L(s) = 1 | + (0.280 − 2.21i)5-s − 0.972i·11-s − 4.43i·13-s + 4.12·17-s + 3.68·19-s + 5.43·23-s + (−4.84 − 1.24i)25-s + 6.92i·29-s − 2.49i·41-s − 5.95i·43-s − 7·49-s + (−2.15 − 0.273i)55-s + (−9.84 − 1.24i)65-s − 14.2i·67-s − 3.46i·71-s + ⋯ |
L(s) = 1 | + (0.125 − 0.992i)5-s − 0.293i·11-s − 1.23i·13-s + 0.999·17-s + 0.845·19-s + 1.13·23-s + (−0.968 − 0.249i)25-s + 1.28i·29-s − 0.389i·41-s − 0.908i·43-s − 49-s + (−0.290 − 0.0368i)55-s + (−1.22 − 0.154i)65-s − 1.74i·67-s − 0.411i·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.125 + 0.992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.125 + 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.831671864\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.831671864\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.280 + 2.21i)T \) |
| 17 | \( 1 - 4.12T \) |
good | 7 | \( 1 + 7T^{2} \) |
| 11 | \( 1 + 0.972iT - 11T^{2} \) |
| 13 | \( 1 + 4.43iT - 13T^{2} \) |
| 19 | \( 1 - 3.68T + 19T^{2} \) |
| 23 | \( 1 - 5.43T + 23T^{2} \) |
| 29 | \( 1 - 6.92iT - 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + 37T^{2} \) |
| 41 | \( 1 + 2.49iT - 41T^{2} \) |
| 43 | \( 1 + 5.95iT - 43T^{2} \) |
| 47 | \( 1 - 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + 14.2iT - 67T^{2} \) |
| 71 | \( 1 + 3.46iT - 71T^{2} \) |
| 73 | \( 1 + 73T^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 - 83T^{2} \) |
| 89 | \( 1 + 89T^{2} \) |
| 97 | \( 1 + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.519794438410747078732161144823, −7.83504873274345566805258552838, −7.16839244142777288374947529540, −6.03943073963704565086414533196, −5.28331798921186072224411488530, −4.94120044784059892486708711586, −3.61031855013224482377899246410, −2.98963963091236903255125839115, −1.52606701279843557085264320391, −0.63018086961991004055976892362,
1.30632601307830693904172939852, 2.44907687803520375042750995159, 3.25697390223354867869450402243, 4.15160245752373455905869672042, 5.09265046837165691782687584438, 6.00946645979842112350501086558, 6.70469579945648307964087404616, 7.36284210673040822199901536534, 7.988889411153853872417108911520, 9.053602425611188705004668276817