Properties

Label 2-1700-17.13-c1-0-10
Degree $2$
Conductor $1700$
Sign $0.615 + 0.788i$
Analytic cond. $13.5745$
Root an. cond. $3.68436$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2 − 2i)3-s + 5i·9-s + (−2 + 2i)11-s + 2·13-s + (−4 − i)17-s + (4 − 4i)23-s + (4 − 4i)27-s + (5 + 5i)29-s + (4 + 4i)31-s + 8·33-s + (5 + 5i)37-s + (−4 − 4i)39-s + (−5 + 5i)41-s − 4i·43-s + 8·47-s + ⋯
L(s)  = 1  + (−1.15 − 1.15i)3-s + 1.66i·9-s + (−0.603 + 0.603i)11-s + 0.554·13-s + (−0.970 − 0.242i)17-s + (0.834 − 0.834i)23-s + (0.769 − 0.769i)27-s + (0.928 + 0.928i)29-s + (0.718 + 0.718i)31-s + 1.39·33-s + (0.821 + 0.821i)37-s + (−0.640 − 0.640i)39-s + (−0.780 + 0.780i)41-s − 0.609i·43-s + 1.16·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.615 + 0.788i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.615 + 0.788i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1700\)    =    \(2^{2} \cdot 5^{2} \cdot 17\)
Sign: $0.615 + 0.788i$
Analytic conductor: \(13.5745\)
Root analytic conductor: \(3.68436\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1700} (1101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1700,\ (\ :1/2),\ 0.615 + 0.788i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9768131694\)
\(L(\frac12)\) \(\approx\) \(0.9768131694\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
17 \( 1 + (4 + i)T \)
good3 \( 1 + (2 + 2i)T + 3iT^{2} \)
7 \( 1 - 7iT^{2} \)
11 \( 1 + (2 - 2i)T - 11iT^{2} \)
13 \( 1 - 2T + 13T^{2} \)
19 \( 1 - 19T^{2} \)
23 \( 1 + (-4 + 4i)T - 23iT^{2} \)
29 \( 1 + (-5 - 5i)T + 29iT^{2} \)
31 \( 1 + (-4 - 4i)T + 31iT^{2} \)
37 \( 1 + (-5 - 5i)T + 37iT^{2} \)
41 \( 1 + (5 - 5i)T - 41iT^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 - 8T + 47T^{2} \)
53 \( 1 + 6iT - 53T^{2} \)
59 \( 1 + 12iT - 59T^{2} \)
61 \( 1 + (-3 + 3i)T - 61iT^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 + (8 + 8i)T + 71iT^{2} \)
73 \( 1 + (-1 - i)T + 73iT^{2} \)
79 \( 1 + (-12 + 12i)T - 79iT^{2} \)
83 \( 1 + 4iT - 83T^{2} \)
89 \( 1 - 16T + 89T^{2} \)
97 \( 1 + (5 + 5i)T + 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.104446984880482535451294567535, −8.271505505873663968927078125636, −7.45319625946297801025026681457, −6.60749344087152747420305580709, −6.34152533672839124101820142497, −5.09942748690817642374122429448, −4.65543444304814713876824697850, −2.98339131850897549821335461615, −1.86097300501943037655808360965, −0.71323058688322813349750771031, 0.73305218182036777496926018034, 2.62679153113629835222122067614, 3.85969261507028677148406802453, 4.48277300666596239312247168959, 5.45428777403582425152781298823, 5.95731205397230811337566372247, 6.81236189634390888074544023495, 7.964425256306221473386442904012, 8.873801745127640823346103879134, 9.547518841460469826325183626295

Graph of the $Z$-function along the critical line