Properties

Label 3060.2.e.j.1801.3
Level $3060$
Weight $2$
Character 3060.1801
Analytic conductor $24.434$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,2,Mod(1801,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.1801"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.4342230185\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.37161216.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 15x^{4} + 51x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 340)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1801.3
Root \(3.13264i\) of defining polynomial
Character \(\chi\) \(=\) 3060.1801
Dual form 3060.2.e.j.1801.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{5} +4.13264i q^{7} +4.68078i q^{11} -4.81342 q^{13} +(3.13264 - 2.68078i) q^{17} +8.26527 q^{19} +2.13264i q^{23} -1.00000 q^{25} -4.26527i q^{29} +5.58449i q^{31} +4.13264 q^{35} -4.00000i q^{37} +2.26527i q^{41} -3.45186 q^{43} -4.54814 q^{47} -10.0787 q^{49} -11.3616 q^{53} +4.68078 q^{55} -13.8921 q^{59} +4.90371i q^{61} +4.81342i q^{65} +9.07869 q^{67} +12.9461i q^{71} -1.73473i q^{73} -19.3440 q^{77} +12.3076i q^{79} -5.90970 q^{83} +(-2.68078 - 3.13264i) q^{85} +1.18658 q^{89} -19.8921i q^{91} -8.26527i q^{95} -12.2653i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{17} + 16 q^{19} - 6 q^{25} + 8 q^{35} - 16 q^{43} - 32 q^{47} + 2 q^{49} - 44 q^{53} + 16 q^{55} + 8 q^{59} - 8 q^{67} - 20 q^{77} - 16 q^{83} - 4 q^{85} + 36 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 4.13264i 1.56199i 0.624537 + 0.780995i \(0.285288\pi\)
−0.624537 + 0.780995i \(0.714712\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.68078i 1.41131i 0.708556 + 0.705654i \(0.249347\pi\)
−0.708556 + 0.705654i \(0.750653\pi\)
\(12\) 0 0
\(13\) −4.81342 −1.33500 −0.667501 0.744609i \(-0.732636\pi\)
−0.667501 + 0.744609i \(0.732636\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.13264 2.68078i 0.759776 0.650185i
\(18\) 0 0
\(19\) 8.26527 1.89618 0.948092 0.317996i \(-0.103010\pi\)
0.948092 + 0.317996i \(0.103010\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.13264i 0.444686i 0.974969 + 0.222343i \(0.0713704\pi\)
−0.974969 + 0.222343i \(0.928630\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.26527i 0.792042i −0.918242 0.396021i \(-0.870391\pi\)
0.918242 0.396021i \(-0.129609\pi\)
\(30\) 0 0
\(31\) 5.58449i 1.00300i 0.865156 + 0.501502i \(0.167219\pi\)
−0.865156 + 0.501502i \(0.832781\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.13264 0.698543
\(36\) 0 0
\(37\) 4.00000i 0.657596i −0.944400 0.328798i \(-0.893356\pi\)
0.944400 0.328798i \(-0.106644\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.26527i 0.353777i 0.984231 + 0.176888i \(0.0566031\pi\)
−0.984231 + 0.176888i \(0.943397\pi\)
\(42\) 0 0
\(43\) −3.45186 −0.526403 −0.263202 0.964741i \(-0.584778\pi\)
−0.263202 + 0.964741i \(0.584778\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.54814 −0.663415 −0.331707 0.943382i \(-0.607625\pi\)
−0.331707 + 0.943382i \(0.607625\pi\)
\(48\) 0 0
\(49\) −10.0787 −1.43981
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −11.3616 −1.56063 −0.780315 0.625386i \(-0.784941\pi\)
−0.780315 + 0.625386i \(0.784941\pi\)
\(54\) 0 0
\(55\) 4.68078 0.631156
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −13.8921 −1.80860 −0.904299 0.426899i \(-0.859606\pi\)
−0.904299 + 0.426899i \(0.859606\pi\)
\(60\) 0 0
\(61\) 4.90371i 0.627856i 0.949447 + 0.313928i \(0.101645\pi\)
−0.949447 + 0.313928i \(0.898355\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.81342i 0.597031i
\(66\) 0 0
\(67\) 9.07869 1.10914 0.554569 0.832137i \(-0.312883\pi\)
0.554569 + 0.832137i \(0.312883\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.9461i 1.53641i 0.640201 + 0.768207i \(0.278851\pi\)
−0.640201 + 0.768207i \(0.721149\pi\)
\(72\) 0 0
\(73\) 1.73473i 0.203034i −0.994834 0.101517i \(-0.967630\pi\)
0.994834 0.101517i \(-0.0323697\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −19.3440 −2.20445
\(78\) 0 0
\(79\) 12.3076i 1.38471i 0.721555 + 0.692357i \(0.243428\pi\)
−0.721555 + 0.692357i \(0.756572\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.90970 −0.648674 −0.324337 0.945942i \(-0.605141\pi\)
−0.324337 + 0.945942i \(0.605141\pi\)
\(84\) 0 0
\(85\) −2.68078 3.13264i −0.290771 0.339782i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.18658 0.125777 0.0628887 0.998021i \(-0.479969\pi\)
0.0628887 + 0.998021i \(0.479969\pi\)
\(90\) 0 0
\(91\) 19.8921i 2.08526i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.26527i 0.847999i
\(96\) 0 0
\(97\) 12.2653i 1.24535i −0.782481 0.622675i \(-0.786046\pi\)
0.782481 0.622675i \(-0.213954\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.90970 −0.389030 −0.194515 0.980900i \(-0.562313\pi\)
−0.194515 + 0.980900i \(0.562313\pi\)
\(102\) 0 0
\(103\) −17.3440 −1.70895 −0.854476 0.519491i \(-0.826122\pi\)
−0.854476 + 0.519491i \(0.826122\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.77108i 0.847932i 0.905678 + 0.423966i \(0.139362\pi\)
−0.905678 + 0.423966i \(0.860638\pi\)
\(108\) 0 0
\(109\) 10.0000i 0.957826i 0.877862 + 0.478913i \(0.158969\pi\)
−0.877862 + 0.478913i \(0.841031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.16899i 0.486258i 0.969994 + 0.243129i \(0.0781738\pi\)
−0.969994 + 0.243129i \(0.921826\pi\)
\(114\) 0 0
\(115\) 2.13264 0.198869
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 11.0787 + 12.9461i 1.01558 + 1.18676i
\(120\) 0 0
\(121\) −10.9097 −0.991791
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 15.9824 1.41821 0.709105 0.705103i \(-0.249099\pi\)
0.709105 + 0.705103i \(0.249099\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.31922i 0.464742i −0.972627 0.232371i \(-0.925352\pi\)
0.972627 0.232371i \(-0.0746484\pi\)
\(132\) 0 0
\(133\) 34.1574i 2.96182i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.8134 1.09472 0.547362 0.836896i \(-0.315632\pi\)
0.547362 + 0.836896i \(0.315632\pi\)
\(138\) 0 0
\(139\) 6.04234i 0.512505i 0.966610 + 0.256252i \(0.0824878\pi\)
−0.966610 + 0.256252i \(0.917512\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 22.5305i 1.88410i
\(144\) 0 0
\(145\) −4.26527 −0.354212
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.16899 0.0957674 0.0478837 0.998853i \(-0.484752\pi\)
0.0478837 + 0.998853i \(0.484752\pi\)
\(150\) 0 0
\(151\) −9.36156 −0.761833 −0.380916 0.924609i \(-0.624391\pi\)
−0.380916 + 0.924609i \(0.624391\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.58449 0.448557
\(156\) 0 0
\(157\) 9.16899 0.731765 0.365883 0.930661i \(-0.380767\pi\)
0.365883 + 0.930661i \(0.380767\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −8.81342 −0.694595
\(162\) 0 0
\(163\) 5.75947i 0.451117i −0.974230 0.225558i \(-0.927579\pi\)
0.974230 0.225558i \(-0.0724206\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.49420i 0.115625i 0.998327 + 0.0578123i \(0.0184125\pi\)
−0.998327 + 0.0578123i \(0.981588\pi\)
\(168\) 0 0
\(169\) 10.1690 0.782230
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.9037i 0.828994i 0.910051 + 0.414497i \(0.136042\pi\)
−0.910051 + 0.414497i \(0.863958\pi\)
\(174\) 0 0
\(175\) 4.13264i 0.312398i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.53055 0.637603 0.318802 0.947821i \(-0.396720\pi\)
0.318802 + 0.947821i \(0.396720\pi\)
\(180\) 0 0
\(181\) 3.16899i 0.235549i −0.993040 0.117775i \(-0.962424\pi\)
0.993040 0.117775i \(-0.0375760\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) 12.5481 + 14.6632i 0.917611 + 1.07228i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.45785 0.467273 0.233637 0.972324i \(-0.424937\pi\)
0.233637 + 0.972324i \(0.424937\pi\)
\(192\) 0 0
\(193\) 7.89211i 0.568087i −0.958811 0.284043i \(-0.908324\pi\)
0.958811 0.284043i \(-0.0916759\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 16.8382i 1.19363i 0.802380 + 0.596813i \(0.203567\pi\)
−0.802380 + 0.596813i \(0.796433\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 17.6268 1.23716
\(204\) 0 0
\(205\) 2.26527 0.158214
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 38.6879i 2.67610i
\(210\) 0 0
\(211\) 7.77707i 0.535395i −0.963503 0.267698i \(-0.913737\pi\)
0.963503 0.267698i \(-0.0862628\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.45186i 0.235415i
\(216\) 0 0
\(217\) −23.0787 −1.56668
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −15.0787 + 12.9037i −1.01430 + 0.867998i
\(222\) 0 0
\(223\) −3.71713 −0.248918 −0.124459 0.992225i \(-0.539719\pi\)
−0.124459 + 0.992225i \(0.539719\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.86736i 0.256686i −0.991730 0.128343i \(-0.959034\pi\)
0.991730 0.128343i \(-0.0409658\pi\)
\(228\) 0 0
\(229\) −18.8134 −1.24323 −0.621613 0.783325i \(-0.713522\pi\)
−0.621613 + 0.783325i \(0.713522\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 15.6995i 1.02851i 0.857637 + 0.514256i \(0.171932\pi\)
−0.857637 + 0.514256i \(0.828068\pi\)
\(234\) 0 0
\(235\) 4.54814i 0.296688i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.90371 −0.446564 −0.223282 0.974754i \(-0.571677\pi\)
−0.223282 + 0.974754i \(0.571677\pi\)
\(240\) 0 0
\(241\) 0.107890i 0.00694979i −0.999994 0.00347489i \(-0.998894\pi\)
0.999994 0.00347489i \(-0.00110609\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 10.0787i 0.643904i
\(246\) 0 0
\(247\) −39.7842 −2.53141
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −22.4227 −1.41531 −0.707653 0.706560i \(-0.750246\pi\)
−0.707653 + 0.706560i \(0.750246\pi\)
\(252\) 0 0
\(253\) −9.98241 −0.627589
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.09030 0.379902 0.189951 0.981794i \(-0.439167\pi\)
0.189951 + 0.981794i \(0.439167\pi\)
\(258\) 0 0
\(259\) 16.5305 1.02716
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −13.0787 −0.806467 −0.403233 0.915097i \(-0.632114\pi\)
−0.403233 + 0.915097i \(0.632114\pi\)
\(264\) 0 0
\(265\) 11.3616i 0.697935i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 21.7842i 1.32821i 0.747640 + 0.664104i \(0.231187\pi\)
−0.747640 + 0.664104i \(0.768813\pi\)
\(270\) 0 0
\(271\) 3.46945 0.210754 0.105377 0.994432i \(-0.466395\pi\)
0.105377 + 0.994432i \(0.466395\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.68078i 0.282262i
\(276\) 0 0
\(277\) 31.0611i 1.86628i −0.359512 0.933140i \(-0.617057\pi\)
0.359512 0.933140i \(-0.382943\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 15.8921 0.948044 0.474022 0.880513i \(-0.342802\pi\)
0.474022 + 0.880513i \(0.342802\pi\)
\(282\) 0 0
\(283\) 18.8558i 1.12086i −0.828202 0.560429i \(-0.810636\pi\)
0.828202 0.560429i \(-0.189364\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.36156 −0.552595
\(288\) 0 0
\(289\) 2.62684 16.7958i 0.154520 0.987990i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 16.9037 0.987526 0.493763 0.869597i \(-0.335621\pi\)
0.493763 + 0.869597i \(0.335621\pi\)
\(294\) 0 0
\(295\) 13.8921i 0.808830i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 10.2653i 0.593656i
\(300\) 0 0
\(301\) 14.2653i 0.822237i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.90371 0.280786
\(306\) 0 0
\(307\) −4.99401 −0.285023 −0.142512 0.989793i \(-0.545518\pi\)
−0.142512 + 0.989793i \(0.545518\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.30762i 0.130853i −0.997857 0.0654264i \(-0.979159\pi\)
0.997857 0.0654264i \(-0.0208408\pi\)
\(312\) 0 0
\(313\) 6.26527i 0.354134i 0.984199 + 0.177067i \(0.0566610\pi\)
−0.984199 + 0.177067i \(0.943339\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.903715i 0.0507577i −0.999678 0.0253788i \(-0.991921\pi\)
0.999678 0.0253788i \(-0.00807920\pi\)
\(318\) 0 0
\(319\) 19.9648 1.11782
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 25.8921 22.1574i 1.44068 1.23287i
\(324\) 0 0
\(325\) 4.81342 0.267000
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 18.7958i 1.03625i
\(330\) 0 0
\(331\) −28.7958 −1.58276 −0.791381 0.611323i \(-0.790637\pi\)
−0.791381 + 0.611323i \(0.790637\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 9.07869i 0.496022i
\(336\) 0 0
\(337\) 15.1690i 0.826308i 0.910661 + 0.413154i \(0.135573\pi\)
−0.910661 + 0.413154i \(0.864427\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −26.1398 −1.41555
\(342\) 0 0
\(343\) 12.7231i 0.686984i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.77108i 0.363490i −0.983346 0.181745i \(-0.941825\pi\)
0.983346 0.181745i \(-0.0581746\pi\)
\(348\) 0 0
\(349\) 15.8921 0.850685 0.425343 0.905032i \(-0.360154\pi\)
0.425343 + 0.905032i \(0.360154\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −25.2537 −1.34412 −0.672059 0.740498i \(-0.734590\pi\)
−0.672059 + 0.740498i \(0.734590\pi\)
\(354\) 0 0
\(355\) 12.9461 0.687105
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −31.4343 −1.65904 −0.829519 0.558479i \(-0.811385\pi\)
−0.829519 + 0.558479i \(0.811385\pi\)
\(360\) 0 0
\(361\) 49.3148 2.59551
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.73473 −0.0907997
\(366\) 0 0
\(367\) 15.6516i 0.817006i −0.912757 0.408503i \(-0.866051\pi\)
0.912757 0.408503i \(-0.133949\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 46.9532i 2.43769i
\(372\) 0 0
\(373\) −1.34397 −0.0695880 −0.0347940 0.999395i \(-0.511078\pi\)
−0.0347940 + 0.999395i \(0.511078\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 20.5305i 1.05738i
\(378\) 0 0
\(379\) 16.4882i 0.846942i −0.905910 0.423471i \(-0.860811\pi\)
0.905910 0.423471i \(-0.139189\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 17.8745 0.913345 0.456673 0.889635i \(-0.349041\pi\)
0.456673 + 0.889635i \(0.349041\pi\)
\(384\) 0 0
\(385\) 19.3440i 0.985860i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 27.7898 1.40900 0.704500 0.709704i \(-0.251171\pi\)
0.704500 + 0.709704i \(0.251171\pi\)
\(390\) 0 0
\(391\) 5.71713 + 6.68078i 0.289128 + 0.337862i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.3076 0.619263
\(396\) 0 0
\(397\) 7.80743i 0.391844i 0.980620 + 0.195922i \(0.0627699\pi\)
−0.980620 + 0.195922i \(0.937230\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11.4343i 0.571000i 0.958379 + 0.285500i \(0.0921596\pi\)
−0.958379 + 0.285500i \(0.907840\pi\)
\(402\) 0 0
\(403\) 26.8805i 1.33901i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 18.7231 0.928071
\(408\) 0 0
\(409\) 14.0000 0.692255 0.346128 0.938187i \(-0.387496\pi\)
0.346128 + 0.938187i \(0.387496\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 57.4111i 2.82501i
\(414\) 0 0
\(415\) 5.90970i 0.290096i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 34.6808i 1.69427i 0.531380 + 0.847133i \(0.321674\pi\)
−0.531380 + 0.847133i \(0.678326\pi\)
\(420\) 0 0
\(421\) 12.8861 0.628031 0.314016 0.949418i \(-0.398326\pi\)
0.314016 + 0.949418i \(0.398326\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.13264 + 2.68078i −0.151955 + 0.130037i
\(426\) 0 0
\(427\) −20.2653 −0.980705
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.31922i 0.448891i 0.974487 + 0.224446i \(0.0720571\pi\)
−0.974487 + 0.224446i \(0.927943\pi\)
\(432\) 0 0
\(433\) −22.6208 −1.08709 −0.543544 0.839381i \(-0.682918\pi\)
−0.543544 + 0.839381i \(0.682918\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 17.6268i 0.843206i
\(438\) 0 0
\(439\) 18.0072i 0.859435i −0.902963 0.429717i \(-0.858613\pi\)
0.902963 0.429717i \(-0.141387\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −23.1514 −1.09996 −0.549978 0.835179i \(-0.685364\pi\)
−0.549978 + 0.835179i \(0.685364\pi\)
\(444\) 0 0
\(445\) 1.18658i 0.0562494i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.54215i 0.355936i −0.984036 0.177968i \(-0.943048\pi\)
0.984036 0.177968i \(-0.0569524\pi\)
\(450\) 0 0
\(451\) −10.6033 −0.499288
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −19.8921 −0.932557
\(456\) 0 0
\(457\) −8.06709 −0.377362 −0.188681 0.982038i \(-0.560421\pi\)
−0.188681 + 0.982038i \(0.560421\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.4227 0.578581 0.289290 0.957241i \(-0.406581\pi\)
0.289290 + 0.957241i \(0.406581\pi\)
\(462\) 0 0
\(463\) −0.282868 −0.0131460 −0.00657299 0.999978i \(-0.502092\pi\)
−0.00657299 + 0.999978i \(0.502092\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 16.8981 0.781951 0.390975 0.920401i \(-0.372138\pi\)
0.390975 + 0.920401i \(0.372138\pi\)
\(468\) 0 0
\(469\) 37.5189i 1.73246i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 16.1574i 0.742917i
\(474\) 0 0
\(475\) −8.26527 −0.379237
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 33.0188i 1.50867i −0.656492 0.754333i \(-0.727961\pi\)
0.656492 0.754333i \(-0.272039\pi\)
\(480\) 0 0
\(481\) 19.2537i 0.877892i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12.2653 −0.556937
\(486\) 0 0
\(487\) 26.8558i 1.21695i 0.793573 + 0.608475i \(0.208219\pi\)
−0.793573 + 0.608475i \(0.791781\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 20.3500 0.918381 0.459190 0.888338i \(-0.348140\pi\)
0.459190 + 0.888338i \(0.348140\pi\)
\(492\) 0 0
\(493\) −11.4343 13.3616i −0.514973 0.601774i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −53.5014 −2.39986
\(498\) 0 0
\(499\) 43.8266i 1.96195i 0.194143 + 0.980973i \(0.437807\pi\)
−0.194143 + 0.980973i \(0.562193\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6.59048i 0.293855i 0.989147 + 0.146928i \(0.0469384\pi\)
−0.989147 + 0.146928i \(0.953062\pi\)
\(504\) 0 0
\(505\) 3.90970i 0.173980i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 25.7842 1.14287 0.571433 0.820649i \(-0.306388\pi\)
0.571433 + 0.820649i \(0.306388\pi\)
\(510\) 0 0
\(511\) 7.16899 0.317137
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 17.3440i 0.764267i
\(516\) 0 0
\(517\) 21.2889i 0.936283i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.90371i 0.127214i −0.997975 0.0636070i \(-0.979740\pi\)
0.997975 0.0636070i \(-0.0202604\pi\)
\(522\) 0 0
\(523\) 41.4286 1.81155 0.905774 0.423761i \(-0.139290\pi\)
0.905774 + 0.423761i \(0.139290\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 14.9708 + 17.4942i 0.652138 + 0.762059i
\(528\) 0 0
\(529\) 18.4519 0.802255
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10.9037i 0.472292i
\(534\) 0 0
\(535\) 8.77108 0.379207
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 47.1761i 2.03202i
\(540\) 0 0
\(541\) 22.9884i 0.988348i −0.869363 0.494174i \(-0.835471\pi\)
0.869363 0.494174i \(-0.164529\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10.0000 0.428353
\(546\) 0 0
\(547\) 8.32521i 0.355960i 0.984034 + 0.177980i \(0.0569563\pi\)
−0.984034 + 0.177980i \(0.943044\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 35.2537i 1.50186i
\(552\) 0 0
\(553\) −50.8629 −2.16291
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5.52456 −0.234083 −0.117042 0.993127i \(-0.537341\pi\)
−0.117042 + 0.993127i \(0.537341\pi\)
\(558\) 0 0
\(559\) 16.6152 0.702749
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −17.5246 −0.738572 −0.369286 0.929316i \(-0.620398\pi\)
−0.369286 + 0.929316i \(0.620398\pi\)
\(564\) 0 0
\(565\) 5.16899 0.217461
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 20.7231 0.868758 0.434379 0.900730i \(-0.356968\pi\)
0.434379 + 0.900730i \(0.356968\pi\)
\(570\) 0 0
\(571\) 4.87335i 0.203943i −0.994787 0.101972i \(-0.967485\pi\)
0.994787 0.101972i \(-0.0325151\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.13264i 0.0889371i
\(576\) 0 0
\(577\) −18.6208 −0.775196 −0.387598 0.921829i \(-0.626695\pi\)
−0.387598 + 0.921829i \(0.626695\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 24.4227i 1.01322i
\(582\) 0 0
\(583\) 53.1810i 2.20253i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −40.2477 −1.66120 −0.830600 0.556870i \(-0.812002\pi\)
−0.830600 + 0.556870i \(0.812002\pi\)
\(588\) 0 0
\(589\) 46.1574i 1.90188i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 8.98840 0.369109 0.184555 0.982822i \(-0.440916\pi\)
0.184555 + 0.982822i \(0.440916\pi\)
\(594\) 0 0
\(595\) 12.9461 11.0787i 0.530737 0.454182i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 40.7958 1.66687 0.833436 0.552616i \(-0.186370\pi\)
0.833436 + 0.552616i \(0.186370\pi\)
\(600\) 0 0
\(601\) 37.6995i 1.53780i 0.639371 + 0.768898i \(0.279195\pi\)
−0.639371 + 0.768898i \(0.720805\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.9097i 0.443543i
\(606\) 0 0
\(607\) 14.9285i 0.605928i 0.953002 + 0.302964i \(0.0979761\pi\)
−0.953002 + 0.302964i \(0.902024\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 21.8921 0.885660
\(612\) 0 0
\(613\) −12.9037 −0.521176 −0.260588 0.965450i \(-0.583916\pi\)
−0.260588 + 0.965450i \(0.583916\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14.4459i 0.581569i −0.956789 0.290784i \(-0.906084\pi\)
0.956789 0.290784i \(-0.0939162\pi\)
\(618\) 0 0
\(619\) 43.0188i 1.72907i −0.502573 0.864535i \(-0.667613\pi\)
0.502573 0.864535i \(-0.332387\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.90371i 0.196463i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −10.7231 12.5305i −0.427559 0.499626i
\(630\) 0 0
\(631\) 21.1810 0.843201 0.421600 0.906782i \(-0.361468\pi\)
0.421600 + 0.906782i \(0.361468\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 15.9824i 0.634242i
\(636\) 0 0
\(637\) 48.5130 1.92215
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 35.3264i 1.39531i 0.716435 + 0.697654i \(0.245773\pi\)
−0.716435 + 0.697654i \(0.754227\pi\)
\(642\) 0 0
\(643\) 14.1326i 0.557337i 0.960387 + 0.278668i \(0.0898930\pi\)
−0.960387 + 0.278668i \(0.910107\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 37.7898 1.48567 0.742836 0.669474i \(-0.233480\pi\)
0.742836 + 0.669474i \(0.233480\pi\)
\(648\) 0 0
\(649\) 65.0259i 2.55249i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.09629i 0.199433i 0.995016 + 0.0997165i \(0.0317936\pi\)
−0.995016 + 0.0997165i \(0.968206\pi\)
\(654\) 0 0
\(655\) −5.31922 −0.207839
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 43.0731 1.67789 0.838944 0.544217i \(-0.183173\pi\)
0.838944 + 0.544217i \(0.183173\pi\)
\(660\) 0 0
\(661\) −6.97642 −0.271351 −0.135676 0.990753i \(-0.543320\pi\)
−0.135676 + 0.990753i \(0.543320\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 34.1574 1.32457
\(666\) 0 0
\(667\) 9.09629 0.352210
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −22.9532 −0.886099
\(672\) 0 0
\(673\) 42.6152i 1.64270i 0.570427 + 0.821348i \(0.306778\pi\)
−0.570427 + 0.821348i \(0.693222\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 40.5073i 1.55682i −0.627754 0.778412i \(-0.716026\pi\)
0.627754 0.778412i \(-0.283974\pi\)
\(678\) 0 0
\(679\) 50.6879 1.94522
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.10906i 0.272020i 0.990707 + 0.136010i \(0.0434280\pi\)
−0.990707 + 0.136010i \(0.956572\pi\)
\(684\) 0 0
\(685\) 12.8134i 0.489576i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 54.6879 2.08344
\(690\) 0 0
\(691\) 20.4650i 0.778525i −0.921127 0.389263i \(-0.872730\pi\)
0.921127 0.389263i \(-0.127270\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.04234 0.229199
\(696\) 0 0
\(697\) 6.07270 + 7.09629i 0.230020 + 0.268791i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 6.51296 0.245991 0.122996 0.992407i \(-0.460750\pi\)
0.122996 + 0.992407i \(0.460750\pi\)
\(702\) 0 0
\(703\) 33.0611i 1.24692i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.1574i 0.607661i
\(708\) 0 0
\(709\) 13.1458i 0.493700i 0.969054 + 0.246850i \(0.0793955\pi\)
−0.969054 + 0.246850i \(0.920604\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −11.9097 −0.446022
\(714\) 0 0
\(715\) −22.5305 −0.842595
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.94606i 0.184457i 0.995738 + 0.0922284i \(0.0293990\pi\)
−0.995738 + 0.0922284i \(0.970601\pi\)
\(720\) 0 0
\(721\) 71.6763i 2.66937i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.26527i 0.158408i
\(726\) 0 0
\(727\) 12.6328 0.468525 0.234263 0.972173i \(-0.424732\pi\)
0.234263 + 0.972173i \(0.424732\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −10.8134 + 9.25367i −0.399949 + 0.342259i
\(732\) 0 0
\(733\) 23.2417 0.858452 0.429226 0.903197i \(-0.358786\pi\)
0.429226 + 0.903197i \(0.358786\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 42.4954i 1.56534i
\(738\) 0 0
\(739\) 47.3032 1.74008 0.870038 0.492985i \(-0.164094\pi\)
0.870038 + 0.492985i \(0.164094\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.75947i 0.137922i 0.997619 + 0.0689608i \(0.0219684\pi\)
−0.997619 + 0.0689608i \(0.978032\pi\)
\(744\) 0 0
\(745\) 1.16899i 0.0428285i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −36.2477 −1.32446
\(750\) 0 0
\(751\) 48.1150i 1.75574i 0.478896 + 0.877871i \(0.341037\pi\)
−0.478896 + 0.877871i \(0.658963\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 9.36156i 0.340702i
\(756\) 0 0
\(757\) 33.1634 1.20534 0.602672 0.797989i \(-0.294103\pi\)
0.602672 + 0.797989i \(0.294103\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.9097 0.431726 0.215863 0.976424i \(-0.430743\pi\)
0.215863 + 0.976424i \(0.430743\pi\)
\(762\) 0 0
\(763\) −41.3264 −1.49612
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 66.8685 2.41448
\(768\) 0 0
\(769\) 32.4051 1.16856 0.584278 0.811553i \(-0.301378\pi\)
0.584278 + 0.811553i \(0.301378\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −40.0319 −1.43985 −0.719924 0.694053i \(-0.755823\pi\)
−0.719924 + 0.694053i \(0.755823\pi\)
\(774\) 0 0
\(775\) 5.58449i 0.200601i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 18.7231i 0.670825i
\(780\) 0 0
\(781\) −60.5976 −2.16835
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 9.16899i 0.327255i
\(786\) 0 0
\(787\) 42.3747i 1.51050i 0.655440 + 0.755248i \(0.272483\pi\)
−0.655440 + 0.755248i \(0.727517\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −21.3616 −0.759530
\(792\) 0 0
\(793\) 23.6036i 0.838189i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.373165 −0.0132182 −0.00660909 0.999978i \(-0.502104\pi\)
−0.00660909 + 0.999978i \(0.502104\pi\)
\(798\) 0 0
\(799\) −14.2477 + 12.1926i −0.504047 + 0.431342i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.11987 0.286544
\(804\) 0 0
\(805\) 8.81342i 0.310632i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 8.56574i 0.301155i 0.988598 + 0.150578i \(0.0481133\pi\)
−0.988598 + 0.150578i \(0.951887\pi\)
\(810\) 0 0
\(811\) 42.0918i 1.47804i −0.673681 0.739022i \(-0.735288\pi\)
0.673681 0.739022i \(-0.264712\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.75947 −0.201746
\(816\) 0 0
\(817\) −28.5305 −0.998158
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 26.1454i 0.912481i −0.889856 0.456241i \(-0.849196\pi\)
0.889856 0.456241i \(-0.150804\pi\)
\(822\) 0 0
\(823\) 10.2173i 0.356153i 0.984017 + 0.178077i \(0.0569875\pi\)
−0.984017 + 0.178077i \(0.943012\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.4474i 0.780573i −0.920693 0.390286i \(-0.872376\pi\)
0.920693 0.390286i \(-0.127624\pi\)
\(828\) 0 0
\(829\) 12.1926 0.423465 0.211733 0.977328i \(-0.432089\pi\)
0.211733 + 0.977328i \(0.432089\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −31.5729 + 27.0188i −1.09394 + 0.936145i
\(834\) 0 0
\(835\) 1.49420 0.0517088
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 32.3803i 1.11789i 0.829204 + 0.558946i \(0.188794\pi\)
−0.829204 + 0.558946i \(0.811206\pi\)
\(840\) 0 0
\(841\) 10.8074 0.372670
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 10.1690i 0.349824i
\(846\) 0 0
\(847\) 45.0858i 1.54917i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.53055 0.292423
\(852\) 0 0
\(853\) 40.1694i 1.37537i −0.726008 0.687686i \(-0.758626\pi\)
0.726008 0.687686i \(-0.241374\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 46.9652i 1.60430i −0.597122 0.802150i \(-0.703689\pi\)
0.597122 0.802150i \(-0.296311\pi\)
\(858\) 0 0
\(859\) −20.3500 −0.694332 −0.347166 0.937804i \(-0.612856\pi\)
−0.347166 + 0.937804i \(0.612856\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 17.4286 0.593278 0.296639 0.954990i \(-0.404134\pi\)
0.296639 + 0.954990i \(0.404134\pi\)
\(864\) 0 0
\(865\) 10.9037 0.370737
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −57.6092 −1.95426
\(870\) 0 0
\(871\) −43.6995 −1.48070
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −4.13264 −0.139709
\(876\) 0 0
\(877\) 44.6879i 1.50900i 0.656298 + 0.754502i \(0.272122\pi\)
−0.656298 + 0.754502i \(0.727878\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 36.4227i 1.22711i 0.789652 + 0.613555i \(0.210261\pi\)
−0.789652 + 0.613555i \(0.789739\pi\)
\(882\) 0 0
\(883\) 48.5976 1.63544 0.817720 0.575616i \(-0.195238\pi\)
0.817720 + 0.575616i \(0.195238\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 33.3016i 1.11816i −0.829114 0.559080i \(-0.811155\pi\)
0.829114 0.559080i \(-0.188845\pi\)
\(888\) 0 0
\(889\) 66.0495i 2.21523i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −37.5916 −1.25796
\(894\) 0 0
\(895\) 8.53055i 0.285145i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 23.8194 0.794422
\(900\) 0 0
\(901\) −35.5916 + 30.4578i −1.18573 + 1.01470i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.16899 −0.105341
\(906\) 0 0
\(907\) 19.7475i 0.655705i −0.944729 0.327852i \(-0.893675\pi\)
0.944729 0.327852i \(-0.106325\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 5.12665i 0.169853i 0.996387 + 0.0849267i \(0.0270656\pi\)
−0.996387 + 0.0849267i \(0.972934\pi\)
\(912\) 0 0
\(913\) 27.6620i 0.915479i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 21.9824 0.725923
\(918\) 0 0
\(919\) 20.9764 0.691948 0.345974 0.938244i \(-0.387548\pi\)
0.345974 + 0.938244i \(0.387548\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 62.3148i 2.05112i
\(924\) 0 0
\(925\) 4.00000i 0.131519i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10.2653i 0.336793i −0.985719 0.168396i \(-0.946141\pi\)
0.985719 0.168396i \(-0.0538589\pi\)
\(930\) 0 0
\(931\) −83.3032 −2.73015
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 14.6632 12.5481i 0.479538 0.410368i
\(936\) 0 0
\(937\) −15.0116 −0.490408 −0.245204 0.969472i \(-0.578855\pi\)
−0.245204 + 0.969472i \(0.578855\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 50.4227i 1.64373i −0.569681 0.821866i \(-0.692933\pi\)
0.569681 0.821866i \(-0.307067\pi\)
\(942\) 0 0
\(943\) −4.83101 −0.157319
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 56.2173i 1.82682i −0.407044 0.913409i \(-0.633440\pi\)
0.407044 0.913409i \(-0.366560\pi\)
\(948\) 0 0
\(949\) 8.34996i 0.271051i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 37.6587 1.21989 0.609943 0.792445i \(-0.291192\pi\)
0.609943 + 0.792445i \(0.291192\pi\)
\(954\) 0 0
\(955\) 6.45785i 0.208971i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 52.9532i 1.70995i
\(960\) 0 0
\(961\) −0.186582 −0.00601878
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −7.89211 −0.254056
\(966\) 0 0
\(967\) 4.76392 0.153197 0.0765987 0.997062i \(-0.475594\pi\)
0.0765987 + 0.997062i \(0.475594\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 48.6999 1.56285 0.781427 0.623996i \(-0.214492\pi\)
0.781427 + 0.623996i \(0.214492\pi\)
\(972\) 0 0
\(973\) −24.9708 −0.800527
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −53.1338 −1.69990 −0.849950 0.526863i \(-0.823368\pi\)
−0.849950 + 0.526863i \(0.823368\pi\)
\(978\) 0 0
\(979\) 5.55413i 0.177511i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 47.3016i 1.50869i 0.656480 + 0.754344i \(0.272045\pi\)
−0.656480 + 0.754344i \(0.727955\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 7.36156i 0.234084i
\(990\) 0 0
\(991\) 44.9109i 1.42664i −0.700838 0.713320i \(-0.747190\pi\)
0.700838 0.713320i \(-0.252810\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 16.8382 0.533806
\(996\) 0 0
\(997\) 2.54253i 0.0805226i −0.999189 0.0402613i \(-0.987181\pi\)
0.999189 0.0402613i \(-0.0128190\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3060.2.e.j.1801.3 6
3.2 odd 2 340.2.c.a.101.5 yes 6
12.11 even 2 1360.2.c.e.1121.2 6
15.2 even 4 1700.2.g.b.849.5 6
15.8 even 4 1700.2.g.c.849.1 6
15.14 odd 2 1700.2.c.b.101.2 6
17.16 even 2 inner 3060.2.e.j.1801.4 6
51.38 odd 4 5780.2.a.i.1.3 3
51.47 odd 4 5780.2.a.k.1.1 3
51.50 odd 2 340.2.c.a.101.2 6
204.203 even 2 1360.2.c.e.1121.5 6
255.152 even 4 1700.2.g.c.849.2 6
255.203 even 4 1700.2.g.b.849.6 6
255.254 odd 2 1700.2.c.b.101.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
340.2.c.a.101.2 6 51.50 odd 2
340.2.c.a.101.5 yes 6 3.2 odd 2
1360.2.c.e.1121.2 6 12.11 even 2
1360.2.c.e.1121.5 6 204.203 even 2
1700.2.c.b.101.2 6 15.14 odd 2
1700.2.c.b.101.5 6 255.254 odd 2
1700.2.g.b.849.5 6 15.2 even 4
1700.2.g.b.849.6 6 255.203 even 4
1700.2.g.c.849.1 6 15.8 even 4
1700.2.g.c.849.2 6 255.152 even 4
3060.2.e.j.1801.3 6 1.1 even 1 trivial
3060.2.e.j.1801.4 6 17.16 even 2 inner
5780.2.a.i.1.3 3 51.38 odd 4
5780.2.a.k.1.1 3 51.47 odd 4