Properties

Label 3060.2.k.d
Level $3060$
Weight $2$
Character orbit 3060.k
Analytic conductor $24.434$
Analytic rank $0$
Dimension $4$
CM discriminant -51
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(1189,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.1189"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - \beta_1) q^{5} + (\beta_{3} - \beta_{2} - 2 \beta_1 + 1) q^{11} + ( - \beta_{2} - 2 \beta_1 + 1) q^{13} + ( - 2 \beta_{2} + 1) q^{17} + ( - 3 \beta_{2} - 1) q^{19} + (\beta_{2} + 7) q^{23}+ \cdots + ( - 3 \beta_{3} + 4 \beta_{2} + \cdots + 6) q^{95}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{5} - 10 q^{19} + 30 q^{23} - 7 q^{25} - 28 q^{49} - 21 q^{55} - 27 q^{65} + 17 q^{85} + 33 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 5\nu^{2} - 25\nu + 16 ) / 20 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} - 4 ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 5\nu^{2} - 5\nu + 6 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - 4\beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 5\beta_{3} - 4\beta_{2} - 4\beta _1 - 6 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -5\beta_{2} - 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1189.1
1.28078 2.21837i
1.28078 + 2.21837i
−0.780776 1.35234i
−0.780776 + 1.35234i
0 0 0 −1.78078 1.35234i 0 0 0 0 0
1189.2 0 0 0 −1.78078 + 1.35234i 0 0 0 0 0
1189.3 0 0 0 0.280776 2.21837i 0 0 0 0 0
1189.4 0 0 0 0.280776 + 2.21837i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
51.c odd 2 1 CM by \(\Q(\sqrt{-51}) \)
15.d odd 2 1 inner
85.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3060.2.k.d 4
3.b odd 2 1 3060.2.k.e yes 4
5.b even 2 1 3060.2.k.e yes 4
15.d odd 2 1 inner 3060.2.k.d 4
17.b even 2 1 3060.2.k.e yes 4
51.c odd 2 1 CM 3060.2.k.d 4
85.c even 2 1 inner 3060.2.k.d 4
255.h odd 2 1 3060.2.k.e yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3060.2.k.d 4 1.a even 1 1 trivial
3060.2.k.d 4 15.d odd 2 1 inner
3060.2.k.d 4 51.c odd 2 1 CM
3060.2.k.d 4 85.c even 2 1 inner
3060.2.k.e yes 4 3.b odd 2 1
3060.2.k.e yes 4 5.b even 2 1
3060.2.k.e yes 4 17.b even 2 1
3060.2.k.e yes 4 255.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3060, [\chi])\):

\( T_{7} \) Copy content Toggle raw display
\( T_{23}^{2} - 15T_{23} + 52 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 3 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 39T^{2} + 36 \) Copy content Toggle raw display
$13$ \( T^{4} + 27T^{2} + 144 \) Copy content Toggle raw display
$17$ \( (T^{2} - 17)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 5 T - 32)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 15 T + 52)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 48)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} + 99T^{2} + 576 \) Copy content Toggle raw display
$43$ \( T^{4} + 207T^{2} + 6084 \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 204)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less