Properties

Label 2-3060-85.84-c1-0-42
Degree $2$
Conductor $3060$
Sign $-0.796 - 0.604i$
Analytic cond. $24.4342$
Root an. cond. $4.94309$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.78 − 1.35i)5-s − 6.16i·11-s − 2.70i·13-s − 4.12·17-s − 8.68·19-s + 9.56·23-s + (1.34 + 4.81i)25-s − 6.92i·29-s + 9.63i·41-s + 13.0i·43-s − 7·49-s + (−8.34 + 10.9i)55-s + (−3.65 + 4.81i)65-s − 14.2i·67-s + 3.46i·71-s + ⋯
L(s)  = 1  + (−0.796 − 0.604i)5-s − 1.85i·11-s − 0.750i·13-s − 0.999·17-s − 1.99·19-s + 1.99·23-s + (0.268 + 0.963i)25-s − 1.28i·29-s + 1.50i·41-s + 1.99i·43-s − 49-s + (−1.12 + 1.48i)55-s + (−0.453 + 0.597i)65-s − 1.74i·67-s + 0.411i·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.796 - 0.604i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.796 - 0.604i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3060\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $-0.796 - 0.604i$
Analytic conductor: \(24.4342\)
Root analytic conductor: \(4.94309\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3060} (1189, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3060,\ (\ :1/2),\ -0.796 - 0.604i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2659343595\)
\(L(\frac12)\) \(\approx\) \(0.2659343595\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (1.78 + 1.35i)T \)
17 \( 1 + 4.12T \)
good7 \( 1 + 7T^{2} \)
11 \( 1 + 6.16iT - 11T^{2} \)
13 \( 1 + 2.70iT - 13T^{2} \)
19 \( 1 + 8.68T + 19T^{2} \)
23 \( 1 - 9.56T + 23T^{2} \)
29 \( 1 + 6.92iT - 29T^{2} \)
31 \( 1 - 31T^{2} \)
37 \( 1 + 37T^{2} \)
41 \( 1 - 9.63iT - 41T^{2} \)
43 \( 1 - 13.0iT - 43T^{2} \)
47 \( 1 - 47T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 + 14.2iT - 67T^{2} \)
71 \( 1 - 3.46iT - 71T^{2} \)
73 \( 1 + 73T^{2} \)
79 \( 1 - 79T^{2} \)
83 \( 1 - 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.284308368980384645026364352340, −7.81986341615186697237558629929, −6.55494323481716201750615663597, −6.13734915091694808951637060609, −5.01516292986077162401590287643, −4.40706291142784157534631711919, −3.43134121944157420616735387518, −2.67699638829507275951828753522, −1.08661312637316186209183116001, −0.091575499840399138545619508306, 1.82974375113398991440747564875, 2.56817093577911502900307292309, 3.82326956288301060026763753843, 4.43422495860349349561505761004, 5.09166436976419826983338647847, 6.53207036752919600127333847924, 7.01038534653349577297279247710, 7.31741201632856169168869704590, 8.690401053976915459325390853929, 8.853746953838048189384789878039

Graph of the $Z$-function along the critical line