi\)
\(402\) 0 0
\(403\) 8.00000 + 8.00000i 0.398508 + 0.398508i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −20.0000 −0.991363
\(408\) 0 0
\(409\) 14.0000 0.692255 0.346128 0.938187i \(-0.387496\pi\)
0.346128 + 0.938187i \(0.387496\pi\)
\(410\) 0 0
\(411\) −12.0000 12.0000i −0.591916 0.591916i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 8.00000i 0.391762i
\(418\) 0 0
\(419\) −26.0000 + 26.0000i −1.27018 + 1.27018i −0.324192 + 0.945991i \(0.605092\pi\)
−0.945991 + 0.324192i \(0.894908\pi\)
\(420\) 0 0
\(421\) −8.00000 −0.389896 −0.194948 0.980814i \(-0.562454\pi\)
−0.194948 + 0.980814i \(0.562454\pi\)
\(422\) 0 0
\(423\) 40.0000i 1.94487i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 16.0000 0.772487
\(430\) 0 0
\(431\) −4.00000 + 4.00000i −0.192673 + 0.192673i −0.796850 0.604177i \(-0.793502\pi\)
0.604177 + 0.796850i \(0.293502\pi\)
\(432\) 0 0
\(433\) 16.0000i 0.768911i −0.923144 0.384455i \(-0.874389\pi\)
0.923144 0.384455i \(-0.125611\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 28.0000 + 28.0000i 1.33637 + 1.33637i 0.899551 + 0.436816i \(0.143894\pi\)
0.436816 + 0.899551i \(0.356106\pi\)
\(440\) 0 0
\(441\) −35.0000 −1.66667
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −44.0000 44.0000i −2.08113 2.08113i
\(448\) 0 0
\(449\) 23.0000 23.0000i 1.08544 1.08544i 0.0894454 0.995992i \(-0.471491\pi\)
0.995992 0.0894454i \(-0.0285095\pi\)
\(450\) 0 0
\(451\) 20.0000i 0.941763i
\(452\) 0 0
\(453\) −16.0000 + 16.0000i −0.751746 + 0.751746i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 32.0000i 1.49690i 0.663193 + 0.748448i \(0.269201\pi\)
−0.663193 + 0.748448i \(0.730799\pi\)
\(458\) 0 0
\(459\) −20.0000 + 12.0000i −0.933520 + 0.560112i
\(460\) 0 0
\(461\) 24.0000i 1.11779i −0.829238 0.558896i \(-0.811225\pi\)
0.829238 0.558896i \(-0.188775\pi\)
\(462\) 0 0
\(463\) −12.0000 −0.557687 −0.278844 0.960337i \(-0.589951\pi\)
−0.278844 + 0.960337i \(0.589951\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −32.0000 32.0000i −1.47448 1.47448i
\(472\) 0 0
\(473\) 8.00000 + 8.00000i 0.367840 + 0.367840i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 30.0000 1.37361
\(478\) 0 0
\(479\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(480\) 0 0
\(481\) 10.0000 + 10.0000i 0.455961 + 0.455961i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −8.00000 + 8.00000i −0.362515 + 0.362515i −0.864738 0.502223i \(-0.832516\pi\)
0.502223 + 0.864738i \(0.332516\pi\)
\(488\) 0 0
\(489\) −24.0000 −1.08532
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) −15.0000 25.0000i −0.675566 1.12594i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 6.00000 6.00000i 0.268597 0.268597i −0.559938 0.828535i \(-0.689175\pi\)
0.828535 + 0.559938i \(0.189175\pi\)
\(500\) 0 0
\(501\) 32.0000i 1.42965i
\(502\) 0 0
\(503\) 8.00000 8.00000i 0.356702 0.356702i −0.505894 0.862596i \(-0.668837\pi\)
0.862596 + 0.505894i \(0.168837\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 18.0000 + 18.0000i 0.799408 + 0.799408i
\(508\) 0 0
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −16.0000 + 16.0000i −0.703679 + 0.703679i
\(518\) 0 0
\(519\) 28.0000i 1.22906i
\(520\) 0 0
\(521\) 29.0000 29.0000i 1.27051 1.27051i 0.324694 0.945819i \(-0.394739\pi\)
0.945819 0.324694i \(-0.105261\pi\)
\(522\) 0 0
\(523\) 36.0000 1.57417 0.787085 0.616844i \(-0.211589\pi\)
0.787085 + 0.616844i \(0.211589\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12.0000 20.0000i −0.522728 0.871214i
\(528\) 0 0
\(529\) 9.00000i 0.391304i
\(530\) 0 0
\(531\) 60.0000 2.60378
\(532\) 0 0
\(533\) −10.0000 + 10.0000i −0.433148 + 0.433148i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −14.0000 14.0000i −0.603023 0.603023i
\(540\) 0 0
\(541\) −27.0000 27.0000i −1.16082 1.16082i −0.984296 0.176524i \(-0.943515\pi\)
−0.176524 0.984296i \(-0.556485\pi\)
\(542\) 0 0
\(543\) −68.0000 −2.91816
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 22.0000 + 22.0000i 0.940652 + 0.940652i 0.998335 0.0576829i \(-0.0183712\pi\)
−0.0576829 + 0.998335i \(0.518371\pi\)
\(548\) 0 0
\(549\) 15.0000 + 15.0000i 0.640184 + 0.640184i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) 8.00000i 0.338364i
\(560\) 0 0
\(561\) −32.0000 8.00000i −1.35104 0.337760i
\(562\) 0 0
\(563\) 44.0000i 1.85438i −0.374593 0.927189i \(-0.622217\pi\)
0.374593 0.927189i \(-0.377783\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) −2.00000 + 2.00000i −0.0836974 + 0.0836974i −0.747716 0.664019i \(-0.768850\pi\)
0.664019 + 0.747716i \(0.268850\pi\)
\(572\) 0 0
\(573\) −8.00000 8.00000i −0.334205 0.334205i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) 20.0000 0.831172
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 12.0000 + 12.0000i 0.496989 + 0.496989i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24.0000i 0.990586i −0.868726 0.495293i \(-0.835061\pi\)
0.868726 0.495293i \(-0.164939\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −20.0000 −0.822690
\(592\) 0 0
\(593\) 22.0000i 0.903432i −0.892162 0.451716i \(-0.850812\pi\)
0.892162 0.451716i \(-0.149188\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 48.0000i 1.96451i
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 3.00000 3.00000i 0.122373 0.122373i −0.643268 0.765641i \(-0.722422\pi\)
0.765641 + 0.643268i \(0.222422\pi\)
\(602\) 0 0
\(603\) 20.0000i 0.814463i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 16.0000 + 16.0000i 0.649420 + 0.649420i 0.952853 0.303433i \(-0.0981328\pi\)
−0.303433 + 0.952853i \(0.598133\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16.0000 0.647291
\(612\) 0 0
\(613\) 16.0000 0.646234 0.323117 0.946359i \(-0.395269\pi\)
0.323117 + 0.946359i \(0.395269\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −23.0000 23.0000i −0.925945 0.925945i 0.0714958 0.997441i \(-0.477223\pi\)
−0.997441 + 0.0714958i \(0.977223\pi\)
\(618\) 0 0
\(619\) 14.0000 14.0000i 0.562708 0.562708i −0.367368 0.930076i \(-0.619741\pi\)
0.930076 + 0.367368i \(0.119741\pi\)
\(620\) 0 0
\(621\) 32.0000i 1.28412i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.0000 25.0000i −0.598089 0.996815i
\(630\) 0 0
\(631\) 4.00000i 0.159237i 0.996825 + 0.0796187i \(0.0253703\pi\)
−0.996825 + 0.0796187i \(0.974630\pi\)
\(632\) 0 0
\(633\) 40.0000 1.58986
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 14.0000i 0.554700i
\(638\) 0 0
\(639\) 40.0000 40.0000i 1.58238 1.58238i
\(640\) 0 0
\(641\) −15.0000 15.0000i −0.592464 0.592464i 0.345832 0.938296i \(-0.387597\pi\)
−0.938296 + 0.345832i \(0.887597\pi\)
\(642\) 0 0
\(643\) 22.0000 + 22.0000i 0.867595 + 0.867595i 0.992206 0.124610i \(-0.0397681\pi\)
−0.124610 + 0.992206i \(0.539768\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.0000 −0.629025 −0.314512 0.949253i \(-0.601841\pi\)
−0.314512 + 0.949253i \(0.601841\pi\)
\(648\) 0 0
\(649\) 24.0000 + 24.0000i 0.942082 + 0.942082i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.00000 7.00000i 0.273931 0.273931i −0.556749 0.830681i \(-0.687952\pi\)
0.830681 + 0.556749i \(0.187952\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −5.00000 + 5.00000i −0.195069 + 0.195069i
\(658\) 0 0
\(659\) −40.0000 −1.55818 −0.779089 0.626913i \(-0.784318\pi\)
−0.779089 + 0.626913i \(0.784318\pi\)
\(660\) 0 0
\(661\) 24.0000i 0.933492i 0.884391 + 0.466746i \(0.154574\pi\)
−0.884391 + 0.466746i \(0.845426\pi\)
\(662\) 0 0
\(663\) 12.0000 + 20.0000i 0.466041 + 0.776736i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 40.0000 1.54881
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 12.0000i 0.463255i
\(672\) 0 0
\(673\) −19.0000 + 19.0000i −0.732396 + 0.732396i −0.971094 0.238698i \(-0.923279\pi\)
0.238698 + 0.971094i \(0.423279\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.00000 + 5.00000i 0.192166 + 0.192166i 0.796631 0.604466i \(-0.206613\pi\)
−0.604466 + 0.796631i \(0.706613\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 8.00000 0.306561
\(682\) 0 0
\(683\) 22.0000 + 22.0000i 0.841807 + 0.841807i 0.989094 0.147287i \(-0.0470541\pi\)
−0.147287 + 0.989094i \(0.547054\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −20.0000 + 20.0000i −0.763048 + 0.763048i
\(688\) 0 0
\(689\) 12.0000i 0.457164i
\(690\) 0 0
\(691\) −26.0000 + 26.0000i −0.989087 + 0.989087i −0.999941 0.0108545i \(-0.996545\pi\)
0.0108545 + 0.999941i \(0.496545\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 25.0000 15.0000i 0.946943 0.568166i
\(698\) 0 0
\(699\) 4.00000i 0.151294i
\(700\) 0 0
\(701\) 8.00000 0.302156 0.151078 0.988522i \(-0.451726\pi\)
0.151078 + 0.988522i \(0.451726\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −15.0000 15.0000i −0.563337 0.563337i 0.366917 0.930254i \(-0.380413\pi\)
−0.930254 + 0.366917i \(0.880413\pi\)
\(710\) 0 0
\(711\) 60.0000 + 60.0000i 2.25018 + 2.25018i
\(712\) 0 0
\(713\) 32.0000 1.19841
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −24.0000 24.0000i −0.896296 0.896296i
\(718\) 0 0
\(719\) −4.00000 4.00000i −0.149175 0.149175i 0.628575 0.777749i \(-0.283639\pi\)
−0.777749 + 0.628575i \(0.783639\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 28.0000i 1.04133i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 16.0000 0.593407 0.296704 0.954970i \(-0.404113\pi\)
0.296704 + 0.954970i \(0.404113\pi\)
\(728\) 0 0
\(729\) 43.0000i 1.59259i
\(730\) 0 0
\(731\) −4.00000 + 16.0000i −0.147945 + 0.591781i
\(732\) 0 0
\(733\) 34.0000i 1.25582i −0.778287 0.627909i \(-0.783911\pi\)
0.778287 0.627909i \(-0.216089\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.00000 8.00000i 0.294684 0.294684i
\(738\) 0 0
\(739\) 40.0000i 1.47142i 0.677295 + 0.735712i \(0.263152\pi\)
−0.677295 + 0.735712i \(0.736848\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −12.0000 12.0000i −0.440237 0.440237i 0.451854 0.892092i \(-0.350763\pi\)
−0.892092 + 0.451854i \(0.850763\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 20.0000 0.731762
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 4.00000 + 4.00000i 0.145962 + 0.145962i 0.776312 0.630349i \(-0.217088\pi\)
−0.630349 + 0.776312i \(0.717088\pi\)
\(752\) 0 0
\(753\) −24.0000 24.0000i −0.874609 0.874609i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 16.0000i 0.581530i 0.956795 + 0.290765i \(0.0939098\pi\)
−0.956795 + 0.290765i \(0.906090\pi\)
\(758\) 0 0
\(759\) 32.0000 32.0000i 1.16153 1.16153i
\(760\) 0 0
\(761\) −8.00000 −0.290000 −0.145000 0.989432i \(-0.546318\pi\)
−0.145000 + 0.989432i \(0.546318\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 24.0000i 0.866590i
\(768\) 0 0
\(769\) −24.0000 −0.865462 −0.432731 0.901523i \(-0.642450\pi\)
−0.432731 + 0.901523i \(0.642450\pi\)
\(770\) 0 0
\(771\) −48.0000 + 48.0000i −1.72868 + 1.72868i
\(772\) 0 0
\(773\) 32.0000i 1.15096i 0.817816 + 0.575480i \(0.195185\pi\)
−0.817816 + 0.575480i \(0.804815\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 0 0
\(783\) 40.0000 1.42948
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 14.0000 + 14.0000i 0.499046 + 0.499046i 0.911141 0.412095i \(-0.135203\pi\)
−0.412095 + 0.911141i \(0.635203\pi\)
\(788\) 0 0
\(789\) 24.0000 24.0000i 0.854423 0.854423i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.00000 6.00000i 0.213066 0.213066i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 30.0000i 1.06265i 0.847167 + 0.531327i \(0.178307\pi\)
−0.847167 + 0.531327i \(0.821693\pi\)
\(798\) 0 0
\(799\) −32.0000 8.00000i −1.13208 0.283020i
\(800\) 0 0
\(801\) 80.0000i 2.82666i
\(802\) 0 0
\(803\) −4.00000 −0.141157
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 20.0000i 0.704033i
\(808\) 0 0
\(809\) −27.0000 + 27.0000i −0.949269 + 0.949269i −0.998774 0.0495045i \(-0.984236\pi\)
0.0495045 + 0.998774i \(0.484236\pi\)
\(810\) 0 0
\(811\) −38.0000 38.0000i −1.33436 1.33436i −0.901425 0.432936i \(-0.857478\pi\)
−0.432936 0.901425i \(-0.642522\pi\)
\(812\) 0 0
\(813\) −8.00000 8.00000i −0.280572 0.280572i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25.0000 + 25.0000i 0.872506 + 0.872506i 0.992745 0.120239i \(-0.0383661\pi\)
−0.120239 + 0.992745i \(0.538366\pi\)
\(822\) 0 0
\(823\) −20.0000 + 20.0000i −0.697156 + 0.697156i −0.963796 0.266640i \(-0.914087\pi\)
0.266640 + 0.963796i \(0.414087\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −6.00000 + 6.00000i −0.208640 + 0.208640i −0.803689 0.595049i \(-0.797133\pi\)
0.595049 + 0.803689i \(0.297133\pi\)
\(828\) 0 0
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 0 0
\(831\) 12.0000i 0.416275i
\(832\) 0 0
\(833\) 7.00000 28.0000i 0.242536 0.970143i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 32.0000 1.10608
\(838\) 0 0
\(839\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(840\) 0 0
\(841\) 21.0000i 0.724138i
\(842\) 0 0
\(843\) 48.0000 48.0000i 1.65321 1.65321i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 40.0000 1.37280
\(850\) 0 0
\(851\) 40.0000 1.37118
\(852\) 0 0
\(853\) −21.0000 21.0000i −0.719026 0.719026i 0.249380 0.968406i \(-0.419773\pi\)
−0.968406 + 0.249380i \(0.919773\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9.00000 9.00000i 0.307434 0.307434i −0.536479 0.843913i \(-0.680246\pi\)
0.843913 + 0.536479i \(0.180246\pi\)
\(858\) 0 0
\(859\) 36.0000i 1.22830i −0.789188 0.614152i \(-0.789498\pi\)
0.789188 0.614152i \(-0.210502\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −12.0000 −0.408485 −0.204242 0.978920i \(-0.565473\pi\)
−0.204242 + 0.978920i \(0.565473\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −14.0000 46.0000i −0.475465 1.56224i
\(868\) 0 0
\(869\) 48.0000i 1.62829i
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) 25.0000 25.0000i 0.846122 0.846122i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 33.0000 33.0000i 1.11433 1.11433i 0.121773 0.992558i \(-0.461142\pi\)
0.992558 0.121773i \(-0.0388579\pi\)
\(878\) 0 0
\(879\) −32.0000 32.0000i −1.07933 1.07933i
\(880\) 0 0
\(881\) 23.0000 + 23.0000i 0.774890 + 0.774890i 0.978957 0.204067i \(-0.0654161\pi\)
−0.204067 + 0.978957i \(0.565416\pi\)
\(882\) 0 0
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.00000 4.00000i −0.134307 0.134307i 0.636757 0.771064i \(-0.280275\pi\)
−0.771064 + 0.636757i \(0.780275\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 2.00000 2.00000i 0.0670025 0.0670025i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −32.0000 −1.06845
\(898\) 0 0
\(899\) 40.0000i 1.33407i
\(900\) 0 0
\(901\) −6.00000 + 24.0000i −0.199889 + 0.799556i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −22.0000 + 22.0000i −0.730498 + 0.730498i −0.970718 0.240220i \(-0.922780\pi\)
0.240220 + 0.970718i \(0.422780\pi\)
\(908\) 0 0
\(909\) 40.0000i 1.32672i
\(910\) 0 0
\(911\) 16.0000 16.0000i 0.530104 0.530104i −0.390499 0.920603i \(-0.627698\pi\)
0.920603 + 0.390499i \(0.127698\pi\)
\(912\) 0 0
\(913\) 8.00000 + 8.00000i 0.264761 + 0.264761i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −12.0000 −0.395843 −0.197922 0.980218i \(-0.563419\pi\)
−0.197922 + 0.980218i \(0.563419\pi\)
\(920\) 0 0
\(921\) −64.0000 64.0000i −2.10887 2.10887i
\(922\) 0 0
\(923\) −16.0000 16.0000i −0.526646 0.526646i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 60.0000i 1.97066i
\(928\) 0 0
\(929\) 9.00000 9.00000i 0.295280 0.295280i −0.543882 0.839162i \(-0.683046\pi\)
0.839162 + 0.543882i \(0.183046\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 48.0000i 1.57145i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 10.0000i 0.326686i 0.986569 + 0.163343i \(0.0522277\pi\)
−0.986569 + 0.163343i \(0.947772\pi\)
\(938\) 0 0
\(939\) 68.0000 2.21910
\(940\) 0 0
\(941\) −21.0000 + 21.0000i −0.684580 + 0.684580i −0.961029 0.276448i \(-0.910843\pi\)
0.276448 + 0.961029i \(0.410843\pi\)
\(942\) 0 0
\(943\) 40.0000i 1.30258i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30.0000 30.0000i −0.974869 0.974869i 0.0248229 0.999692i \(-0.492098\pi\)
−0.999692 + 0.0248229i \(0.992098\pi\)
\(948\) 0 0
\(949\) 2.00000 + 2.00000i 0.0649227 + 0.0649227i
\(950\) 0 0
\(951\) 68.0000 2.20505
\(952\) 0 0
\(953\) −30.0000 −0.971795 −0.485898 0.874016i \(-0.661507\pi\)
−0.485898 + 0.874016i \(0.661507\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 40.0000 + 40.0000i 1.29302 + 1.29302i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000i 0.0322581i
\(962\) 0 0
\(963\) 70.0000 70.0000i 2.25572 2.25572i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 48.0000i 1.54358i −0.635880 0.771788i \(-0.719363\pi\)
0.635880 0.771788i \(-0.280637\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.00000i 0.128366i 0.997938 + 0.0641831i \(0.0204442\pi\)
−0.997938 + 0.0641831i \(0.979556\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 42.0000i 1.34370i −0.740688 0.671850i \(-0.765500\pi\)
0.740688 0.671850i \(-0.234500\pi\)
\(978\) 0 0
\(979\) −32.0000 + 32.0000i −1.02272 + 1.02272i
\(980\) 0 0
\(981\) −15.0000 15.0000i −0.478913 0.478913i
\(982\) 0 0
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −16.0000 16.0000i −0.508770 0.508770i
\(990\) 0 0
\(991\) −36.0000 36.0000i −1.14358 1.14358i −0.987791 0.155787i \(-0.950209\pi\)
−0.155787 0.987791i \(-0.549791\pi\)
\(992\) 0 0
\(993\) 8.00000 8.00000i 0.253872 0.253872i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −3.00000 + 3.00000i −0.0950110 + 0.0950110i −0.753015 0.658004i \(-0.771401\pi\)
0.658004 + 0.753015i \(0.271401\pi\)
\(998\) 0 0
\(999\) 40.0000 1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1700.2.o.a.1101.1 2
5.2 odd 4 340.2.m.a.149.1 yes 2
5.3 odd 4 340.2.m.b.149.1 yes 2
5.4 even 2 1700.2.o.b.1101.1 2
15.2 even 4 3060.2.z.b.829.1 2
15.8 even 4 3060.2.z.a.829.1 2
17.4 even 4 inner 1700.2.o.a.701.1 2
85.4 even 4 1700.2.o.b.701.1 2
85.38 odd 4 340.2.m.a.89.1 2
85.72 odd 4 340.2.m.b.89.1 yes 2
255.38 even 4 3060.2.z.b.2809.1 2
255.242 even 4 3060.2.z.a.2809.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
340.2.m.a.89.1 2 85.38 odd 4
340.2.m.a.149.1 yes 2 5.2 odd 4
340.2.m.b.89.1 yes 2 85.72 odd 4
340.2.m.b.149.1 yes 2 5.3 odd 4
1700.2.o.a.701.1 2 17.4 even 4 inner
1700.2.o.a.1101.1 2 1.1 even 1 trivial
1700.2.o.b.701.1 2 85.4 even 4
1700.2.o.b.1101.1 2 5.4 even 2
3060.2.z.a.829.1 2 15.8 even 4
3060.2.z.a.2809.1 2 255.242 even 4
3060.2.z.b.829.1 2 15.2 even 4
3060.2.z.b.2809.1 2 255.38 even 4